Climate Change 2007: Synthesis Report ### **Synthesis Report** #### An Assessment of the Intergovernmental Panel on Climate Change This underlying report, adopted section by section at IPCC Plenary XXVII (Valencia, Spain, 12-17 November 2007), represents the formally agreed statement of the IPCC concerning key findings and uncertainties contained in the Working Group contributions to the Fourth Assessment Report. Based on a draft prepared by: #### Core Writing Team Lenny Bernstein, Peter Bosch, Osvaldo Canziani, Zhenlin Chen, Renate Christ, Ogunlade Davidson, William Hare, Saleemul Huq, David Karoly, Vladimir Kattsov, Zbigniew Kundzewicz, Jian Liu, Ulrike Lohmann, Martin Manning, Taroh Matsuno, Bettina Menne, Bert Metz, Monirul Mirza, Neville Nicholls, Leonard Nurse, Rajendra Pachauri, Jean Palutikof, Martin Parry, Dahe Qin, Nijavalli Ravindranath, Andy Reisinger, Jiawen Ren, Keywan Riahi, Cynthia Rosenzweig, Matilde Rusticucci, Stephen Schneider, Youba Sokona, Susan Solomon, Peter Stott, Ronald Stouffer, Taishi Sugiyama, Rob Swart, Dennis Tirpak, Coleen Vogel, Gary Yohe #### **Extended Writing Team** Terry Barker #### Review Editors Abdelkader Allali, Roxana Bojariu, Sandra Diaz, Ismail Elgizouli, Dave Griggs, David Hawkins, Olav Hohmeyer, Bubu Pateh Jallow, Lučka Kajfež-Bogataj, Neil Leary, Hoesung Lee, David Wratt | Introduction | | | | |--------------|--|--|--| | | | | | | | | | | #### Introduction This Synthesis Report is based on the assessment carried out by the three Working Groups (WGs) of the Intergovernmental Panel on Climate Change (IPCC). It provides an integrated view of climate change as the final part of the IPCC's Fourth Assessment Report (AR4). Topic 1 summarises observed changes in climate and their effects on natural and human systems, regardless of their causes, while Topic 2 assesses the causes of the observed changes. Topic 3 presents projections of future climate change and related impacts under different scenarios. Topic 4 discusses adaptation and mitigation options over the next few decades and their interactions with sustainable development. Topic 5 assesses the relationship between adaptation and mitigation on a more conceptual basis and takes a longer-term perspective. Topic 6 summarises the major robust findings and remaining key uncertainties in this assessment. A schematic framework representing anthropogenic drivers, impacts of and responses to climate change, and their linkages, is shown in Figure I.1. At the time of the Third Assessment Report (TAR) in 2001, information was mainly available to describe the linkages clockwise, i.e. to derive climatic changes and impacts from socio-economic information and emissions. With increased understanding of these linkages, it is now possible to assess the linkages also counterclockwise, i.e. to evaluate possible development pathways and global emissions constraints that would reduce the risk of future impacts that society may wish to avoid. #### Schematic framework of anthropogenic climate change drivers, impacts and responses Figure I.1. Schematic framework representing anthropogenic drivers, impacts of and responses to climate change, and their linkages. #### Treatment of uncertainty The IPCC uncertainty guidance note¹ defines a framework for the treatment of uncertainties across all WGs and in this Synthesis Report. This framework is broad because the WGs assess material from different disciplines and cover a diversity of approaches to the treatment of uncertainty drawn from the literature. The nature of data, indicators and analyses used in the natural sciences is generally different from that used in assessing technology development or the social sciences. WG I focuses on the former, WG III on the latter, and WG II covers aspects of both. Three different approaches are used to describe uncertainties each with a distinct form of language. Choices among and within these three approaches depend on both the nature of the information available and the authors' expert judgment of the correctness and completeness of current scientific understanding. Where uncertainty is assessed qualitatively, it is characterised by providing a relative sense of the amount and quality of evidence (that is, information from theory, observations or models indicating whether a belief or proposition is true or valid) and the degree of agreement (that is, the level of concurrence in the literature on a particular finding). This approach is used by WG III through a series of self-explanatory terms such as: high agreement, much evidence; high agreement, medium evidence; medium agreement, medium evidence; etc. Where uncertainty is assessed more quantitatively using expert judgement of the correctness of underlying data, models or analyses, then the following scale of confidence levels is used to express the assessed chance of a finding being correct: very high confidence at least 9 out of 10; high confidence about 8 out of 10; medium confidence about 5 out of 10; low confidence about 2 out of 10; and very low confidence less than 1 out of 10. Where uncertainty in specific outcomes is assessed using expert judgment and statistical analysis of a body of evidence (e.g. observations or model results), then the following likelihood ranges are used to express the assessed probability of occurrence: *virtually certain* >99%; *extremely likely* >95%; *very likely* >90%; *likely* >66%; *more likely than not* > 50%; *about as likely as not* 33% to 66%; *unlikely* <33%; *very unlikely* <10%; *extremely unlikely* <5%; *exceptionally unlikely* <1%. WG II has used a combination of confidence and likelihood assessments and WG I has predominantly used likelihood assessments. This Synthesis Report follows the uncertainty assessment of the underlying WGs. Where synthesised findings are based on information from more than one WG, the description of uncertainty used is consistent with that for the components drawn from the respective WG reports. Unless otherwise stated, numerical ranges given in square brackets in this report indicate 90% uncertainty intervals (i.e. there is an estimated 5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range). Uncertainty intervals are not necessarily symmetric around the best estimate. ¹ See http://www.ipcc.ch/meetings/ar4-workshops-express-meetings/uncertainty-guidance-note.pdf ### Causes of change Topic 2 Causes of change #### Causes of change This Topic considers both natural and anthropogenic drivers of climate change, including the chain from greenhouse gas (GHG) emissions to atmospheric concentrations to radiative forcing⁴ to climate responses and effects. #### 2.1 Emissions of long-lived GHGs The radiative forcing of the climate system is dominated by the long-lived GHGs, and this section considers those whose emissions are covered by the UNFCCC. ## Global GHG emissions due to human activities have grown since pre-industrial times, with an increase of 70% between 1970 and 2004 (Figure 2.1).5 {WGIII 1.3, SPM} Carbon dioxide (CO₂) is the most important anthropogenic GHG. Its annual emissions have grown between 1970 and 2004 by about 80%, from 21 to 38 gigatonnes (Gt), and represented 77% of total anthropogenic GHG emissions in 2004 (Figure 2.1). The rate of growth of CO₂-eq emissions was much higher during the recent 10-year period of 1995-2004 (0.92 GtCO₂-eq per year) than during the previous period of 1970-1994 (0.43 GtCO₂-eq per year). [WGIII 1.3, TS.1, SPM] ### Carbon dioxide-equivalent (CO₂-eq) emissions and concentrations GHGs differ in their warming influence (radiative forcing) on the global climate system due to their different radiative properties and lifetimes in the atmosphere. These warming influences may be expressed through a common metric based on the radiative forcing of CO₂. - CO₂-equivalent emission is the amount of CO₂ emission that would cause the same time-integrated radiative forcing, over a given time horizon, as an emitted amount of a long-lived GHG or a mixture of GHGs. The equivalent CO₂ emission is obtained by multiplying the emission of a GHG by its Global Warming Potential (GWP) for the given time horizon.⁶ For a mix of GHGs it is obtained by summing the equivalent CO₂ emissions of each gas. Equivalent CO₂ emission is a standard and useful metric for comparing emissions of different GHGs but does not imply the same climate change responses (see WGI 2.10). - CO₂-equivalent concentration is the concentration of CO₂ that would cause the same amount of radiative forcing as a given mixture of CO₂ and other forcing components.⁷ The largest growth in GHG emissions between 1970 and 2004 has come from energy supply, transport and industry, while residential and commercial buildings, forestry (including deforestation) and agriculture sectors have been growing at a lower rate. The #### **Global anthropogenic GHG emissions** Figure 2.1. (a) Global annual emissions of anthropogenic GHGs from 1970 to 2004.⁵ (b) Share of different anthropogenic GHGs in total emissions in 2004 in terms of CO₂-eq. (c) Share of different sectors in total anthropogenic GHG emissions in 2004 in terms of CO₂-eq. (Forestry includes deforestation.) {WGIII Figures TS.1a, TS.1b, TS.2b} ⁴ Radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is an index of the importance of the factor as a potential climate change mechanism. In this report radiative forcing values are for changes relative to pre-industrial conditions defined at 1750 and are expressed in watts per square metre (W/m²). $^{^{\}mathfrak{s}}$ Includes only carbon dioxide (CO $_{2}$), methane (CH $_{4}$), nitrous oxide (N $_{2}$ O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphurhexafluoride (SF $_{\mathfrak{g}}$), whose emissions are covered by the UNFCCC. These GHGs are weighted by their 100-year Global Warming Potentials (GWPs), using values consistent with reporting under the UNFCCC. ⁶ This report uses 100-year GWPs and numerical values consistent with reporting under the UNFCCC. ⁷ Such values may consider only GHGs, or a combination of GHGs and aerosols.