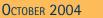


DRAFT ENVIRONMENTAL IMPACT REPORT


VOLUME IV

(TECHNICAL APPENDICES D-7 THROUGH H)

METROPOLITAN
TRANSPORTATION AUTHORITY
WEST LOS ANGELES
TRANSPORTATION FACILITY

AND
SUNSET AVENUE PROJECT

(EIR 2004-1407) (SCH No. 2003121036) (SCH No. 2004031139)

D7 - PHASE II ENVIRONMENTAL SITE ASSESSMENT
100 EAST SUNSET AVENUE,

MACTEC,

APRIL 15, 2004.

VOLUME 1 OF 3

FINAL REPORT OF PHASE II ENVIRONMENTAL SITE ASSESSMENT

METROPOLITAN TRANSPORTATION AUTHORITY DIVISION 6 MAINTENANCE FACILITY AND BUS YARD

100 SUNSET AVENUE VENICE, CALIFORNIA

Prepared for:

LOS ANGELES COUNTY METROPOLITAN TRANSPORTATION AUTHORITY

One Gateway Plaza Los Angeles, California 90012-1009

APRIL 15, 2004

MACTEC Project 4525030096

MACTEC Engineering and Consulting, Inc. 2171 Campus Drive, Suite 100 • Irvine, CA 92612 949-224-0050 • Fax: 949-224-0073 www.mactec.com

April 15, 2004

Emmanuel Liban, Ph.D. Metropolitan Transportation Authority One Gateway Plaza, Mail Stop 99-17-2 Los Angeles, California 90012-1009

Subject:

Final Report of Phase II Environmental Site Assessment

MTA Division 6 Maintenance Facility and Bus Yard

100 Sunset Avenue Venice, California

MACTEC Project 4525-03-0096

Dear Dr. Liban:

Attached is our final Phase II Environmental Site Assessment report for the above-referenced site. The purpose of the assessment was to document subsurface conditions at the municipal bus vard and maintenance facility prior to the sale/land swapping of the property.

Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable environmental consultants practicing in this or similar localities at the time of service. This warranty is in lieu of all other warranties, express or implied. This report has been prepared for MTA to be used solely in evaluating potential environmental implications at the subject site. The report has not been prepared for use by other parties and may not contain sufficient information for purposes of other parties or other uses.

We appreciate the opportunity to work with you on this project. Please contact us if you have any questions or if we may be of further service.

Respectfully submitted.

MACTEC Engineering and Consulting, Inc. Gregory Sena

Gregory Sena
Staff Geologist by Ofelo Genrola Princip

(10 copies submitted) with permission

Principal Hydrogeologist

TABLE OF CONTENTS

Pa	ıge
EXECUTIVE SUMMARY	iii
1.0 INTRODUCTION	1
2.0 PURPOSE, SCOPE, AND REPORT FORMAT 2.1 PURPOSE	1
3.0 GEOLOGIC SETTING AND GROUNDWATER 3.1 GEOLOGY 3.2 GROUNDWATER	3
4.0 SITE HISTORY	4 5 5
5.0 FIELD ACTIVITIES 5.1 DRILLING AND SAMPLING ACTIVITIES 5.1.1 Soil Vapor and Soil Borings 5.1.2 Soil Borings 5.1.3 Groundwater Borings 5.2 FIELD OBSERVATIONS 5.2.1 Soil Vapor Borings 5.2.2 Soil and Groundwater Borings	8 9 .10 .17 .17
6.0 ANALYTICAL RESULTS	19 19
7.0 DISCUSSION	23 24
8.0 CONCLUSIONS	33
9.0 LIMITATIONS	35
10 0 REFERENCES	35

Tables

- Table 1 Groundwater Analytical Results
- Table 2 Historical Soil Data
- Table 3 Soil Vapor Analytical Results
- Table 4 Soil Carbon Range Analytical Results
- Table 5 Soil Analytical Results
- Table 6 Title 22 Metals Soil Analytical Results
- Table 7 Title 22 Metals Groundwater Analytical Results

Figures

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Area 1 Location Plan
- Figure 4 Area 2 Location Plan
- Figure 5 Area 3 Location Plan
- Figure 6 Area 4 Location Plan
- Figure 7 Area 5 Location Map
- Figure 8 Groundwater Boring Locations

APPENDIX A: STANDARD STRATAPROBE SOIL SAMPLING PROTOCOL

APPENDIX B: BORING LOGS

APPENDIX C: ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY

DOCUMENTATION (Attached as Volume 2 of 3 and Volume 3 of 3)

EXECUTIVE SUMMARY

MACTEC Engineering and Consulting, Inc. (MACTEC) has performed a Phase II subsurface environmental assessment at the current Metropolitan Transportation Authority (MTA) Division 6 bus yard and maintenance facility at the southwest corner of Sunset Avenue and Main Street in Venice, California. MTA is considering a real estate transaction that would result in the property becoming residential. MTA has contracted MACTEC to conduct a subsurface assessment prior to commencing the real estate transaction. The site assessment included subsurface evaluation in five defined areas inclusive of the areas previously investigated by other consultants and areas previously not addressed.

The site geology/hydrogeology indicates that fill materials consisting of primarily sand and construction debris were present in some of the borings to depths up to 5 feet below ground surface (bgs). Other than the fill, the soil from the surface to 10 to 15 feet bgs was predominantly yellowish brown sand with some gravelly sand and silty sand. Clays were encountered at approximately 10 feet bgs in the northern portion of the site and increased to approximate depths of 20 feet in the southern portion of the site. Groundwater was measured to be at approximately 24 to 26 feet bgs in the four deep borings drilled during this investigation.

The site was first developed in 1901 as a rail yard for the Venice Short Line. In the 1950s, the site was converted into a bus division. The site currently houses underground storage tanks (USTs) for fuel and other bus maintenance related fluids and open service bay trenches to allow inspection/repair of the buses.

Previous environmental investigations conducted by various consultants in the areas of the USTs indicated that soil and groundwater were impacted with petroleum hydrocarbons. In 1998, each UST was removed and new USTs were installed. Currently five groundwater monitoring wells exist onsite and one is offsite. The six wells are sampled quarterly with the results reported to the Los Angeles Regional Water Quality Control Board.

The five assessment areas are the former powerhouse substation and northern site locations (Area-1); the former old car house, current bus washer and former gas storage building locations (Area-2); the former and current gasoline and diesel USTs, dispenser islands, former old pump fuel house, and eastern site locations (Area-3); the bus maintenance trenches and former waste oil tank locations (Area-4); and the former or current clarifier locations (Area-5). Furthermore, to address the potential site-wide impact of volatile organic compounds (VOCs) or petroleum hydrocarbons from current site activities, 34 soil vapor and soil sample collection probes were completed in a grid pattern. Finally, four groundwater grab samples were retrieved in areas were current groundwater samples are not collected to assess groundwater conditions and the potential for migration of constituents from possible subsurface impacted locations.

The 34 soil vapor samples were collected at depths of 8 feet bgs and analyzed for VOCs. Various analyses were conducted on the soil and groundwater samples depending on the suspected past use of the collection location and field observations during the assessment. The analytical methods used

were EPA method 418.1 for total recoverable petroleum hydrocarbons (TRPH), EPA method 8015M for total petroleum hydrocarbons as gasoline (TPH-g) and total petroleum hydrocarbons as diesel (TPH-d), EPA method 9010B for total cyanide, EPA method 8270C for polycyclic aromatic hydrocarbons (PAH), EPA method 8151 for herbicides, EPA method 8082 for polychlorinated biphenyls (PCBs), EPA method 6010 for Title 22 metals, EPA method 8260 for VOCs, and EPA GC/MS isotope dilution method for 1,4-dioxane (groundwater only). Other analyses were considered but based on site history and use there is no basis for initiating the request to perform these analyses. Twenty nine soil samples were selected for total petroleum hydrocarbons carbon range C7 to C44 analysis by EPA method 3550B. The basis for the carbon range selection was total recoverable petroleum hydrocarbons (TRPH) EPA method 418.1 results at or above 100 milligrams per kilogram (mg/kg).

The soil vapor VOC results were all reported as not detected, indicating that VOCs are not present in subsurface soils.

The results of soil assessment in Area-1, Area-2, and Area-4 indicate near-surface impact by petroleum hydrocarbons, primarily in the oil and grease range. The results of Area-3 indicate that the soil in the area of the fuel USTs and the dispenser island are impacted by petroleum The UST area has been previously assessed by other consultants and five groundwater monitoring wells have been placed around the area. The fuel USTs in Area 3 are known to have been the source for petroleum impact to groundwater. Quarterly groundwater monitoring has been conducted for the UST area since 1999. The petroleum hydrocarbons and fuel oxygenates groundwater concentrations have been steadily decreasing indicating that the contamination mass is decreasing and it is not impacting groundwater. Area-5 (clarifiers spread throughout the site) again indicated that soil in the area of the fuel USTs and dispenser islands is impacted with petroleum hydrocarbons, that soil by the employee gym (in boring CL8) may be impacted with minor petroleum hydrocarbons primarily in the oil and grease range at a depth of 14.5 feet bgs, and that near-surface relatively low levels of petroleum hydrocarbons primarily in the oil and grease range exist in the area of the steam cleaner clarifier (borings CL4 and CL5). The metals concentrations detected for the 95 soil samples analyzed indicate that risk-based evaluation for metals is not needed. The total cyanide, herbicides, and PCB results were all reported as not detected for the soil and groundwater samples. Preliminary risk-based screening was conducted as part of this assessment. Based on the risk based screening data generated therein, PAHs do not appear to be significant contributors to risk/hazard for the MTA Division 6 property. The risk screening will be elaborated in a separate human health risk assessment document.

Chloroform was detected in groundwater samples from MB31-GW and MB11-GW at respective concentrations of 5 μ g/kg and 1.5 μ g/kg. 1,4-dioxane was detected at a concentration of 3.4 μ g/kg in MW-5. These detections are isolated and appear minor; however, they will be further addressed in the risk assessment report to follow.

The results of this Phase II environmental site assessment indicate that petroleum hydrocarbon impacted soil, primarily in the oil and grease range is present in the near-surface soils in numerous areas of the site. These impacts indicate that these soils could be left in place; however, if the existing pavement is removed and the site is graded for future development, these soils will need to be stockpiled and analyzed after excavation and prior to removal from the site or replacement in the

ground. Additionally, due to the nature of the use of the site (bus parking and maintenance), it is very likely that near-surface impact from petroleum hydrocarbons is present beneath the pavement in areas not assessed. Previous use impacts were investigated but the data does not indicate any concern for the previous uses. During removal of the pavement and initial grading/excavation of the site, the soil will need to be handled properly to separate areas that are impacted with petroleum hydrocarbons.

Based on the previous consultant's assessment reports and the additional borings drilled in the area during this assessment, the soil in the area of the fuel UST and dispenser area (central portion of Area-3) is impacted with petroleum hydrocarbons. Whether the soil will need to be remediated prior to residential development and to what depths/concentrations will be assessed in the following health risk assessment.

The current quarterly groundwater sampling of five onsite wells and one offsite well indicates that petroleum concentrations in the groundwater are decreasing. The petroleum hydrocarbons and fuel oxygenates groundwater concentrations have been steadily decreasing as evidenced in the groundwater monitoring data from 1999 to present indicating that the contamination mass is decreasing and it is not impacting groundwater sources. The fourth quarter 2004 event reported TPH-d and TPH-g as not detected in each of the six wells, and MTBE was detected at a maximum concentration of 5.1 micrograms per liter (µg/l). The fourth quarter report states that "If the next two quarterly monitoring results continue to show the trend of decreasing concentrations, it appears that the site should be recommended for regulatory closure." The 1st quarter 2004 groundwater monitoring event data indicates that TPH-g and TPH-d were not detected and that MTBE was detected in MW-1 at a maximum concentration of 30 µg/l. This 1st quarter 2004 data supports the decreasing groundwater concentration trend. A complete report on the 1st quarter 2004 groundwater monitoring is being prepared in an accompanying monitoring report.

1.0 INTRODUCTION

The Los Angeles County Metropolitan Transportation Authority (MTA) contracted with MACTEC Engineering and Consulting, Inc. (MACTEC) perform a Phase II Environmental Site Assessment (ESA) of the MTA Division 6 Maintenance Facility and Bus Yard property (subject site) located at 100 Sunset Avenue in Venice, California. This report was prepared for the exclusive use of MTA in general accordance with our Work Plan and Cost/Schedule Proposal dated December 31, 2003. Other parties wishing to rely on this report should contact us so we can execute a secondary client agreement.

2.0 PURPOSE, SCOPE, AND REPORT FORMAT

This section describes the purpose, scope, and format of the report.

2.1 PURPOSE

The purpose of this site assessment was to assess the presence, degree, and extent of potential contamination from current or past activities that have occurred on site. This was accomplished by documenting subsurface conditions by exploratory drilling and the sampling of soil vapor, soil, and groundwater in selected investigation areas across the site.

2.2 SCOPE OF WORK

The Phase II investigation was designed to characterize subsurface environmental conditions in five selected areas (Area-1 through Area-5) based on the historical use of the site and information discussed in MACTEC's Phase I Environmental Site Assessment (draft report dated January 29, 2004). The Phase II assessment included the following services:

• **Site History**—Prior to implementing the site assessment, MACTEC reviewed available documents from prior environmental investigations conducted onsite. We have also briefly summarized the historical use of the site to schedule investigative borings in new locations that have not been previously investigated.

- **Field Activities**—Section 5.0 discusses activities recently concluded and details the site-wide subsurface investigation conducted in five predetermined areas of concern. Subsurface conditions logged by the field geologist are also discussed in this section.
- Analytical Results—Section 6.0 describes the analytical results from the soil vapor, soil, and groundwater samples collected during the investigation in detail for each area of concern.
- **Report Discussion**—Section 7.0 discusses and renders opinions on the significance of the assessment results.

2.3 REPORT FORMAT

Our report is presented in the following format:

- Geologic Setting
- Site History
- Field Activities
- Analytical Results
- Discussion
- Conclusions

A statement of interpretative limitations follows the conclusions.

The boring logs, field procedures, laboratory results, and chain-of-custody documentation are presented in the appendices.

3.0 GEOLOGIC SETTING AND GROUNDWATER

The surface and subsurface drainage and geology are of interest because they provide an indication of the fate and transport of contaminants if present.

3.1 GEOLOGY

The site is located in Venice, California, approximately 1 mile northwest of Ballona Creek. The site slopes gently toward the north and is at an average elevation of approximately 30 feet above mean sea level (msl) (Figure 1, Site Location Map). The shoreline of the Pacific Ocean is approximately 1,200 feet southwest of the site. Regionally, the site is located within the Peninsular Ranges geomorphic province, which is characterized by elongated northwest-trending mountain ridges separated by straight-sided sediment-filled valleys. The northwest trend is further reflected in the direction of the dominant geologic structural features of the province, which are northwest to west-northwest trending folds and faults, such as the Newport-Inglewood fault zone, located northeast of the site.

Materials underlying the site, from the surface down, are as follows:

- Fill materials, extending to depths of up to approximately 10 feet below ground surface (bgs), are present beneath the site (URS Corporation [URS], 2002).
- The site lies within the Ballona Gap Region of the Santa Monica Basin. The Ballona Gap forms and east-west trending trough that is filled by recent alluvial deposits. The alluvium is composed of interbedded sand, sandy clay and gravely sand and has a maximum thickness of 50 feet bgs (California Department of Water Resources [CADWR], 1961).
- Below the alluvial deposits are approximately 200 feet of sedimentary bedrock of the early Pleistocene-age San Pedro Formation. The San Pedro Formation consists of sand, gravel, silty sand, and silt.
- The Pliocene-age Pico Formation, a sequence of marine sedimentary deposits, underlies the San Pedro Formation beneath the site.

3.2 GROUNDWATER

The site is located in Section 17, Township 2 South, Range 15 West in the USGS Venice Quadrangle. It is in the West Coast Groundwater Sub-basin of the Coastal Plain of the Los Angeles Groundwater Basin, also known as the West Coast Basin, which is bounded on the north by the Ballona Escarpment, on the east by the Newport-Inglewood Fault Zone, and on the south and west by the Pacific Ocean and Palos Verdes Hills. The Los Angeles and San Gabriel Rivers cross the West Coast Basin and terminate into the Pacific Ocean through the Dominguez and Alamitos Gaps, respectively (CADWR, 2003). Ground water is commonly withdrawn from Holocene to Plioceneage marine and nonmarine deposits in the West Coast Basin. Notably, the first occurring ground water-bearing unit as defined by Poland et al. (1959) is the "50-foot gravel" located within the Holocene-age alluvial deposits. However, groundwater in areas close to the Pacific Ocean often is of poor quality due to seawater intrusion. According to ground water level measurements conducted in monitoring wells onsite (MACTEC, 2004), groundwater is approximately 19 to 25 feet bgs and flows toward the south at a gradient of 0.025 foot per foot.

4.0 SITE HISTORY

The subject site consists of an approximately 3.5-acre, irregular-shaped parcel that is bounded by Sunset Avenue to the north, Main Street to the east, Thornton Place to the south, and Pacific Avenue to the west. The site generally slopes from south to north and was constructed with a retaining wall along Main Street and Thornton Place. The southeast corner of the site is elevated approximately 9 to 10 feet above Main Street.

4.1 HISTORICAL AND CURRENT ACTIVITIES

The site was developed in 1901 by Los Angeles Pacific and served as the rail yard for the Venice Short Line, which provided service from Venice to downtown Los Angeles in 1902. The site contained an electrical substation at the northeast corner of the site and a car barn with three sets of rail tracks on the west-central portion of the site. In the 1950s, the site was converted into a bus division.

Currently, the site is used by the MTA Division 6 Maintenance Facility and Bus Yard as the base for a fleet of 78 buses that provide public transportation service generally between downtown Los Angeles and the west side of the city. The main service routes include Santa Monica Boulevard, Pico Boulevard, Olympic Boulevard, and Pacific Coast Highway (Temescal Canyon). Fuel dispensing islands are located on the southeastern portion of the site along Main Street, and until February 1998, the northern portion of the site contained four single-walled steel USTs (two 10,000-gallon diesel, one 8,000-gallon motor oil, and one 6,000-gallon gasoline) used for fueling buses. The USTs were removed and replaced with four dual-wall fiberglass USTs in February 1998 (two 10,000-gallon diesel, one 8,000-gallon gasoline, and one 5,000-gallon waste fuel). The central portion of the site contains approximately 52 stalls for bus parking. The remainder of the site is open and used for vehicle parking and driveway access.

The bus maintenance area contains four service bays with inspection/repair pits that allow MTA mechanics to perform maintenance work underneath the buses without having to use hydraulic lifts. Daily maintenance activities on the buses involve new tire and wheel (rim) repairs, painting, steam cleaning of parts and equipment, and washing. (A bus wash rack is situated on the west-central portion of the site adjacent to Pacific Avenue.)

4.2 PREVIOUS INVESTIGATIONS

A summary of available reports of previous investigations conducted onsite by other environmental consultants is presented below. Data from these reports are summarized in Table 1, Groundwater Analytical Results and Table 2, Historical Soil Data. The locations of soil samples retrieved during prior investigations are depicted on Figure 2, Site Plan. Please be aware that the locations of borings by previous consultants are rough approximations based on reports with differing information.

4.2.1 Converse Environmental Consultants (Converse)

In March 1988, Converse drilled 11 soil borings (BH-1 through BH-11) adjacent to the former USTs at depths ranging from 10 to 40 feet bgs. Soil samples were collected at 5-foot intervals, and

ground water was encountered at an average depth of 26 feet bgs. Laboratory analytical results indicated elevated total petroleum hydrocarbons (TPH) and/or oil and grease concentrations in borings BH-3 through BH-7 and BH-9 through BH-11. The highest TPH concentration (12,000 milligrams per kilogram [mg/kg]) was detected in the soil sample collected from boring BH-4 at a depth of 25 feet bgs.

4.2.2 Holguin, Fahan & Associates, Inc. (HFA), as a subcontractor to Bentley Company

In November 1995, HFA performed a limited site assessment to identify the type and distribution of subsurface hydrocarbons in the areas that were to be excavated for UST removal and replacement. A total of 16 direct-push cone penetrometer test (CPT) borings (CPT-1 through CPT-16) were advanced to depths of 30 feet bgs. Soil samples were collected at 5-foot intervals within each CPT boring. TPH, total recoverable petroleum hydrocarbons (TRPH), and benzene, toluene, ethylbenzene, and xylene (BTEX) were detected at sample locations CPT-1, CPT-2, CPT-7, CPT-10, and CPT-11 at concentrations in excess of the Los Angeles County Fire Department (LAFD) soil action levels (defined as 100 mg/kg TPH and TRPH, 1 mg/kg benzene, and 50 mg/kg TEX).

Three Hydropunch groundwater samples (CPT-1, CPT-2, and CPT-6) were collected. Total petroleum hydrocarbons as gasoline (TPH-g) and total petroleum hydrocarbons as diesel (TPH-d) were detected in CPT-1 at respective concentrations of 1.1 milligrams per liter (mg/l) and 1.5 mg/l. Benzene was detected in all three groundwater samples at a maximum concentration of 0.083 mg/l, which exceeded the California Title 22 Maximum Contaminant Level (MCL) of 0.001 mg/l.

In July 1997, HFA collected five Hydropunch groundwater samples (HP-1 through HP-5) near the fuel USTs. TPH-g was detected at a maximum concentration of 160,000 micrograms per liter (μ g/l) in groundwater sample HP-1. Benzene was detected in groundwater samples at concentrations ranging from 0.5 to 2,900 μ g/l. The gasoline fuel oxygenate methyl tertiary butyl ether (MTBE) was also detected at concentrations up to 27,000 μ g/l (HP-1).

4.2.3 Tyree Corporation

In 1998, The Tyree Organization, Ltd. (Tyree), was contracted by MTA to replace eight USTs located at the site. Two 10,000-gallon diesel USTs, one 8,000-gallon motor oil UST, and one 6,000-gallon gasoline UST were removed from the northern portion of the property. Subsequently, one 300-gallon diesel UST, one 2,000-gallon used oil UST, and one 500-gallon used oil UST were removed from the eastern side of the site near the maintenance building. Soil samples were collected approximately 2 feet below the base of each tank invert. TPH-d was detected in soil samples collected from beneath the two 10,000-gallon diesel tanks at concentrations of 1,740 mg/kg and 5,000 mg/kg. TPH-g was detected in soil samples collected from the southern and northern ends of the gasoline tank at respective concentrations of 16.3 mg/kg and 1,390 mg/kg. TRPH was detected at respective concentrations of 472 mg/kg and 23,600 mg/kg in soil samples collected from the southern and northern ends of the motor oil tank. Benzene was not detected in any of the soil samples. Five of the soil samples collected below the USTs contained detectable concentrations of toluene, ethylbenzene, and total xylenes. MTBE was detected at concentrations ranging from 0.492 mg/kg to 46.8 mg/kg. Concentrations of lead ranged from 45.8 mg/kg to 302 mg/kg.

The removed tanks were reportedly replaced with three 10,000-gallon USTs, one 8,000-gallon UST, two 5,000-gallon USTs, two 2,000-gallon USTs, and one 500-gallon UST. Refer to Figure 2 for current and former UST locations. However, site observations and MTA listings indicate that two 10,000-gallon, one 8,000-gallon, two 5,000-gallon, two 2,000-gallon, and one 500-gallon USTs are at the site.

4.2.4 URS and MACTEC

As reported in the URS Groundwater Monitoring Well Installation Report (2002), in 1999, URS was contracted by MTA to conduct a subsurface soil and groundwater investigation at the site and install four groundwater monitoring wells (MW-1 through MW-4). Groundwater monitoring wells MW-5 and MW-6 were installed in February 2002 by URS, and a total of seven soil samples were collected. BTEX, MTBE, and TPH-g were not detected in any of the soil samples collected from borings MW-5 and MW-6. TPH-d was detected in soils collected from MW-5 at a depth of 10 feet bgs and MW-6 at a depth of 15 feet bgs at concentrations of 200 mg/kg and 41 mg/kg, respectively.

TRPH was detected in soils collected from MW-5 at a depth of 10 feet bgs (94 mg/kg) and MW-6 at depths of 15 feet bgs (38 mg/kg) and 20 feet bgs (10 mg/kg). These wells are sampled quarterly with reports going to the Los Angeles Regional Water Quality Control Board. Installation of a seventh well was attempted along with MW-5 and MW-6. The seventh well would have been in the sidewalk across Main Street to the east of MW-6. Well MW-7 was not installed due to underground obstructions/utilities. Due to the indications of a southern groundwater gradient and overall reducing petroleum hydrocarbon concentrations in groundwater at the site, further attempts to install well MW-7 were determined to be unnecessary.

5.0 FIELD ACTIVITIES

A December 31, 2003 Workplan describing the initial scope of the Phase II assessment was prepared by MACTEC. Before conducting subsurface activities, MACTEC prepared a site-specific Health and Safety Plan that outlined health and safety procedures to be followed during fieldwork. We visited the site to mark boring locations and assess potential drilling obstructions. We identified the boring locations in the field after taking into consideration (1) environmental investigations previously conducted by other consultants, (2) the site historical use as a rail yard and locations of rail yard buildings, and (3) locations not previously investigated in which past or current MTA-related facility activities may have impacted soil and ground water conditions. Prior to drilling, a subsurface geophysical survey was performed on January 27 and February 10, 2004 by Spectrum Geophysics around each proposed boring location to identify potential underground utilities, structures, or obstructions. Other precautionary measures included hand augering to a minimum of 5 feet below grade for each boring prior to drilling with the direct-push Strataprobe rig. In addition, we contacted Underground Service Alert (USA) 48 hours prior to drilling in an effort to locate possible underground utility lines at the site.

5.1 DRILLING AND SAMPLING ACTIVITIES

Between the dates of January 28 and February 13, 2004, we retained the services of H&P Mobile Geochemistry to advance a total of 34 soil and soil vapor probes, 43 soil borings, and 4 soil and groundwater borings in five areas as described below and shown on Figure 2, Site Location Plan.

Area of Concern	Location				
Area 1	Rail-yard powerhouse/substation and northern site				
Rail-yard old car house and current MTA bus washer, including former					
Area 2	storage building location				
A 2	Former and current gasoline and diesel USTs, dispenser island, and eastern				
Area 3	site, including former crude oil tank and fuel pump house				
Area 4	MTA bus maintenance trenches and former waste oil tanks				
Area 5	Underground clarifiers, oil water separators, and sumps				

Each boring was advanced using a Strataprobe direct-push drill rig equipped with a 1½-inch-or 2-inch-diameter, stainless steel, large-bore sampling rod. We collected soil vapor, soil, and groundwater samples in the three areas as outlined below. Upon completion of the field activities, most of the borings were backfilled with hydrated bentonite granules. The hand auger borings MB20 through MB30 were backfilled with native cuttings. The upper 10 to 12 inches of each boring were capped with concrete. Appendix A, Standard Strataprobe Sampling Protocol, contains a detailed explanation of the drilling, sampling, logging, and decontamination procedures generally used for soil, soil vapor, and ground water (Hydropunch) sampling. Appendix B, Boring Logs, contains the log for each of the soil vapor, soil, and ground water borings.

5.1.1 Soil Vapor and Soil Borings

In consideration of the combined 100-year site history as a rail yard and bus maintenance facility, VOCs were presumed to have been used for various purposes. To determine the potential impact to subsurface soil and ground water conditions site-wide, 34 soil vapor and soil borings (SV1 through SV34) were conducted in a grid pattern (Figure 8). Soil vapor samples were retrieved (in general accordance with Appendix A) by advancing a hollow 2-inch rod using the Strataprobe direct push rig to approximately 8 feet bgs. Purging and sample collection were conducted according to DTSC guidelines. Soil vapor samples were submitted onsite to H&P's mobile analytical laboratory for VOC analysis by EPA Method 8260B.

All soil samples were retrieved between 4 to 4.5 feet bgs in accordance with soil sampling procedures described in Appendix A. Based on the historical locations of the rail lines at the site,

soil samples retained from SV1 at 4 feet, SV14 at 4.5 feet, SV31 at 4.5 feet and SV33 at 4.5 feet bgs were analyzed for Title 22 metals, PAHs, total cyanide, and herbicides. SV33 at 4 feet bgs was also selected for VOC analyses due to the lab operator indicating below reporting limit xylenes. SV5 at 4 feet bgs was analyzed for TPHg, TPHd, and VOCs due to PID readings and field observations.

5.1.2 Soil Borings

Soil samples that were analyzed for volatile organic carbons (VOCs) with and without fuel oxygenates by EPA Method 8260B and TPH-g by EPA Method 8015M were immediately submitted to H&P Geochemistry onsite mobile laboratories for analysis. These analyses were conducted using the 5035 preparation method. All other soil samples were submitted to Calscience Environmental Laboratories, Inc., a state certified analytical laboratory, for analysis. Soil vapor measurements using a PID were recorded for the 34 soil vapor borings (SV). Equipment difficulties prevented soil vapor readings from the remaining soil borings.

<u>Area-1</u>

Because of the historical use of cooling oils for the electrical equipment, soil samples collected in the old powerhouse substation were analyzed for TRPH by EPA Method 418.1, polychlorinated biphenyls (PCBs) by EPA Method 8082, and polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270 (Figure 3). A summary of the sampling schedule in Area-1 is described below.

	Area - 1							
Boring ID	Total Depth	Initial Analytical Methods	Soil sample Collection Depths (feet bgs)	Soil Samples Analyzed	Groundwater Analyzed	Structure / Previous Structure Boring is Assessing		
MB1,	16	TRPH,	1, 3, 5, 10, &	1, 5 & 15	No	Old Powerhouse-		
MB4, MB5, &		PCBs, PAH	15			Substation		
MB6 MB2	1	TRPH,	NONE	NONE	No	Old Powerhouse-		
1,152	1	PCBs, PAH	(refusal)	(refusal)	110	Substation		

MB3	36	TRPH, PCBs, PAH	1, 3, 5, 10, 15, & 20	1, 5 & 15	Yes	Old Powerhouse- Substation
MB19	28	Total Cyanide, PAH	Continuous Core	8.5 & 26	No	Off-site Manufactured Gas Plant

Boring MB2 was not drilled to the planned 15 foot depth and samples were not collected due to subsurface refusal at a depth of 1 foot bgs. Four soil samples collected with TRPH detections above 100 mg/kg were, in addition, selected for VOC and carbon chain analysis. As stated in the work plan, dioxins and dibenzofurans analysis were proposed to be performed for select samples based on any detection of PCBs in the collected soil samples. Since PCBs were reported as not-detected these additional analyses were not completed.

Soil boring MB19 was specifically chosen to assess possible lateral migration of manufactured gas plant contaminants in the unsaturated zone. MB19 was a continuous core boring drilled to a total depth of 28 feet bgs. Selected soil samples from MB19 at depths of 8.5 and 26 feet were analyzed for PAH and total cyanide by EPA Method 9010B. Both soil sample depths were selected based on the presence of sandy materials logged within the continuous core and the possibility of lateral migration of contaminants through the conductive sandy media.

Area-2

Because of the historical use of Area 2 as a covered rail car house for general maintenance, painting, and cleaning of the electric cars and current cleaning operations for MTA buses that may have involved the use of lubricants, oils, and petroleum hydrocarbons, 9 soil borings (MB7A, MB7B, MB8 through MB13, and MB20) were conducted in this area, including 1 combined soil and ground water boring (MB11) within/near the old car house footprint (Figure 4). A summary of the sampling schedule in Area-2 is described below.

Area - 2

Boring ID	Total Depth	Initial Analytical Methods	Soil sample Collection Depths (feet	Soil Samples Analyzed	Groundwater Analyzed	Structure / Previous Structure Boring is
			bgs)			Assessing
MB7A	3.5	VOCs,	3.5	1.5	No	Bus Cleaning Area
		METALS,				
		TRPH, PCBs,		(Refusal		
		& PAH		encountered)		
MB7B	16	VOCs,	1, 3, 5, 10, &	1, 5 & 15	No	Bus Cleaning Area
		METALS,	15			
		TRPH, PCBs,				
		& PAH				
MB8,	16	VOCs,	1, 3, 5, 10, &	1, 5, & 15	No	Covered Rail Car
MB9,		METALS,	15			House
MB10,		TRPH, PCBs,				
MB12,		& PAH				
MB13,						
&						
MB20	2.5	1100	1 2 7 10 17	1.50.15		G 15 11 G
MB11	36	VOCs,	1, 3, 5, 10, 15,	1, 5 & 15	Yes	Covered Rail Car
		METALS,	& 20			House
		TRPH, PCBs,				
CC1	1.5	& PAH	5 10 0 15	5 0 10	NT	C C D '11'
GS1	15	VOCs & TRPH	5, 10, & 15	5 & 10	No	Gas Storage Building

Boring MB7B was drilled in replacement of MB7A, which was completed to a depth of only 3.5 feet due to refusal (both borings were located near the bus wash clarifier). Nine soil samples collected with TRPH detections above 100 mg/kg were, in addition, selected for carbon chain analysis. All remaining soil samples were placed on hold.

In proximity to the old car house footprint, boring GS1 was drilled in the location of the former gas storage building to a depth of 15 feet bgs. The samples collected at 5 and 10 feet were analyzed for VOCs and TRPH. Soil samples retrieved at 15 feet bgs were placed on hold pending analytical results.

<u>Area-3</u>

In the area spanning the north-central to eastern corner of the MTA facility, several borings were completed to assess subsurface conditions associated with the old fuel pump house (OP1), former crude oil tank (CO1), current gasoline and diesel dispenser island (DI1 and DI2), and former rail-line entry location (MB17). Based on field observations, selected soil samples were submitted for analysis. The remaining soil samples were placed on hold. A summary of the sampling schedule in Area-3 is described below.

	Area - 3							
Boring ID	Total Depth	Initial Analytical Methods	Soil sample Collection Depths (feet bgs)	Soil Samples Analyzed	Groundwater Analyzed	Structure / Previous Structure Boring is Assessing		
OP1	16	TRPH, VOCs with Fuel Oxygenates	5, 10, & 15	5 & 10	No	Old Fuel Pump House		
CO1	16	TRPH and VOCs	5, 10, & 15	5 & 10	No	Former Crude Oil Tank		
DI1 & DI2	16	TPH-g, TPH-d, VOCs with Fuel Oxygenates	5, 10, & 15	5, 10, & 15	No	Current Dispenser Island		
MB17	28	See discussion in text below	Continuous Core	3, 10, & 15	No	Former Rail Line Entry Location		

Three soil samples collected with TRPH detections above 100 mg/kg were, in addition, selected for carbon chain analysis. Boring MB17, a continuous core boring, was drilled to a depth of 28 feet bgs. Soil samples submitted for laboratory analysis from boring MB17 were collected at 3, 10, and 15 feet bgs. Soils collected at 3 feet bgs were analyzed for VOCs with fuel oxygenates; soils collected at 10 feet bgs were analyzed for VOCs with fuel oxygenates, Title 22 metals, PAH, total cyanide, and herbicides by EPA Method 8151; and soils collected at 15 feet bgs were analyzed for Title 22 metals, PAH, total cyanide and herbicides.

Area-4

Area 4 was designed to investigate MTA activities in the areas of the bus maintenance trenches and former waste oil tanks in the eastern and southern corners of the site (parallel to Thornton Place). Maintenance trench borings were specifically conducted to detect the presence of various petroleum hydrocarbons, metals, lubricants, and oils associated with general bus maintenance and painting. Borings in the vicinity of the former waste oil tanks were specifically conducted to investigate possible paint wastes, solvent wastes, lubricant or oil products, and petroleum

hydrocarbon constituents from the use of the waste oil tanks (Figure 6). A summary of the sampling schedule in Area-4 is described below.

Area - 4							
Boring ID	Total Depth	Initial Analytical Methods	Soil sample Collection Depths (feet bgs)	Soil Samples Analyzed	Groundwater Analyzed	Structure / Previous Structure Boring is Assessing	
MB14 to MB16 & MB21 to MB30	11	VOCS, METALS, TRPH, PAH	1, 3, 5, & 10	1, 5, & 10	No	Maintenance Trenches	
MB18	4	VOCs, METALS, TRPH, PAH	1 & 3	1 & 3* (*See text below	No	Maintenance Trenches	
MB31	35	VOCs, METALS, TRPH, PAH, & PCBs	1, 3, 5, 10, 15 & 20	3 & 15	Yes	Former 500-gallon UST	
MB32	16	VOCs, METALS, TRPH, PAH, PCBs	1, 3, 5, 10 & 15	3 & 15	No	Existing 2,000-gallon Waste Oil Tank	
MB33	36	VOCs, METALS, TRPH, PAH, & PCBs	5, 10, 15 & 20	5 & 15	Yes	Former 2,000-gallon UST	

Five soil samples collected with TRPH detections above 100 mg/kg were, in addition, selected for carbon chain analysis. The sample from MB18 collected at a depth of 3 feet was analyzed for pH and total lead since it was from an area that appeared to have corroded concrete that may have been from past battery storage.

<u>Area-5</u>

Although not spatially confined within a designated study zone, Area-5 includes the clarifiers, oil-water separators, and sumps distributed across the site (Figure 7). A total of 9 soil borings, CL1 though CL9, were completed to a depth of 15 feet bgs. A summary of the sampling schedule in Area-5 is described below.

Area - 5							
Boring ID	Total Depth	Initial Analytical Methods	Soil sample Collection Depths (feet bgs)	Soil Samples Analyzed	Groundwater Analyzed	Structure / Previous Structure Boring is Assessing	
CL1 &CL2	15	VOCs, METALS, & TRPH	5, 10, & 15	10 & 15	No	Current Oil-Water Separators and Gasoline/Diesel USTs	
CL4 & CL5	15	VOCs, METALS, TRPH, PAH, & PCBs	1, 3, 5, 10, & 15	1, 5, & 15	No	Current Bus Steam Clean Area	
CL6	15	VOCs, METALS, TRPH	5, 10, & 15	10 & 15	No	Maintenance Trench Drain (Maintenance Building)	
CL7	15	VOCs, METALS, TRPH	5, 10, & 15	10 & 15	No	Sump	
CL8	15	VOCs, METALS, TRPH	5, 10, & 15	10 & 14	No	Clarifier (Former Battery Room	
CL9	15	VOCs, METALS, TRPH	5, 10, & 15	10 & 15	No	Former Clarifier in Small Parts Cleaning Area	
CL3	15	VOCs, METALS, & TRPH	5, 10, & 15	10 & 15	No	Former Clarifier	

Eight soil samples collected with TRPH detections above 100 mg/kg were, in addition, selected for carbon chain analysis. All other soil samples not submitted for analysis from CL1 through CL9 were placed on hold.

5.1.3 Groundwater Borings

Grab groundwater samples were collected in borings MB3 (Area-1), MB11 (Area-2), MB31 (Area-4), and MB33 (Area-4) utilizing Hydropunch sampling techniques with the Strataprobe direct push rig (Figure 9). Groundwater samples from these four locations were selected to obtain groundwater data from areas where groundwater monitoring wells are not located. Based on information obtained from our prior investigations and the current MTA ground water monitoring program, groundwater was estimated to be approximately 26 to 28 feet bgs. Hydropunch sampling techniques involved the advancement of 2-inch-diameter rods approximately 8 to 10 feet below detected groundwater levels (depths of 34 to 36 feet bgs). At the correct depth, the rod was pulled back to expose an inner 0.02-inch slotted screen. Groundwater samples were then micropurged from Teflon tubing within each Hydropunch boring screen. In general, groundwater samples were retrieved in general accordance with sampling protocols outlined in Appendix A.

Groundwater samples were submitted to Calscience Environmental Laboratories and analyzed for Title 22 metals, TPH-d, PAH, herbicides, total cyanide, 1,4-dioxane, and VOCs. Dioxins and dibenzofurans were tentatively scheduled to be analyzed pending PCB results. However, PCB results were later reported as nondetect and therefore dioxions and bibenzofurans were not requested.

5.2 FIELD OBSERVATIONS

Field observations include the general soil descriptions on the subsurface geologic conditions as logged by the field geologist.

5.2.1 Soil Vapor Borings

The average thickness of the concrete pavement for soil and soil vapor probes (SV1 though SV34) was approximately 8 inches. Immediately beneath the pavement, materials logged generally consisted of brown fine sand with some fine to coarse gravel to approximately 4 to 4.5 below grade. In some borings, construction debris was encountered that consisted of traces of brick, asphalt, wood, and plaster. Between 4.5 and 8 feet bgs, soil samples were not retrieved. As a result, soils

could not be logged below 4.5 feet. Soil vapor samples were obtained, however, by advancing the Strataprobe rod to 8 feet bgs as discussed in Section 5.1.2. In two borings, SV8 and SV5, petroleum hydrocarbon odors were noticed in the soils. In particular, petroleum odors were detected from subsurface soils logged between 4 to 5 feet in SV8 and 1.5 to 4 feet in SV5. Petroleum hydrocarbon odors were not detected in any of the remaining borings. SV8 was located adjacent to the fuel dispenser canopy. SV5 was drilled adjacent to the tire area and the SV5-4 sample was selected for TPH-g and TPH-d analyses based on the photo-ionization detector (PID) readings. Please refer to the boring logs for PID readings and odor comments.

5.2.2 Soil and Groundwater Borings

Subsurface soil conditions logged during the investigation for the soil and ground water borings corresponded to the conditions at the soil vapor borings; however, because of the greater depth range of the completed borings (MB1 through MB33, CL1 through CL9, OP1, GS1, and CO1) the vertical distribution of soils was better defined. Completed borings ranged in depth from 4 to 28 feet bgs, with most borings completed between 11 and 16 feet bgs. Surface concrete pavement ranged between 8 to 12 inches in thickness. In general, materials logged directly beneath the pavement consisted of brown to yellowish brown, sandy gravel to gravelly sand to a depth of 1 to 3 feet bgs. In borings MB1, MB4, MB17, and MB18, artificial fill was evident by the presence of construction debris consisting of asphalt and brick fragments to a maximum depth of 5 feet bgs.

Below the base or fill, soils generally consisted of yellowish brown clean sand with some gravelly sand and silty sand that occurred to a depth of 10 to 15 feet bgs. At greater depth, soils graded downward into brown sandy clay to clayey soils from 10 to 15 feet bgs to a maximum depth of 20 feet (MB31). However, soil materials logged in MB33 illustrate that clays may first occur as deep as 20 feet bgs. Based on the distribution of the first occurrence of fine materials, it is interpreted that in the northern portion of the site, clays are approximately 10 feet below grade and increase in depth southward and are generally capped by clean sands. Furthermore, borings located inside the maintenance trenches did not contain any fine materials. At greater depth, as logged in continuous core borings MB17 and MB19, most soils below 20 feet consist of various grades of sands with

some gravel. Boring MB17, in addition, contained small pieces of fibrous wood at approximately 3 feet bgs that may have been from rail road spurs.

Finally, during the investigation, groundwater depths in ground water borings MB3, MB11, MB31, and MB33 were measured to be approximately 24.4 feet, 26.6 feet, 26.1 feet, and 26.0 feet bgs, respectively.

6.0 ANALYTICAL RESULTS

Through the course of the site-wide investigation of the five areas, MACTEC analyzed soil vapor samples, soil samples, and groundwater grab samples. As previously discussed, each area was defined to further assess subsurface conditions from past and current activities. Samples collected and submitted for various laboratory analyses were scheduled according to the type of activity that predominantly occurred at that location. The following discussion included data from detected constituents. Detailed results are listed in Tables 1 and 3 though 5. The laboratory reports are included as Appendix C.

6.1 SOIL VAPOR RESULTS

As shown in Table 3, laboratory analysis for VOCs for all soil vapor samples (SV1 though SV34) did not detect any constituent above laboratory detection limits. During the soil vapor investigation, however, field observations indicated the presence of petroleum hydrocarbons in SV5. As a result, soil sample SV5-4 was submitted for TPH-g, TPH-d, and VOC analysis. Soil samples from SV1, SV14, SV31, and SV33 were selected for Title 22 metals, PAH, total cyanide and herbicide analyses based on the historic location of rail lines.

6.2 SOIL RESULTS

Area-1

Soil samples within the footprint of the former powerhouse/substation did not indicate the presence of PCBs. Two soil samples, MB4 at 1 foot bgs and MB6 at 1 foot bgs did have detected PAH constituents. In boring MB4, pyrene was detected at 0.47 mg/kg and in boring MB 6, fluoranthene

and pyrene were detected at 0.43 mg/kg and 0.44 mg/kg, respectively. TRPH was detected in four of the five borings conducted within the powerhouse/substation footprint. Detected concentrations of TPH ranged between 21 mg/kg to 6,300 mg/kg. Additionally, the selected soil sample submitted for analysis from SV1 collected from a depth of 4 feet bgs did not indicate the presence of PAH or herbicides.

MB19 was collected to the north of the powerhouse/substation footprint. Total cyanide and PAH analyzed in boring MB19 were not detected.

Area-2

Soil samples within and around the area of the former old car house and current bus washer did not indicate the presence of PCBs. Each soil sample except MB20 at 1 foot bgs did not indicate the presence of VOCs. The total detected concentration of VOCs in MB20 was 26 mg/kg. VOCs were not detected in soils from boring GS1. PAH constituents were not detected in all but two soil samples, MB10 at 1.5 foot bgs and MB11 at 1.5 foot bgs. Detected concentrations of PAHs in MB10 consisted of pyrene at 0.47 mg/kg and in MB11 consisted of fluoranthene and pyrene at 0.42 mg/kg and 0.46 mg/kg, respectively. Concentrations of TRPH were detected in five of the nine soil borings conducted in Area 2, including soil boring GS1. The detected concentrations of TRPH ranged between 15 to 4,200 mg/kg.

Area-3

VOCs, TRPH, and TPH-d were detected in some soil samples retrieved in Area-3. In the vicinity of the former crude oil tank and old fuel pump house (CO1 and OP1), VOCs were not detected in the soil samples. In two soil samples retrieved from DI1 a total concentration of VOCs was determined to be 1736.1 mg/kg at 10 feet bgs and 311 mg/kg at 15 feet bgs. In particular, MTBE in soil sample DI1 at 15 feet bgs was detected at 71 mg/kg. TRPH was detected in soil samples at concentrations of 290 mg/kg in CO1 at 5.5 feet bgs and 230 mg/kg and 220 mg/kg in OP1 at 5.5 feet bgs and 10.5 feet bgs, respectively. TPH-g was detected only in DI1 at 10 feet bgs at a concentration of 4.5 mg/kg. TPH-d was detected in DI1 at a maximum concentration of 480 mg/kg in soils retrieved at 5.5 feet bgs. At the far eastern corner of the site, there were no detectable

concentrations of total cyanide, PAH and herbicides in boring MB17. Soil samples submitted from SV31 retrieved at 4.5 feet bgs did contain one PAH constituent, benzo(g,h,i)-perylene, at a concentration of 350 mg/kg. However, herbicides were not detected.

<u>Area-4</u>

VOCs and PAH were not detected in any of the soil samples submitted from borings in Area 4. In addition, PCBs were not detected in the soil samples submitted from borings MB31, MB32, and MB33. TRPH concentrations were detected in 39 of 48 soil samples submitted for analysis. The detected concentrations of TRPH ranged from 11 mg/kg to 340 mg/kg. Concentrations of PAH and herbicides in soil samples from SV33 at 4.5 feet bgs were below laboratory detection limits.

<u>Area-5</u>

Concentrations of TRPH and VOC were detected in soil samples retrieved in Area 5. TRPH was detected in 17 out of 20 soil samples submitted for analysis. Detected TRPH concentrations ranged from 11 mg/kg to 1,200 mg/kg. Total VOC concentrations, detected in 5 out of 20 submitted soil samples, ranged from 5.1 mg/kg to 251 mg/kg. In particular, MTBE was detected in boring CL1 at 15 feet bgs at a concentration of 5.1 mg/kg and in boring CL2 at 15 feet bgs at a concentration of 9.5 mg/kg. PAH and PCB concentrations were not detected in soil samples submitted from borings CL4 and CL5. Additionally, PAH and herbicides were not detected in the soil sample submitted from SV14 at 4.5 feet bgs.

SV1, SV14, SV31, and SV33

Soil samples collected at depths of 4 to 4.5 feet bgs from soil vapor borings SV1, SV14, SV31, and SV33 were selected to be analyzed for PAHs and herbicides based on the historical location of rail lines at the site. Herbicide concentrations were not detected in soil samples submitted from the four borings. The PAH benzo(g,h,i)perylene was detected in the sample from SV31 at a concentration of 350 mg/kg. PAHs were not detected in the other three borings.

Metals for Area-1 through Area-5

Results of the metals analyses are discussed in Section 7.0 below.

6.3 GROUNDWATER RESULTS

Grab groundwater samples were collected in four borings: MB3 (Area 1), MB11 (Area 2), MB31 (Area 4), and MB33 (Area 4). TPH-d, PAH, herbicides, total cyanide, PCBs, and 1,4-dioxane were not detected in any of the four grab groundwater samples. Chloroform was detected at concentrations of 5 μ g/l and 1.5 μ g/kg in MB31-GW and MB11-GW respectively and was the only VOC detected in the four grab groundwater samples.

Six groundwater monitoring wells (MW-1 through MW-6) in the area of the four large USTs and the associated dispensers are sampled on a quarterly basis for petroleum hydrocarbons and related compounds. The groundwater monitoring began in 1999 and analytical results since then have been decreasing in concentrations indicating that any hydrocarbons remaining in the soil are not impacting groundwater.

7.0 DISCUSSION

7.1 SOIL VAPOR DISCUSSION

The soil vapor survey was conducted using an approximate 55-foot grid pattern over the majority of the site. The Los Angeles Regional Water Quality Control Board's Interim Guidance for Active Soil Gas Investigation dated February 25, 1997 indicates that grid patterns of 100 feet or less are sufficient for areas without known contamination.

Each sample was reported as not detected for VOCs. This indicates that significant quantities of VOCs are not present in the subsurface soils.

MACTEC Project 4525030096

7.2 SOIL DISCUSSION

Carbon Chain Analysis

Twenty nine soil samples were selected for total petroleum hydrocarbons carbon range C7 to C44

analysis by EPA method 3550B. The basis for the selection was total recoverable petroleum

hydrocarbons (TRPH) EPA method 418.1 results at or above 100 milligrams per kilogram (mg/kg).

In addition, four soil samples from Area 1 were selected for volatile organic compound (VOC)

analysis by EPA method 8260B, also based on the initial TRPH results at or above 100 mg/kg.

The carbon ranges were placed into three groups for purposes of discussion in this section. The

groups are C7 to C12, C13 to C22, and C23 to C44 which generally represent gasoline, diesel, and

oil/grease ranges respectively. The carbon range analytical results are summarized on Table 4.

<u>Area 1</u>

TRPH was detected in MB4 at depths of 1 and 5 feet bgs at respective concentrations of 6,300

mg/kg and 5,000 mg/kg and was reported as not detected at 15 feet bgs. Pyrene (a PAH) was

reported at a concentration of 0.47 mg/kg at 1 foot bgs and not detected in the 5 and 15 foot

samples.

TRPH was detected in MB6 at depths of 1 and 15 feet bgs at respective concentrations of

5,600 mg/kg and 21 mg/kg and was reported as not detected at 5 feet bgs. Fluoranthene and

pyrene (PAHs) were reported at respective concentrations of 0.43 mg/kg and 0.44 mg/kg at 1 foot

bgs and not detected in the 5 and 15 foot samples.

The Phase I ESA prepared by MACTEC prior to this report indicated that properties to the

northeast of the site were occupied for several years by a manufactured gas plant. Results from

boring MB19, drilled in the northern corner of the site do not indicate the presence of off-site

impacts.

24

The carbon range C7 to C12 was reported as not detected (ND) for Area 1. The carbon range results for C13 to C22 were between 3 mg/kg and 65 mg/kg. The carbon range results for C22 to C44 were between 123 mg/kg and 927 mg/kg.

The results for Area 1 indicate near-surface impact of petroleum hydrocarbons. The carbon range results indicate that the vast majority of the petroleum hydrocarbons detected are in the oil/grease range. The petroleum hydrocarbon and PAH concentrations do not indicate a threat to groundwater. Additional evaluation of PAH soil analytical results are discussed later in this section.

Area 2

TRPH was detected in five of the nine borings from Area 2. Detected concentrations ranged from 15 mg/kg to 4,200 mg/kg. In general, the higher concentrations were reported for the samples collected from 1.5 feet bgs, and the next highest concentrations were from depths of 5.5 feet bgs. The maximum concentration detected from a sample below the 5.5 foot depth was reported as 370 mg/kg from MB7 at a depth of 15 feet bgs. Pyrene was reported at a concentration of 0.47 mg/kg at 1.5 foot bgs and not detected in the 5 and 15 foot samples from MB10. Fluoranthene and pyrene were reported at respective concentrations of 0.42 mg/kg and 0.46 mg/kg at 1.5 foot bgs and not detected in the 5.5 and 15.5 foot samples from MB11. The VOCs 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene were each reported at concentrations 13 µg/kg in the soil sample from MB20 at a depth of 1 foot bgs.

The carbon range C7 to C12 was reported as ND for Area 2. The carbon range results for C13 to C22 were between 2 mg/kg and 135 mg/kg. The carbon range results for C22 to C44 were between 100 mg/kg and 4,640 mg/kg.

These results for Area 2 indicate near-surface impact of petroleum hydrocarbons. The carbon range results indicate that the vast majority of the petroleum hydrocarbons detected are in the oil/grease range. The PAH and VOC detections were limited to depths of 1.5 feet bgs. The petroleum hydrocarbon, VOC, and PAH concentrations do not indicate a threat to groundwater. Additional evaluation of PAH soil analytical results are discussed later in this section.

Area 3

The two borings in the area of the fuel dispenser island (DI1 and DI2) were reported to have diesel fuel detections at the 5.5 and 10.5 foot depths ranging from 410 to 510 mg/kg. Diesel was not detected at depths of 15.5 bgs for both borings. TPH-g was detected only in DI1 at 10 feet bgs at a concentration of 4.5 mg/kg. Total VOCs of 1,736.1 μ g/kg were reported for DI1 at 10 feet bgs. See Table 5 for details on the specific compounds. VOCs detected at 15 feet bgs in DI1 were MTBE and TBA at respective concentrations of 71 and 240 μ g/kg. Carbon range analyses were not requested for these borings because TPH-g and TPH-g provide sufficient information. The data for the fuel dispenser area indicate that most of the diesel fuel impact is above 15 feet bgs and that some fuel oxygenates are in the area of DI1 at 10 feet and to a lesser extent at 15 feet bgs.

The one soil boring (CO1) in the suspected area of the former crude oil tank (CO1) was reported with a concentration of 290 mg/kg TRPH at 5.5 feet bgs, and TRPH was reported as not detected at 10.5 feet bgs. The carbon range C7 to C12 was reported as ND. The carbon range results for C13 to C22 were reported as 10 mg/kg. The carbon range results for C22 to C44 were reported as 199 mg/kg. VOCs were not detected at 5 or 10 feet bgs. These data indicate the presence of near surface impact of petroleum hydrocarbons primarily in the oil and grease range.

The one soil boring (OP1) in the suspected area of the old pump house was reported with concentrations of 230 mg/kg TRPH and 220 mg/kg at respective depths of 5.5 and 10.5 feet bgs. VOCS were not detected at 5 or 10 feet bgs. The carbon range C7 to C12 was reported as ND for boring OP1. The carbon range results for C13 to C22 were 10 mg/kg and 1 mg/kg for the 5.5 and 10.5 foot depths, respectively. The carbon range results for C22 to C44 were 327 mg/kg and 17 mg/kg for the 5.5 and 10.5 foot depths, respectively. These data indicate the presence of near-surface impact of petroleum hydrocarbons primarily in the oil and grease range. Deeper samples were not collected in this boring, this boring was drilled near the former and current USTs where soil impact is known to exist.

The fuel USTs in Area 3 are known to have been the source for petroleum impact to groundwater. Quarterly groundwater monitoring has been conducted for the UST area since 1999. The petroleum hydrocarbons and fuel oxygenates groundwater concentrations have been steadily

decreasing indicating that the contamination mass is decreasing and it is not impacting groundwater sources.

Area-4

Seventeen borings were installed in the area of waste oil tanks and bus maintenance trenches. The maximum TRPH soil concentration detected was 340 mg/kg. The maximum TRPH soil concentration below 5.5 feet bgs was 51 mg/kg. The carbon range C7 to C12 was reported as ND for Area 4. The carbon range results for C13 to C22 were between 10 mg/kg and 39 mg/kg. The carbon range results for C22 to C44 were between 311 mg/kg and 950 mg/kg. VOCs were not detected in any of the samples. These data indicate that near-surface, relatively low levels of petroleum hydrocarbons primarily in the oil and grease range may exist. The petroleum hydrocarbon concentrations do not indicate a threat to groundwater.

Area-5

CL4 and CL5 were installed in the area of the steam cleaner. CL4 was reported to have TRPH concentrations of 1,000 mg/kg, 220 mg/kg, and 22 mg/kg in the 1.5, 5.5, and 15.5 foot deep samples, respectively. CL5 was reported to have TRPH concentrations of 470 mg/kg and 26 mg/kg in the 1.5 and 15.5 foot deep samples, respectively (the 5.5 foot sample was ND). The carbon range results for C7 to C12 were reported as ND for CL4 and CL5 samples. The carbon range results for C13 to C22 were reported as 7 mg/kg to 71 mg/kg. The carbon range results for C23 to C44 were reported as 75 mg/kg to 1,830 mg/kg. The only VOCs detected in these two borings were in the sample from CL4 at a depth of 1 foot bgs at a total concentration of 18.3 µg/kg. These data indicate that near-surface, relatively low levels of petroleum hydrocarbons, primarily in the oil and grease range exist in the area of the steam cleaner clarifier. The VOC detections were limited to depths of 1 feet bgs. The petroleum hydrocarbon and VOC concentrations do not indicate a threat to groundwater.

CL6, CL7, and CL9 were each installed by separate clarifiers/sumps. The maximum TRPH concentration detected in these three borings was 35 mg/kg. VOCs were not detected in the three borings. These data indicate that the impact of contaminated soil is not significant and does not indicate a threat to groundwater.

CL8 was installed in the employee gym and had reported TRPH concentrations of 20 mg/kg and 110 mg/kg at respective depths of 10.5 and 14.5 feet bgs. The carbon range results for C7 to C12 were reported as ND. The carbon range results for C13 to C22 were reported as 27 mg/kg. The carbon range results for C23 to C44 were reported as 412 mg/kg. PAHs were detected at a total concentration of 7.78 mg/kg. Please refer to Table 5 for the detailed results. These data indicate that some petroleum impact of primarily the oil and grease range is present at a depth of 14.5 feet bgs. These petroleum hydrocarbon and PAH concentrations do not indicate a threat to groundwater. Refer to the *Additional Evaluation of PAH Soil Analytical Results* section below for discussion of the PAHs detected in this area and in the soil sample from SV31.

CL1 and CL2 were installed in the area of the clarifier that is located between the fuel dispenser canopy/island and the underground fuel tanks. CL1 was reported to have TRPH concentrations of 150 mg/kg and 21 mg/kg in the 10.5 and 15.5 foot deep samples respectively. CL2 was reported to have TRPH concentrations of 1,200 mg/kg and 840 mg/kg in the 10.5 and 15.5 foot deep samples, respectively. The carbon range results for C7 to C12 were reported as ND for CL1 at 10.5 and CL2 at 15.5 feet bgs. The carbon range results for C7 to C12 was reported as 1,300 mg/kg for CL2 at 10.5 feet bgs. The carbon range results for C13 to C22 were reported as 16 mg/kg to 2,303 mg/kg. The carbon range results for C23 to C44 were reported as 186 mg/kg to 2,700 mg/kg. Of the VOCs, only MTBE was detected in CL1 at 15 feet bgs at a concentration of 5.1 µg/kg. Only naphthalene was detected in CL2 at 10 feet bgs at a concentration of 5.2 µg/kg. In CL2 at 15 feet, 251 µg/kg of total VOCs was detected. Refer to Table 5 for the detailed results. These data indicate that petroleum hydrocarbon impact exists in the area of the two clarifiers. These concentrations do not appear to indicate a threat to groundwater. This impact is most probably associated with the nearby USTs and dispensers (refer to Section 3 above for UST area groundwater discussion).

CL3 was installed in the area of a former clarifier and is adjacent to the underground fuel tanks. CL3 was reported to have TRPH concentrations of 780 mg/kg and 16 mg/kg in the 10.5 and 15.5 foot deep samples respectively. The carbon range results for C7 to C12 were reported as ND. The

carbon range results for C13 to C22 were reported as 159 mg/kg. The carbon range results for C23 to C44 were reported as 918 mg/kg. Of the VOCs, only 1,3,5-trimethylbenzene was detected at 10 feet bgs at a concentration of 5.4 µg/kg. These data indicate that petroleum hydrocarbon impact of primarily the oil and grease range exists in the area of the former clarifier. These VOC and petroleum hydrocarbon concentrations do not indicate a threat to groundwater. This impact may be associated with the nearby USTs (refer to Section 3 above for UST area groundwater discussion).

Additional Evaluation of PAH Soil Analytical Results

The following table contains a summary of the PAH detections obtained by analysis of 95 samples representing Areas 1 through 5 and the bus stall area:

			Risk-Based Screen	ing of PAH Re	esults		
Soil	Area	Sample	DALL Applied	Concentration	Residential Soil PRG	Potential Co to Risk/l	
Boring #	Alea	Depth (feet bgs)	PAH Analyte	(mg/kg)	(mg/kg)	Risk (ILCR)	Hazard (HI)
MB4	1	1	Pyrene	0.47	2,300 (nc)	NA	.0002
MB6	1	1	Pyrene	0.44	2,300 (nc)	NA	.0002
MB6	1	1	Fluoranthene	0.43	2,300 (nc)	NA	.0002
MB10	2	1.5	Pyrene	0.47	2,300 (nc)	NA	.0002
MB11	2	1.5	Pyrene	0.46	2,300 (nc)	NA	.0002
MB11	2	1.5	Fluoranthene	0.42	2,300 (nc)	NA	.0002
CL8	5	14.5	Pyrene	1.4	2,300 (nc)	NA	.0006
CL8	5	14.5	Benzo(a)anthracene	1.3	0.62 (ca)	2E-6	NA
CL8	5	14.5	Chrysene	1.5	62 (ca)	2E-8	NA

CL8	5	14.5	Benzo(k)fluoranthene	1.3	6.2 (ca)	2E-7	NA
CL8	5	14.5	Benzo(b)fluoranthene	1.4	0.62 (ca)	2E-6	NA
CL8	5	14.5	Benzo(a)pyrene	0.88	0.062 (ca)	1E-5	NA
SV31		4.5	Benzo(g,h,i)perylene	350	460*	NA	0.8

ILCR = increased lifetime cancer risk; HQ = chemical-specific hazard quotient; HI = multiple-chemical, or multiple-pathway hazard index

The listing of the results with straightforward evaluation for potential contribution to human health risk as increased lifetime cancer risk (ILCR) or human health hazard (hazard index, HI) for a residential land use scenario provides some ready conclusions with regard to the disposition and importance of the results for PAHs.

Overall, the results are spatially scattered. For instance, in Area 1, detections in samples MB4 and MB6 are separated by about lateral 60 feet. Note that the results are at 1 foot bgs, and there were no detections at greater depths. Even if it is assumed that the space in between the sampling locations is homogeneous for pyrene and fluoranthene content in the soil at 1 foot bgs, the potential contribution of pyrene and fluoranthene to health hazard is insignificant, i.e., is much less than 1.0, the upper threshold criterion of acceptable exposure. Sample locations MB10 and MB11 are closer to one another in Area 2, with about 40 feet of separation, but the analytical results are almost exactly the same. Pyrene and fluoranthene in Area 2 have an insignificant potential contribution of health hazard. Even if the HI for pyrene and fluoranthene in Areas 1 and 2 were summed, as in a residential scenario for the entire area, the HI would be much less than 1.0.

A number of PAHs were detected in sample CL8 at 14.5 feet bgs. They were not detected at more shallow depths. The location of sample CL8 is several hundred feet away from the other sample locations with PAH detections and can be considered separately for potential contribution to

nc = non-cancer basis for risk-based concentration; ca = cancer basis for risk-based concentration

NA = not applicable for this data screening

PRGs, Preliminary Remediation Goals, are from EPA Region IX's PRG Table and are used here for streamlined risk-based evaluation.

^{*}The risk-based concentration for benzo(g,h,i)perylene, 460 mg/kg, was taken from the California Regional Water Quality Control Board document, Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables.

risk/hazard. In the table, risk estimated for single detections of benzo(a)anthracene, chrysene, benzo(k)fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene is potentially significant at values greater than one-in-a-million ILCR (1E-6 ILCR). This might be important for site assessment except that the detections are located at 14.5 feet bgs. California surface soil is defined as 0 to 10 feet bgs, the soil interval that might be exposed for a typical property improvement such as installing a swimming pool. The detections at 14.5 feet bgs are not significant for potential direct human exposure to soil. Further, the years of disposition of these detections in the subsurface soil and the absence of them in the groundwater samples is an indicator that they are not moving to the groundwater.

A detection of benzo(g.h.i)perylene in boring SV31, about 40 feet west of MB11, seems to be significant based on the result of 350 mg/kg. However, when compared to a surrogate risk-based concentration of 460 mg/kg for direct exposure, the HI of 0.8 indicates acceptable exposure less than 1.0 HI. Even if all the MB results are summed with SV31, the result is less than 1.0.

The summing of risk-based results is usually helpful as a conservative estimate of cumulative risk/hazard for a residential property or living area. For the current PAH results, this is not appropriate. For instance, over a site of 3.67 acres there is only one detection of benzo(a)pyrene at one single location. That single detection is not representative of the entire property, especially considering that it is at a depth of 14.5 feet bgs. A human receptor could never be thought of as existing at that one spot for direct exposure during the 30-year 90th percentile exposure duration of a residential land use exposure scenario. The argument is the same for the four other PAHs detected in sample CL8.

PAHs do not appear to be significant contributors to risk/hazard for the MTA Division 6 property. The risk screening of this section will be elaborated in the human health risk assessment.

Metals for Areas-1 through 5

The array of analytical results for Title 22 metals in soil is presented in Table 6. Areas of the 3.67-acre site where the site history and materials usage indicated the potential for metals release to the environment were sampled. The result is 95 sample results for each of the 17 Title 22 metals. The array of 26 samples per acre provides high statistical confidence that the analytical results are representative of the site.

Table 6 indicates that certain of the metals, notably antimony, beryllium, cadmium, mercury, molybdenum, selenium, silver, and thallium, are predominantly not detected at their respective reporting limits (practical quantitation limits). Nonetheless, for purposes of the initial evaluation of the metals results, an ND (not detected) result was assumed to be the reporting limit concentration. Common statistics were determined for the metal-specific data sets on this basis.

The table lists the EPA Region IX Preliminary Remediation Goals (PRGs) (EPA, 2002) for each of the metals in surface soil for a residential land use exposure scenario. Also listed are the ranges of typical background concentrations for each of the metals in soil across the State of California (Bradford et al., 1996). In addition, the mean/average, standard deviation, confidence interval above the mean for a 95% upper confidence limit (UCL), and the 95% UCL for each metal were determined from their respective data sets and listed in the table.

Regardless of the toxicity properties for each of the metals as a potential carcinogen or noncarcinogen, several conclusions are apparent from inspection of the statistical evaluation:

- The 95% UCL concentration for each of the metals, except selenium, is less than or within the range of background concentrations reported in the Kearney Foundation report (Bradford et al., 1996).
- Selenium has 72% non detect results; the frequency of detection is 28%. Further, the conservatively calculated 95% UCL of 0.86 mg/kg is 0.2% of the residential soil PRG of 390 mg/kg.

 All of the 95% UCL concentrations of the respective metals are well below their respective PRGs, and there should not be a significant contribution of metals to either increased lifetime cancer risk (ILCR) or health hazard (hazard index, HI) for risk-based evaluation.

The results and evaluation of Table 6 indicate that metals in soil on the MTA Division 6 site need not be included in the chemicals of potential concern for possible later risk-based evaluation.

7.3 GROUNDWATER DISCUSSION

In addition to the four grab groundwater samples, select data from the 1st quarter 2004 for groundwater monitoring wells MW-3 and MW-5 are included in Table 1. The MW-3 and MW-5 data along with additional selected data for the other four groundwater wells are shown on Figure 8. Samples from wells MW-3 and MW-5 were additionally analyzed for PAH, herbicides, total cyanides, PCBs, and 1,4-dioxane during the 1st quarterly groundwater sampling event of 2004 to supplement the grab groundwater sample data in this report.

Chloroform was detected in MB31-GW and MB11-GW at respective concentrations of 5 μ g/kg and 1.5 μ g/kg. 1,4-dioxane was detected at a concentration of 3.4 μ g/kg in MW-5. These detections are isolated and appear minor; however, they will be further addressed in the risk assessment report to follow.

8.0 CONCLUSIONS

The results of this assessment indicate that oil and grease range petroleum hydrocarbon impacted soil is present in the near-surface soils in numerous areas of the site. Previous assessments indicate that petroleum hydrocarbon impact is present in the soil in the area of the current four fuel USTs. Preliminarily, these impacts indicate that the affected soils could be left in place; however, if the existing pavement is removed and the site is graded/excavated for future development, these soils will need to be stockpiled and analyzed after excavation and prior to removal from the site or replacement in the ground. Additionally, due to the nature of the use of the site (bus parking and maintenance), it is very likely that the near-surface impact from petroleum hydrocarbons is present

beneath the pavement in areas not assessed. During removal of the pavement and initial grading/excavation of the site, the soil will need to be handled properly to separate areas that are impacted with petroleum hydrocarbons. Soil grading and excavation for property development will be performed using a soil excavation plan that will be prepared along with the developer's excavation specifications. The soil excavation plan will discuss proper handling of petroleum impacted soils that are encountered. It is recommended that MTA complete a survey (by a licensed surveyor) of selected boring locations or adjacent current and historical structures to aid in soil excavation management. A risk assessment is being prepared to compliment the soil and groundwater conclusions made herein and to address human receptor risk.

Total cyanide and herbicides were not detected during this assessment. PAHs do not appear to be significant contributors to risk/hazard at the site. Metals in soil at the site need not be included in the chemicals of potential concern for possible later risk-based evaluation.

There is no evidence that contamination is migrating onto or off-from the site in either soil or groundwater mediums.

The current quarterly groundwater sampling of five onsite wells and one offsite well indicates that petroleum concentrations in the groundwater are decreasing. The petroleum hydrocarbons and fuel oxygenates groundwater concentrations have been steadily decreasing since 1999 indicating that the contamination mass is decreasing and it is not impacting groundwater sources. The 4th quarter 2003 event reported TPH-d and TPH-g as not detected in each of the six wells, and MTBE was detected at a maximum concentration of 5.1 µg/l. The 4th quarter report states that "If the next two quarterly monitoring results continue to show the trend of decreasing concentrations, it appears that the site should be recommended for regulatory closure." The 1st quarter 2004 groundwater monitoring event data indicates that TPH-g and TPH-d were not detected and that MTBE was detected in MW-1 at a maximum concentration of 30 µg/l. As part of the first quarter 2004 groundwater monitoring report, an exponential trend line for MW-1 historical data (from 1999 to present) was computed using Microsoft Excel. The Excel graph of the data shows that the first quarter 2004 MTBE detection of 30 µg/l is on the trend line indicating that it is a continuation of the overall

decreasing trend. A complete report on the 1st quarter 2004 groundwater monitoring is being prepared in an accompanying monitoring report.

The soil in the area of the fuel UST and dispenser area (central portion of Area-3) is impacted with petroleum hydrocarbons based on the previous consultant's assessment reports and the few borings installed in the area during this assessment. Based on the decreasing concentrations of petroleum hydrocarbons and fuel oxygenates in groundwater discussed above, the impacted soil in this area is not a threat to groundwater. Whether the soil is recommended to be remediated prior to residential development will be assessed in a separate health risk assessment.

9.0 LIMITATIONS

The findings and opinions are relevant to the dates of our site work and should not be relied on to represent conditions at later dates.

Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable environmental consultants practicing in this or similar localities. No other warranty, express or implied, is made as to the professional advice included in this report.

The opinions included herein are based on information obtained during the study and on our experience. If additional information becomes available that might impact our environmental conclusions, we request the opportunity to review the information, reassess the potential concerns, and modify our opinion, if warranted.

10.0 REFERENCES

Bentley Company, The, 1996. Environmental Assessment Report, Division 6 Underground Storage Tank Replacement Project. January 12.

California Code of Regulations Title 22, June 4, 1999. California Drinking Water Primary Maximum Containment Levels.

California Department of Water Resources, 1961. *Planned Utilization of Groundwater Basins of the Coastal Plain of Los Angeles County*, Bulletin 104, Appendix A.

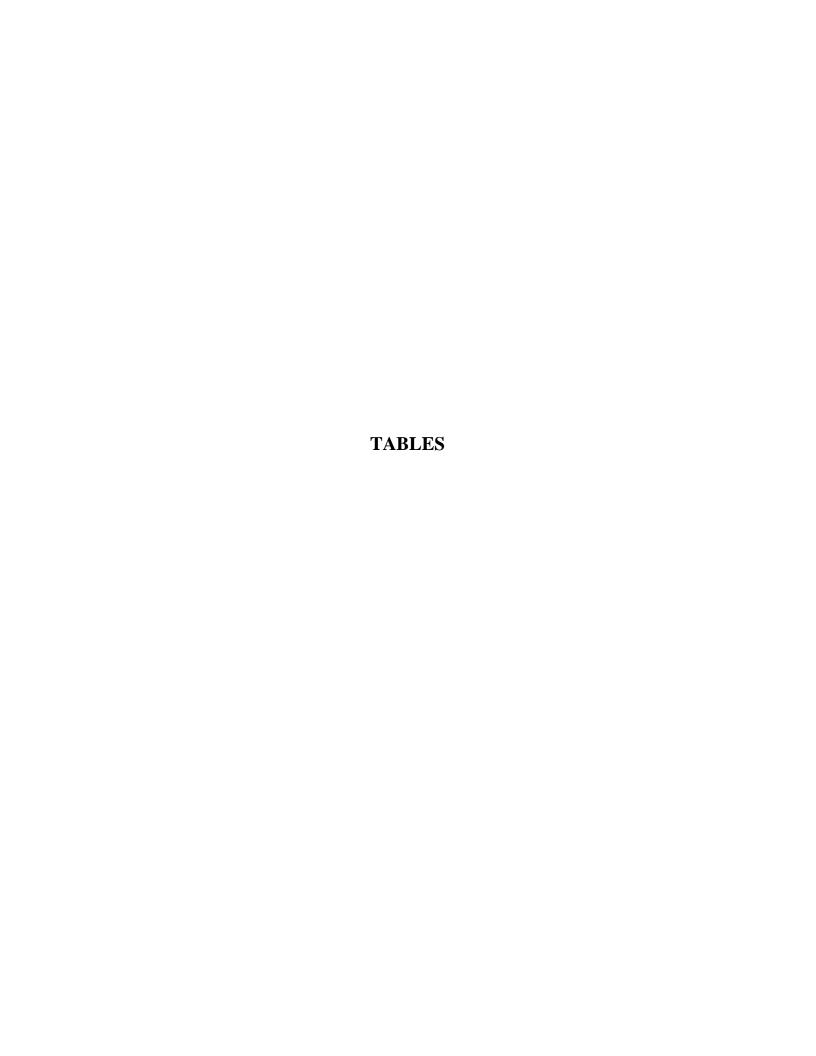
California Department of Water Resources, 2003. On-line Ground Water Bulletin 118 (Update 2003), http://www.dwr.ca.gov.

Holguin, Fahan & Associates, Inc. (HFA), 1995. Environmental Laboratory Analytical Results for Samples Collected November 17, 1995.

HFA, 1997a. Workplan for Continued Site Assessment at Los Angeles County Metropolitan Transportation Authority, Division 6 Bus Maintenance and Fueling Facility, 100 Sunset Avenue, Venice, California (CRWQCB-LAR ID# 902910152). July 24.

HFA, 1997b. Groundwater Assessment at Los Angeles County Metropolitan Transportation Authority, Division 6 Bus Maintenance and Fueling Facility, 100 Sunset Avenue, Venice, California. August 8.

MACTEC, Inc., 2004. Groundwater Monitoring Report – Fourth Quarter 2003, Los Angeles County Metropolitan Transportation Authority, Division 6, 100 Sunset Avenue, Venice, California, MACTEC Project Number 4525030056, January 13.


Poland, J.F., Garrett, A.A., and Sinnott, A., 1959. *Geology, Hydrology, and Chemical Character of Groundwaters in the Torrance–Santa Monica Area, California*, U.S. Geological Survey Water Supply Paper 1461.

Tyree Organization, Ltd., The, 1999. Report of Underground Storage Tank Removal at Los Angeles County Metropolitan Transit Authority, Division 6, 100 Sunset Avenue, Venice, California. May 21.

URS Corporation, 1999. 4th Quarter 1999 Groundwater Monitoring Report, Metropolitan Transportation Authority, Division 6, 100 Sunset Avenue, Venice, California. December.

URS Corporation, 2002. Groundwater Monitoring Well Installation Report, Metropolitan Transportation Authority, Division 6, 100 Sunset Avenue, Venice, California. June 12.

Table 1: Groundwater Analytical Results

Groundwater Boring/Well #	Area	GW depth	Date	EPA 8015Μ TPH-d (μg/L)	EPA 8015Μ TPH-g (μg/L)	EPA 8270C PAH (μg/L)	EPA 8151 Herbicides (ug/L)	EPA 335.2 Total Cyanides (mg/L)	EPA 8082 PCBs (μg/L)	EPA GC/MS Isotope Dilution 1,4 Dioxane (µg/L)	EPA 8260B VOCs (ug/L)
MB3-GW	Area 1	26.1	2/12/2004	ND	-	ND	ND	ND	ND	ND	ND
MW5	Area 1		2/10/2004	ND	ND	ND	ND	ND	ND	3.4	ND
MB11-GW	Area 2	26.5	2/12/2004	ND	-	ND	ND	ND	ND	ND	Chloroform 1.5
MW3	Area 3		2/10/2004	ND	ND	ND	ND	ND	ND	ND	ND
MB31-GW	Area 4	26	2/12/2004	ND	-	ND	ND	ND	ND	ND	Chloroform 5
MB33-GW	Area 4	24	2/11/2004	ND	-	ND	ND	ND	ND	ND	ND

Historical Data

				EPA 8015M TPH-d (µg/L)	EPA 8015M TPH-g (µg/L)						EPA 602 VOCs (ug/L)
											B:2900 T:8400
											E:5400 X:26000
HP1	-	24.58	7/28/1997	-	160,000	-	-	-	-	-	MTBE:27000
											B:220 T:4 E:10 X:16
HP2	-	24.73	7/28/1997	-	690	-	-	-	-	-	MTBE:380
											B:0.5 T:ND E:ND
HP3	-	23.43	7/28/1997	-	ND	-	-	-	-	-	X:0.7 MTBE:ND
											B:150 T:29 E:120
HP4	-	23	7/28/1997	-	2,400	-	-	-	-	-	X:250 MTBE:1200
											B:110 T:6.9 E:27
HP5	-	23.92	7/28/1997	-	1,200	-	-	-	-	-	X:120 MTBE:830
											B:83 T:69 E:24.2
CPT-1			11/6/1995	1,500	1,100						X:101.6
ODT 0			1.1/0/1005								D 7 T 0 5 F 0 7 V 4 0
CPT-2			11/6/1995	ND	ND						B:7 T:0.5 E:0.7 X:4.0
			, . ,								B:7.7 T:1.5 E:0.7
CPT-6			11/6/1995	ND	ND						X:3.0

Notes:

VOCs: Volatile organic compounds

ND: Not detected over reporting limit (RL)

TRPH: Total recoverable petroleum hydrocarbons

TPH-d: Total Petroleum Hydrocarbons as Diesel TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B(benzene) T(toluene) E(ethylbenzene) X(total xylenes)

MTBE: Methyl tert-butyl ether

PAH: Poly aromatic hydrocarbons

PCB: Polychlorinated biphenyls

- Sample Not analyzed for that analyte

mg/L - milligrams per liter

μg/L - micrograms per liter

Historical data was collected by previous consultants

Table 2: Historical Soil Data

Soil Boring#	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 453.2 Oil and Grease (ppm)	EPA 7421 Lead (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8015M TPH-g (mg/kg)	Benzene	Toluene	EPA 8020 (mg/kg Ethylbenzene) Xylenes	MTBE	Acetone (μg/kg)	Tetrachloroethene (µg/kg)
T1-N	Alea		2/23/1998	(mg/kg)	(ppiii) 	302	(mg/kg)	390	ND	85	46.4	665	ND	- (μg/κg)	(µg/kg)
T1-N			2/23/1998		-	45.8		16.3	ND ND	0.374	ND	2.68	0.912	 	-
T2-N			2/23/1998	23600		56.8	<u> </u>	10.5	ND ND	342	138	978	46.8	 	
T2-N			2/23/1998	472	 	52.7	<u> </u>	<u> </u>	ND ND	1.35	0.509	3.67	0.562		-
T3-N			2/23/1998		_	73	ND	_	ND	ND	ND	ND	ND	_	_
T3-S			2/23/1998	_	_	259	1740	_	ND	ND	ND	0.241	0.492	_	-
T4-N			2/23/1998	_	_	67.4	ND	_	ND	ND	ND	ND	ND	_	_
T4-S			2/23/1998	_	_	185	5000	_	ND	ND	ND	ND	ND	_	_
D-1			3/18/1998	_	_	-	ND	_	ND	ND	ND	ND	ND	+ -	_
WO-1			3/18/1998	ND	_	_	-	_	ND	ND	ND	ND	ND	 -	_
WOTP-1			6/30/1998	145	-	175	ND	ND	140	140	140	110	140	 -	-
		. 0.0	5,55,1555	. 10		.,,	.,,,							1	†
CPT1	Area 1	15	11/7/1995	ND	-	-	ND	ND	ND	ND	ND	ND	-	-	-
CPT1	Area 1	25	11/7/1995	80	_	_	189	1690	4.2	66	27.6	152.8	_	-	_
CPT2	Area 1	20	11/7/1995	ND	_	_	ND	ND	0.006	0.029	0.016	0.089	-	_	_
CPT2	Area 1	25	11/7/1995	340	-	-	ND	ND	0.006	0.008	ND	0.017	-	-	-
CPT6	Area 1	15	11/7/1995	ND	-	-	25	ND	ND	ND	ND	ND	-	-	-
CPT6	Area 1	20	11/7/1995	ND	-	-	ND	ND	ND	0.006	ND	0.045	-	-	-
CPT6	Area 1	25	11/7/1995	63	-	-	ND	ND	0.076	0.04	0.061	0.296	-	-	-
CPT7	Area 1	15	11/7/1995	ND	-	-	ND	ND	ND	0.007	ND	0.02	-	-	-
CPT7	Area 1	25	11/7/1995	3500	-	-	4040	864	1.5	2.6	1.5	4.8	-	-	-
CPT9	Area 1	15	11/7/1995	ND	-	-	ND	ND	ND	0.019	0.017	0.082	-	-	-
CPT9	Area 1	25	11/7/1995	ND	-	-	ND	ND	ND	ND	ND	ND	-	-	-
CPT10	Area 1	15	11/8/1995	830	-	-	16	37	0.026	0.514	0.428	2.5	-	-	-
CPT10	Area 1	20	11/8/1995	480	-	-	1330	929	1.2	28.7	13.2	77.8	-	-	-
CPT10	Area 1	25	11/8/1995	ND	-	-	ND	ND	ND	0.009	ND	0.017	-	-	-
CPT11	Area 1	10	11/8/1995	520	-	-	ND	ND	ND	0.01	ND	0.039	-	-	-
CPT16	Area 1	10	11/8/1995	ND	-	-	ND	ND	ND	ND	ND	ND	-	-	-
CPT4	Area 2	10	11/8/1995	ND	-	-	-	-	ND	ND	ND	ND	-	-	-
CPT4	Area 2	20	11/8/1995	ND	-	-	-	-	ND	0.011	ND	0.015	-	-	-
CPT12	Area 2	5	11/8/1995	ND	-	-	-	-	ND	0.037	ND	0.07	-	-	-
	Area 2		11/8/1995	ND	-	-	-	-	ND	0.007	ND	ND	-	-	-
CPT13	Area 2	5	11/8/1995	ND	-	-	-	-	ND	ND	ND	ND	-	-	-
CPT13	Area 2	15	11/8/1995	ND	-	-	-	-	ND	0.008	ND	ND	-	-	-
CPT15	Area 2	5	11/8/1995	-	-	-	ND	-	ND	0.005	ND	0.021	-	-	-
CPT15	Area 2	10	11/8/1995	-	-	-	ND	-	ND	0.012	ND	0.045	-	-	-
CPT5	Area 3	5	11/9/1995	ND	-	-	-	-	ND	0.007	ND	ND	-	-	-
CPT5	Area 3	15	11/9/1995	11	-	-	-	-	ND	ND	ND	ND	-	-	-
CPT14	Area 3	5	11/8/1995	ND	-	-	-	-	ND	0.01	ND	0.022	-	-	-
CPT14	Area 3	15	11/8/1995	ND	-	-	-	-	ND	ND	ND	ND	-	-	-

Table 2: Historical Soil Data

		Sample		EPA 418.1 TRPH	EPA 453.2 Oil and Grease	EPA 7421 Lead	EPA 8015M TPH-d	EPA 8015M TPH-g	Davis	Talasas	EPA 8020 (mg/k	<u> </u>	I MTBE	Acetone	Tetrachloroethene
Soil Boring #	Area	depth (ft)	Date	(mg/kg)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethylbenzene	Xylenes	INITE	(µg/kg)	(μg/kg)
BH1 S(1-5)		5-25	3/1/1988				TPH ((ppm) 5**	<1	<1	EPA 8015M (pp	m) <1	Ī	_	_
BH2 S(1-5)			3/1/1988	 	_			5**	<1	<1		<1	_	 	_
BH3 S(1-4)			3/2/1988	<u> </u>	350			, -						-	_
BH3 S(5-8)			3/2/1988	_	<10	_			_			-	<u> </u>		_
BH3 S1			3/2/1988	<u> </u>	160				_		_	-	_	+ - -	_
BH3 S2			3/2/1988	_	160	_		_	_	_	_	<u>-</u>	_	_	_
BH3 S3			3/2/1988	_	2600	_		-	_	_	_	_	_	_	_
BH3 S4			3/2/1988	_	310	_		-	_	_	_	<u>-</u>	_	_	_
BH4 S(1-3)			3/2/1988	25	-	_			_		_	_	_	 -	_
BH4 S(4-6)			3/2/1988	960	_	_		_		-	-	_	_	_	_
BH4 S4			3/2/1988	9000	_	_		_	_	-	_	-	_	-	_
BH4 S5			3/2/1988	12000	_	_		-	_	-	_	_	_	 -	_
BH4 S6			3/2/1988	<10	_	_		_	_	-	_	-	_	-	_
BH5 S(1-3)			3/1/1988	160	_	_		_	_	_	_	_	_	 -	_
BH5 S(4-6)			3/1/1988	<10	_	_		_	_	_	_	_	_	 -	_
BH5 S1			3/1/1988	<10	_	_		_	_	_	_	_	_	 -	_
BH5 S2			3/1/1988	300	_	_			_	_	_	_	_	_	_
BH5 S3			3/1/1988	<10	_	_			_	_	_	_	_	_	_
BH6 S(1-3)			3/1/1988	90	_	_		_	_	_	_	_	_	-	_
BH6 S(4-6)			3/1/1988	<10	_	_		_	_	_	_	_	_	_	_
BH7 S(1-3)			2/29/1988	110	_	-		_	_	-	_	_	_	_	_
BH7 S(4-6)			2/29/1988	<10	_	-		_	_	-	_	_	_	_	_
BH7 S1			2/29/1988	270	-	-		-	-	-	-	-	-	-	_
BH7 S2			2/29/1988	<10	-	-		_	-	-	-	-	-	-	-
BH7 S3			2/29/1988	<10	-	-		_	-	-	-	-	-	-	-
BH8 S(1-3)			2/29/1988	-	<10	-		•	-	-	-	-	-	-	-
BH8 S(4-6)			2/29/1988	-	<10	-		•	-	-	-	-	-	-	-
BH9 S(1-4)			3/2/1988	-	38	-		•	-	-	-	-	-	-	-
BH9 S(5-8)		25-40	3/2/1988	-	<10	-		•	-	-	-	-	-	-	-
BH10 S(1-2)		5-10	3/1/1988	9100	9100	-	110	00**	<1	<1	-	2	-	-	-
BH10 S1			3/1/1988	2700	2700	-	91	**	<1	<1	-	<1	-	-	-
BH10 S2			3/1/1988	3500	3500	-	14		<1	<1	-	<1	-	-	-
BH11 S(1-2)		5-10	3/1/1988	5400	5500	-	190	00**	<1	<1	-	4	-	-	-
BH11 S1		5	3/1/1988	5600	5600	-	23	0**	<1	<1	-	<1	-	-	-
BH11 S2		10	3/1/1988	130	140	-	10	0**	<1	<1	-	<1	-	-	-
											(ug/kg)				
MW-5			2/25/2002	94		5.68	200*	ND	ND	ND	ND	ND	ND	47	ND
MW-5			2/25/2002	ND		2.29	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5			2/25/2002	ND		1.88	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5			2/25/2002	ND		1.04	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-6			2/26/2002	ND		6.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-6			2/26/2002	38		3.02	41*	ND	ND	ND	ND	ND	ND	ND	ND
MW-6		20	2/26/2002	10		1.36	ND	ND	ND	ND	ND	ND	ND	ND	1.3

Table 2: Historical Soil Data

Soil Boring #	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 453.2 Oil and Grease (ppm)	EPA 7421 Lead (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8015M TPH-g (mg/kg)	Benzene	Toluene	EPA 8020 (mg/kg Ethylbenzene	y) Xylenes	MTBE	Acetone	Tetrachloroethene (μg/kg)
	Area 1		May, 2002				2500	790	-	-	-	-	ND		
MW1	Area 1		May, 2002				ND	ND	-	-	-	1	0.027		
MW1	Area 1	20	May, 2002				ND	ND	-	-	-	-	0.032		
MW1	Area 1	22	May, 2002				ND	ND	-		-	-	0.017		
MW2	Area 1	10	May, 2002				930	ND	-	-	-	-	ND		
MW2	Area 1	15	May, 2002				ND	ND	-	-	-	-	ND		
MW2	Area 1	20	May, 2002				ND	ND	-	-	-	-	ND		
MW2	Area 1		May, 2002				ND	ND	_	-	-	-	ND		
MW3	Area 1		May, 2002				ND	ND	-	-	-	-	ND		
MW3	Area 1		May, 2002				ND	ND	-	-	-	-	ND		
MW3			May, 2002	1			ND	ND	-	-	-	-	ND		
MW3	Area 1		May, 2002	1			ND	ND	-	-	-	-	ND		
MW4	Area 1		May, 2002	1			ND	ND	-	-	-	-	0.0095		
MW4	Area 1		May, 2002				ND	ND	-	-	-	-	0.0065		
MW4	Area 1		May, 2002				ND	ND	-	-	-	-	ND		
MW4	Area 1		May, 2002	1			ND	ND	_	_	_	_	ND		
			· J ,												

Notes:

VOCs: Volatile organic compounds

ND: Not detected over reporting limit (RL)

TRPH: Total recoverable petroleum hydrocarbons

TPH-d: Total Petroleum Hydrocarbons as Diesel

TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B(benzene) T(toluene) E(ethylbenzene) X(total xylenes)

MTBE: Methyl tert-butyl ether

PAH: Poly aromatic hydrocarbons

PCB: Polychlorinated biphenyls

- Sample Not analyzed for that analyte

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

μg/kg - micrograms per kilogram

μg/L - micrograms per liter

ppm: parts per million

^{*} Lab reported this value with the following comment: "The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard:

^{**} Lab reported these results without specifying them for TPH-g or TPH-d

Table 3: Soil Vapor Analytical Results

Soil Vapor	Depth	Sample	Sample	Analysis for VOCs by EPA method 8260B
Boring #	(ft)	Volume (cc)	Date	(μg/L)
SV1	8	90	1/28/2004	ND
SV2	8	90	1/28/2004	ND
SV3	8	90	1/28/2004	ND
SV4	8	90	1/28/2004	ND
SV5	8	90	1/29/2004	ND
SV6	8	90	1/29/2004	ND
SV7	8	90	1/28/2004	ND
SV8	8	30	1/28/2004	ND
SV8	8	90	1/28/2004	ND
SV8	8	210	1/28/2004	ND
SV8	8	90	1/29/2004	ND
SV8 (Dpl)	8	140	1/29/2004	ND
SV9	8	90	1/28/2004	ND
SV10	8	90	1/28/2004	ND
SV11	8	90	1/28/2004	ND
SV12	8	90	1/29/2004	ND
SV13	8	90	1/30/2004	ND
SV14	8	90	1/29/2004	ND
SV15	8	90	1/29/2004	ND
SV16	8	90	1/29/2004	ND
SV17	8	90	1/28/2004	ND
SV17 (Dpl)	8	140	1/28/2004	ND
SV18	9	93	2/25/2004	ND
SV18 (Dpl)	9	443	2/25/2004	ND
SV19	8	90	1/30/2004	ND
SV20	8	90	1/29/2004	ND
SV21	8	90	1/29/2004	ND
SV22	8	90	1/29/2004	ND
SV23	8	90	1/30/2004	ND
SV24	8	90	1/28/2004	ND
SV25	8	90	1/29/2004	ND
SV26	8	90	1/30/2004	ND
SV27	8	90	1/29/2004	ND
SV28	8	90	1/29/2004	ND
SV29	8	90	1/30/2004	ND
SV30	8	90	1/30/2004	ND
SV31	8	90	1/29/2004	ND
SV32	8	90	1/30/2004	ND
SV33	8	90	1/30/2004	ND
SV34	8	90	1/30/2004	ND
SV34 (Dpl)	8	140	1/30/2004	ND

Notes

VOCs: Volatile organic compounds ND: Not detected over reporting limit (RL)

cc: cubic centimeters Dpl: Duplicate sample µg/L - micrograms per liter

Table 4: Soil Carbon Range Analytical Results

														EPA 3	550B, TPH Carl	bon Range (mo	g/kg)						
				EPA 418.1		Carbon	Range (C7-C12)		Carb	on Range (C1	3-C22)				Carbon Rai	nge (C23-C44)						
Sample II	Area	Depth	Date	TRPH (mg/kg)	C7	C8	C9-C10	C11-C12	C13-C14	C15-C16	C17-C18	C19-C20	C21-C22	C23-24	C25-C28	C29-C32	C33-C36	C37-C40	C41-C44	C7-C44 Total	C7-C12 Total	C13-C22 Total	C23-C44 Total
MB4	Area 1	1	2/13/2004	6300	ND	ND	ND	ND	ND	ND	0.96	3.9	7.4	15	60	94	91	100	93	470	ND	12	453
MB4	Area 1	5	2/13/2004	5000	ND		ND	ND	ND	0.77	10	19	35	47	150	220	190	170	150	1000	ND	65	927
MB5	Area 1	5	2/13/2004	390	ND	ND	ND	ND	ND	ND	0.042	0.76	1.7	3.2	13	28	24	29	26	130	ND	3	123
MB6	Area 1	1	2/13/2004	5600	ND	ND	ND	ND	ND	ND	ND	ND	3.3	7.2	40	89	76	83	79	380	ND	3	374
GS1	Area 2	5.5	2/11/2004	220	ND		ND	ND	ND	ND	0.078	0.49	1.1	2.1	8.9	19	19	25	26	100	ND	2	100
MB7	Area 2	1.5	2/10/2004	1200	ND		ND	ND	ND	ND	13	44	78	160	630	1100	810	750	620	4200	ND	135	4070
MB7	Area 2	15	2/13/2004	370	ND		ND	ND	ND	ND	0.75	3.6	6.8	13	48	47	41	35	37	230	ND	11	221
MB8	Area 2	1.5	2/10/2004	4200	ND		ND	ND	ND	ND	8.7	40	69	130	590	1100	980	1000	840	4700	ND	118	4640
MB9	Area 2	1.5	2/10/2004	300	ND		ND	ND	ND	ND	2.7	9.7	23	33	150	300	270	340	250	1400	ND	35	1343
MB10	Area 2	1.5	2/10/2004	3300	ND		ND	ND	ND	ND	ND	19	32	67	280	580	470	590	530	2600	ND	51	2517
MB11	Area 2	1.5	2/10/2004	2900	ND	ND	ND	ND	ND	ND	ND	33	46	92	300	570	500	540	580	2700	ND	79	2582
MB12	Area 2	1.5	2/10/2004	1600	ND		ND	ND	ND	ND	3.9	44	69	91	290	730	670	730	550	3200	ND	117	3061
MB12	Area 2	5.5	2/10/2004	630	ND	ND	ND	ND	ND	ND	ND	4	7.9	13	63	150	160	150	140	690	ND	12	676
CO1	Area 3	5.5	2/11/2004	290	ND		ND	ND	ND	ND	0.56	2.9	6.5	5.1	23	40	42	45	44	210	ND	10	199
OP1	Area 3	5.5	2/11/2004	230	ND	ND	ND	ND	ND	ND	0.37	2.6	7.3	14	47	81	66	64	55	340	ND	10	327
OP1	Area 3	10.5	2/11/2004	220	ND	ND	ND	ND	ND	ND	ND	0.22	0.61	0.97	2.7	5.7	1.9	2.3	3.4	18	ND	1	17
MB18	Area 4	1	2/13/2004	230	ND	ND	ND	ND	ND	ND	0.28	3.4	13	28	100	140	82	58	42	470	ND	17	450
MB18	Area 4	3	2/13/2004	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MB28	Area 4	5.5	2/12/2004	340	ND		ND	ND	ND	ND	1.4	11	27	53	210	320	170	120	77	990	ND	39	950
MB30	Area 4	1.5	2/11/2004	230	ND		ND	ND	ND	ND	0.64	2.6	8.4	15	57	93	67	54	35	330	ND	12	321
MB30	Area 4	5.5	2/11/2004	100	ND		ND	ND	ND	ND	0.31	2.4	7	13	54	91	62	58	36	320	ND	10	314
MB32	Area 4	3.5	2/11/2004	130	ND	ND	ND	ND	ND	ND	0.55	3.2	7.1	13	49	76	60	60	53	320	ND	11	311
CL1	Area 5	10.5	2/11/2004	150	ND		ND	ND	ND	0.57	8.5	24	61	86	320	480	380	280	170	1800	ND	94	1716
CL2	Area 5	10.5	2/11/2004	1200	ND		100	1200	1500	530	100	63	110	210	600	820	500	320	250	6300	1300	2303	2700
CL2	Area 5	15.5	2/11/2004	840	ND		ND	ND	ND	0.27	2	5.2	8.3	11	32	44	34	35	30	200	ND	16	186
CL3	Area 5	10.5	2/11/2004	780	ND		ND	ND	ND	2.9	28	60	68	58	170	210	170	150	160	1100	ND	159	918
CL4	Area 5	1.5	2/10/2004	1000	ND		ND	ND	ND	ND	3.9	21	46	95	330	470	360	310	200	1800	ND	71	1765
CL4	Area 5	5.5	2/10/2004	220	ND		ND	ND	ND	ND	0.15	1.7	4.8	4.6	15	22	14	11	8.6	81	ND	7	75
CL5	Area 5	1.5	2/10/2004	470	ND		ND	ND	ND	ND	2.4	14	37	90	350	530	390	280	190	1900	ND	53	1830
CL8	Area 5	14.5	2/13/2004	110	ND	ND	ND	ND	ND	0.36	2.3	6.7	18	42	110	130	72	37	21	440	ND	27	412

Notes

VOCs: Volatile organic compounds ND: Not detected over reporting limit (RL)

-: Sample not analyzed for that analyte

TPH: Total petroleum hydrocarbons
TRPH: Total recoverable petroleum hydrocarbons

mg/kg - milligrams per kilogram μg/kg - micrograms per kilogram

Table 5: Soil Analytical Results

Soil "		Sample	Б.	EPA 418.1	EPA 8015M	EPA 8260B** TPH-g	EPA 9010B/335.2		EPA 8151 Herbicides		EPA 8082	EPA 8260B VOCs
Boring #	Area	depth (ft)	Date	TRPH (mg/kg)		(mg/kg)	Cyanide (mg/kg)	PAH (mg/kg)	(µg/kg)	units)	PCBs (µg/kg)	(μg/kg)
MB1 MB1	Area 1 Area 1	5	2/12/2004 2/12/2004	52 ND	-	-	-	ND ND	-	-	ND ND	-
MB1	Area 1	15	2/12/2004	ND	-	-	-	ND ND	-	-	ND ND	<u> </u>
MB3	Area 1	1	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB3	Area 1	5	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB3	Area 1	15	2/12/2004	ND	-	-	-	ND	-	-	ND	-
			_ , ,									Methylene Chloride:66*
MB4 MB4	Area 1	5	2/13/2004 2/13/2004	6300 5000	-	-	-	Pyrene: 0.47 ND	-	-	ND ND	PCE: 9.6 Methylene Chloride:54*
MB4	Area 1 Area 1	15	2/13/2004	ND	-	-	-	ND ND	-	-	ND ND	- wethylene Chloride:54
MB5	Area 1	1	2/13/2004	21	-	-	-	ND	-	-	ND	-
MB5	Area 1	5	2/13/2004	390	-	-	-	ND	-	-	ND	ND
MB5	Area 1	15	2/13/2004	26	-	-	-	ND	-	-	ND	-
			_ , ,					Fluoranthene: 0.43				
MB6	Area 1	1	2/13/2004	5600 ND	-	-	=	Pyrene: 0.44	-	-	ND ND	ND
MB6 MB6	Area 1 Area 1	5 15	2/13/2004 2/13/2004	ND 21	-	-	-	ND ND	-	-	ND ND	-
MB19	Area 1	1.5	2/13/2004	-	-	-	-	- ND	-	-	- ND	- ND
MB19	Area 1	8.5	2/13/2004	-	-	-	ND	ND	-	-	-	-
MB19	Area 1	26	2/13/2004	-	-	-	ND	ND	-	-	-	-
GS1	Area 2	5	2/11/2004	-	-	-	-	-	-	-	-	ND
GS1	Area 2	5.5	2/11/2004	220	=	-	-	-		-	-	-
GS1	Area 2	10	2/11/2004	-	-	-	-	-		-	-	ND
GS1 MB7B	Area 2 Area 2	10.5	2/11/2004 2/13/2004	25 -	-	-	-	-	_	-	-	- ND
MB7A	Area 2	1	2/10/2004	-	-	-	-	-	-	-	-	ND ND
MB7A	Area 2	1.5	2/10/2004	1200	-	-	-	ND	-	-	ND	-
MB7B	Area 2	5	2/13/2004	-	-	-	-	-	-	-	-	ND
MB7B	Area 2	5.5	2/13/2004	22	-	-	-	ND	-	-	ND	-
MB7B	Area 2	15	2/13/2004	370	-	-	=	ND	-	-	ND	ND
MB8	Area 2	1	2/10/2004	-	-	-	-	-	-	-	-	ND
MB8 MB8	Area 2 Area 2	1.5 5	2/10/2004 2/10/2004	4200	-	-	-	ND -	-	-	ND -	- ND
MB8	Area 2	5.5	2/10/2004	27	-	-	-	ND	-	-	ND	-
MB8	Area 2	15	2/10/2004	15	-	-	-	ND	-	-	ND	ND
MB9	Area 2	1	2/10/2004	-	1	-	ī	-	-	-	-	ND
MB9	Area 2	1.5	2/10/2004	300	-	-	-	ND	-	-	ND	-
MB9	Area 2	6	2/10/2004	-	-	-	-	-	-	-	-	ND
MB9	Area 2	6.5	2/10/2004	44	-	-	-	ND	-	-	ND -	- ND
MB9 MB9	Area 2 Area 2	15 15.5	2/10/2004 2/10/2004	- ND	-	-	-	- ND	-	-	- ND	ND -
MB10	Area 2	1	2/10/2004	-	-	-	-	-	-	-	-	ND
MB10	Area 2	1.5	2/10/2004	3300	-	-	-	Pyrene: 0.47	-	-	ND	-
MB10	Area 2	5	2/10/2004	-	=	-	=	-	-	-	-	ND
MB10	Area 2	5.5	2/10/2004	81	=	-	Ē	ND	-	-	ND	-
MB10	Area 2	15	2/10/2004	- ND	-	-	-	- ND	-	-	- NID	ND -
MB10 MB11	Area 2 Area 2	15.5	2/10/2004 2/12/2004	ND -	-	-	-	ND -	-	-	ND -	- ND
IVIDII	nita Z	1	2/12/2004	-	-	-	-	Fluoranthene: 0.42	-	-	-	טאו
MB11	Area 2	1.5	2/12/2004	2900	-	-	-	Pyrene: 0.46	-	-	ND	-
MB11	Area 2	5	2/12/2004	-	-	-	-	-	-	-	-	ND
MB11	Area 2	5.5	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB11	Area 2	15	2/12/2004	-	=	-	9	-	-	-	-	ND
MB11	Area 2	15.5	2/12/2004	20	-	-	=	ND	-	-	ND	- ND
MB12 MB12	Area 2 Area 2	1.5	2/10/2004 2/10/2004	1600	-	-	-	- ND	-	-	- ND	ND -
MB12	Area 2	3	2/10/2004	-	-	-	-	-	-	-	-	ND
MB12	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND
MB12	Area 2	5.5	2/10/2004	630	=	=	=	ND	-	-	ND	-
MB12	Area 2	15	2/10/2004	-	-	1	-	-	-	-	-	ND
MB12	Area 2	15.5	2/10/2004	ND	-	-	-	ND	-	-	ND	
MB13 MB13	Area 2	1.5	2/10/2004 2/10/2004	- ND	=	-	-	- ND	-	-	- ND	ND
MB13 MB13	Area 2 Area 2	1.5 5	2/10/2004	ND -	-	-	-	- ND	-	-	ND -	- ND
MB13	Area 2	5.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
MB13	Area 2	15	2/10/2004	-	-	-	-	-	-	-	-	ND
	Area 2	15.5	2/10/2004	ND	-	-	-	ND	-	_	ND	-

Table 5: Soil Analytical Results

Soil		Sample		EPA 418.1	EPA 8015M	EPA 8260B** TPH-q	EPA 9010B/335.2	EPA 8270C/8310	EPA 8151 Herbicides	pH (pH	EPA 8082	EPA 8260B VOCs
Boring #	Area	depth (ft)	Date	TRPH (mg/kg)		(mg/kg)	Cyanide (mg/kg)	PAH (mg/kg)	(μg/kg)	units)	PCBs (µg/kg)	(μg/kg)
MB20	Area 2	1	2/10/2004	_	-	-	-	_	-	_	_	1,3,5-TMB: 13 1,2,4- TMB: 13
MB20	Area 2	1.5	2/10/2004	ND	-	-	-	ND	-	-	ND	- TIVID. 13
MB20	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND
MB20	Area 2	5.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
MB20 MB20	Area 2	15 15.5	2/10/2004 2/10/2004	- ND	-	-	-	- ND	-	-	- ND	ND -
MB17	Area 2 Area 3	3	2/10/2004	- ND	-	-	-	- ND	-	-	IND -	- ND
MB17	Area 3	3.5	2/13/2004	-	-	-	ND	ND	ND	-	-	-
MB17	Area 3	10	2/13/2004	-	-	-	-	-	-	-	-	ND
MB17	Area 3	15	2/13/2004	-	-	-	ND	ND	ND	-	-	- ND
CO1 CO1	Area 3 Area 3	5 5.5	2/11/2004 2/11/2004	290	-	-	-	-	-	-	-	ND -
CO1	Area 3	10	2/11/2004	-	-	-	-	-	-	-	-	ND
CO1	Area 3	10.5	2/11/2004	ND	-	-	-	-		-	-	-
DI1	Area 3	5	2/10/2004	-	-	ND	-	-	-	-	-	ND
DI1	Area 3	5.5	2/10/2004	-	480	-	-	-	-	-	-	-
												Total VOCs: 1736.1 See
DI1	Area 3	10	2/10/2004	-	-	4.5	-	-	-	-	-	note #1
DI1	Area 3	10.5	2/10/2004	-	450	-	-	-	-	-	-	- MTBE: 71 TBA:
DI1	Area 3	15	2/10/2004	_	-	ND	-	-	-	_	_	MTBE: 71 TBA: 240
DI1	Area 3	15.5	2/10/2004	-	ND	-	-	-	-	-	-	-
DI2	Area 3	5	2/11/2004	-	-	ND	-	-	-	-	-	ND
DI2	Area 3	5.5	2/11/2004	-	510	-	-	-		-	-	-
DI2	Area 3	10	2/11/2004	-	-	ND	-	-	-	-	-	ND
DI2 DI2	Area 3 Area 3	10.5 15	2/11/2004 2/11/2004	-	410	- ND	-	-	_	-	-	- ND
DI2	Area 3	15.5	2/11/2004	-	ND	-	-	-	-	-	-	-
OP1	Area 3	5	2/11/2004	-	-	-	-	-	-	-	-	ND
OP1	Area 3	5.5	2/11/2004	230	-	-	-	-		-	-	-
OP1	Area 3	10	2/11/2004	-	-	ND	-	-	-	-	-	ND
OP1 MB14	Area 3	10.5	2/11/2004 2/13/2004	220	-	-	-	-	_	-	-	- ND
MB14	Area 4 Area 4	1.5	2/13/2004	49	-	-	-	- ND	-	-	-	ND -
MB14	Area 4	5.5	2/13/2004	12	-	-	-	ND	-	-	-	ND
MB14	Area 4	10.5	2/13/2004	29	-	-	-	ND	-	-	-	ND
MB15	Area 4	1	2/13/2004	-	-	-	-	-	-	-	-	ND
MB15	Area 4	1.5	2/13/2004	18	-	-	-	ND	-	-	-	- ND
MB15 MB15	Area 4 Area 4	5.5 10.5	2/13/2004 2/13/2004	22 ND	-	-	-	ND ND	-	-	-	ND ND
MB15	Area 4	15.5	2/13/2004	22	-	-	-	-	-	-	-	-
MB16	Area 4	1.5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB16	Area 4	5.5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB16	Area 4	10	2/13/2004	11	-	-	-	ND	-	-	-	ND NB
MB18 MB18	Area 4	3	2/13/2004	230	-	-	-	ND	-	10.47	-	ND -
MB21	Area 4 Area 4	1	2/13/2004	46	-	-	-	ND	-	- 10.47	-	- ND
MB21	Area 4	5	2/13/2004	-	-	-	-	-	-	-	-	ND ND
MB21	Area 4	5.5	2/13/2004	19	-	-	-	ND	-	-	-	-
MB21	Area 4	10	2/13/2004	25	=	-	-	ND	-	-	-	ND ND
MB22 MB22	Area 4	1 5	2/13/2004 2/13/2004	-	-	-	-	- ND	-	-	-	ND -
MB22	Area 4 Area 4	1.5 5	2/13/2004	22	-	-	-	- ND	-	-	-	- ND
MB22	Area 4	5.5	2/13/2004	16	-	-	-	ND	-	-	-	-
MB22	Area 4	10	2/13/2004	-	=	-	-	-	-	-	-	ND
MB22	Area 4	10.5	2/13/2004	ND	-	-	-	ND	-	-	-	-
MB23	Area 4	1	2/13/2004	27	-	-	-	ND ND	-	-	-	ND ND
MB23 MB23	Area 4 Area 4	5 10	2/13/2004 2/13/2004	19 27	-	-	-	ND ND	-	-	-	ND ND
MB24	Area 4 Area 4	1	2/13/2004	95	-	-	-	ND ND	-	-	-	ND ND
MB24	Area 4	5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB24	Area 4	10	2/13/2004	14	=	-	-	ND	-	-	-	ND
MB25	Area 4	1	2/11/2004	-	-	-	-	-	-	-	-	ND
MB25	Area 4	1.5	2/11/2004	25	-	-	-	ND		-	-	- ND
MB25	Area 4	5	2/11/2004	-	-	-	-	-	-	-	-	ND

Table 5: Soil Analytical Results

	1		1								I	
Soil		Sample		EPA 418.1	EPA 8015M	EPA 8260B** TPH-q	EPA 9010B/335.2	EPA 8270C/8310	EPA 8151 Herbicides	pH (pH	EPA 8082	EPA 8260B VOCs
Boring #	Area	depth (ft)	Date	TRPH (mg/kg)		(mg/kg)	Cyanide (mg/kg)	PAH (mg/kg)	(µg/kg)	units)	PCBs (µg/kg)	(µg/kg)
MB25	Area 4	5.5	2/11/2004	23	-	-	-	ND ND	100/	_	-	-
MB25	Area 4	10	2/11/2004	-	-	-	-	-	_	_	-	ND
MB25	Area 4	10.5	2/11/2004	ND	_	-	_	ND		_	-	-
MB26	Area 4	1	2/11/2004	-	_	-	_	-	-	-	-	ND
MB26	Area 4	1.5	2/11/2004	ND	-	-	-	ND		-	-	-
MB26	Area 4	5	2/11/2004	-	-	-	-	-	-	-	-	ND
MB26	Area 4	5.5	2/11/2004	16	-	-	-	ND		-	-	-
MB26	Area 4	10	2/11/2004	-	-	-	-	-	-	-	-	ND
MB26	Area 4	10.5	2/11/2004	17	-	-	-	ND		-	-	-
MB27	Area 4	1	2/12/2004	-	-	-	-	-	-	-	-	ND
MB27	Area 4	1.5	2/12/2004	ND	-	-	-	ND	-	-	-	-
MB27	Area 4	5	2/12/2004	-	-	-	-	-	-	-	-	ND
MB27	Area 4	5.5	2/12/2004	ND	-		-	ND	-	-	-	-
MB27	Area 4	10	2/12/2004	-	-		-	-	-	-	-	ND
MB27	Area 4	10.5	2/12/2004	14	-	-		ND	-	-	-	-
MB28	Area 4	1	2/12/2004	-	-	-		-	-	-	-	ND
MB28	Area 4	1.5	2/12/2004	88	-	-	-	ND	-	-	-	-
MB28	Area 4	5	2/12/2004	-	-	-	-	-	-	-	-	ND
MB28	Area 4	5.5	2/12/2004	340	-	-	-	ND	-	-	-	-
MB28	Area 4	10	2/12/2004	-	-	-	-	-	-	-	-	ND
MB28	Area 4	10.5	2/12/2004	42	-	-	-	ND	-	-	-	-
MB29	Area 4	2	2/11/2004	60	-	-	-	ND		-	-	-
MB29	Area 4	5	2/11/2004	-	-	-	-	-	-	_	-	ND
MB29	Area 4	5.5	2/11/2004	51	-	-	-	ND		_	-	-
MB29	Area 4	10	2/11/2004	-	-	-	=	-	-	-	-	ND
MB29	Area 4	10.5	2/11/2004	45	-	-	=	ND		-	-	-
MB30	Area 4	1	2/11/2004	-	-		-		-	-	-	ND
MB30	Area 4	1.5	2/11/2004	230	,	•	Ī	ND		-	-	-
MB30	Area 4	5	2/11/2004	-	,	•	Ī	•	-	-	-	ND
MB30	Area 4	5.5	2/11/2004	100	,	•	Ī	ND		-	-	-
MB31	Area 4	3	2/12/2004	-	,	•	Ī	•	-	-	-	ND
MB31	Area 4	3.5	2/12/2004	51	-	•	i	ND	-	-	ND	-
MB31	Area 4	15	2/12/2004	-	-	-	-	-	-	-	-	ND
MB31	Area 4	15.5	2/12/2004	51	-		ī	ND	-	-	ND	-
MB32	Area 4	3.5	2/11/2004	130	-	-	-	ND	-	-	ND	ND
MB32	Area 4	15	2/11/2004	-	-	-	-	-	-	-	-	ND
MB32	Area 4	15.5	2/11/2004	20	-	-	-	ND		-	ND	-
MB33	Area 4	5	2/11/2004	-	-	-	=	-	-	-	-	ND
MB33	Area 4	5.5	2/11/2004	26	-	-	=	ND		-	ND	-
MB33	Area 4	15	2/11/2004	26	-	-	-	ND	-	-	ND	ND
CL1	Area 5	10	2/11/2004	-	-	-	-	-	-	-	-	ND
CL1	Area 5	10.5	2/11/2004	150	-	-	-	-		-	-	-
CL1	Area 5	15	2/11/2004	-	-	-	-	-	-	-	-	MTBE: 5.1
CL1	Area 5	15.5	2/11/2004	21	-	-	-	-		-	-	-
CL2	Area 5	10	2/11/2004	-	-	-	=	-	-	-	-	Naphthalene: 5.2
CL2	Area 5	10.5	2/11/2004	1200	-	-	-	-		-	-	-

Table 5: Soil Analytical Results

Soil Boring #	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8260B** TPH-g (mg/kg)	EPA 9010B/335.2 Cyanide (mg/kg)	EPA 8270C/8310 PAH (mg/kg)	EPA 8151 Herbicides (μg/kg)	pH (pH units)	EPA 8082 PCBs (μg/kg)	EPA 8260B VOCs (μg/kg)
CL2	Area 5	15	2/11/2004	_	-	-	-	-	_	_	_	Total VOCs: 251 See note # 2
CL2	Area 5	15.5	2/11/2004	840	-	-	=	-		-	-	-
CL3	Area 5	10	2/11/2004	-	-	-	-	-	-	-	-	1,3,5-TMB: 5.4
CL3	Area 5	10.5	2/11/2004	780	-	-	-	-		-	-	-
CL3	Area 5	15	2/11/2004	-	-	-		-	-	-	-	ND
CL3	Area 5	15.5	2/11/2004	16	-	-	-	-		-	-	-
CL4	Area 5	1	2/10/2004	-	-	-	=	-	-	-	-	m,p-Xylene: 13 o- Xylene: 5.3
CL4	Area 5	1.5	2/10/2004	1000	-	-	=	ND	-	-	ND	-
CL4	Area 5	5	2/10/2004	-	-	-	=	-	-	-	-	ND
CL4	Area 5	5.5	2/10/2004	220			-	ND	-	-	ND	-
CL4	Area 5	15	2/10/2004	-	1	•	i	-	-	-	-	ND
CL4	Area 5	15.5	2/10/2004	22	1	•	i	ND	-	-	ND	-
CL5	Area 5	1	2/10/2004	-	-	-	-	-	-	-	-	ND
CL5	Area 5	1.5	2/10/2004	470	-	-	-	ND	-	-	ND	-
CL5	Area 5	5	2/10/2004	-	-	-	-	-	-	-	-	ND
CL5	Area 5	5.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
CL5	Area 5	15	2/10/2004	-	-	-	-	-	-	-	-	ND
CL5	Area 5	15.5	2/10/2004	26	-	-	=	ND	-	-	ND	-
CL6	Area 5	10	2/12/2004	-		-	-	-	-	-	-	ND
CL6	Area 5	10.5	2/12/2004	ND	1	•	-	-	-	-	-	-
CL6	Area 5	15	2/12/2004	-	-	-	-	-	-	-	-	ND
CL6	Area 5	15.5	2/12/2004	11	-	-	-	-	-	-	-	-
CL7	Area 5	10	2/12/2004	-	-	-	-	-	-	-	-	ND
CL7	Area 5		2/12/2004	28	-	-	-	-	-	-	-	-
CL7	Area 5	15	2/12/2004	-	-	-	-	-	-	-	-	ND
CL7	Area 5	15.5	2/12/2004	ND	-	-	-	-	-	-	-	-
CL8	Area 5	10	2/12/2004	20	-	-	-	-	-	-	-	ND
CL8	Area 5	10.5	2/12/2004	- 20	-	-	-	-	-	-	-	- ND
CL8 CL8	Area 5 Area 5	14 14.5	2/13/2004 2/13/2004	110	-	-	-	See note # 3	-	-	-	ND -
CL8 CL9	Area 5	10	2/13/2004	-	-	-	-	See note # 3	-	-	-	- ND
CL9 CL9	Area 5	10.5	2/13/2004	35	-	-	-	-	-	-	-	- ND
CL9	Area 5	15.5	2/13/2004	-	-	-	-	-	-	-	-	ND
CL9 CL9	Area 5	15.5	2/13/2004	22	-	-	-	-	-	-	-	- ND
SV1	Alea 5	4	1/28/2004	-			ND	ND	ND	_	_	-
SV5		4	1/29/2004	_	960	ND**	- ND	-	- IND	_	_	Tetrachloroethene: 19 1,2,4-TMB: 13
SV14		4.5	1/29/2004	-	-	-	ND	ND	ND	_	-	1,2,4 TIVID. 10
J v . r	t		.,20,2007				110	Benzo (g,h,i)-	140			
SV31		4.5	1/29/2004	_	_	_	ND	Perylene: 350	ND	_	_	_
SV33	†	4	1/30/2004	-	-	-	-	-	-	_	-	ND
SV33		4.5	1/30/2004	_	-	-	ND	ND	ND	_	-	-

All tables Created By: JL, 2/26/04 All tables Checked By: SP, 2/27/04

VOCs: Volatile organic compounds

ND: Not detected over reporting limit (RL)

TRPH: Total recoverable petroleum hydrocarbons

TPH-d: Total Petroleum Hydrocarbons as Diesel TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B(benzene) T(toluene) E(ethylbenzene) X(total xylenes)

MTBE: Methyl tert-butyl ether

PAH: Poly aromatic hydrocarbons

PCB: Polychlorinated biphenyls

TMB: Trimethyl benzene

PCE: Tetrachloroethene

 * The two methylene chloride detections from boring MB4 are suspected to be from laboratory cross contamination

-: Sample not analyzed for that analyte

mg/kg - milligrams per kilogram

μg/kg - micrograms per kilogram

^{**:} THP-g analysis was performed using EPA method 8015M on this sample

^{#1} Ethylbenzene: 13; m,p-xylene: 31; o-xylene: 7.7; isopropylbenzene: 6.4; n-propylbzene: 24; 1,3,5-TMB: 300; 1,2,4-TMB: 800; sec-butylbenzene: 22; p-isopropyltoluene: 28; n-Butylbenzene: 84; naphthalene: 290; TBA: 130

^{# 2} MTBE: 9.5; benzene: 15; ethylbenzene: 53; m,p-xylene: 11; o-xylene: 15; isopropylbenzene: 11; n-propylbenzene: 14; 1,3,5-TMB: 82; p-isopropyltoluene: 6; n-Butylbenzene: 7.5

^{#3} pyrene: 1.4; benzo (a) anthracene: 1.3; chrysene: 1.5; benzo (k) fluoranthene: 1.3; benzo (b) fluoranthene: 1.4; benzo (a) pyrene: 0.88

Table 6: Title 22 Metals Soil Analytical Results (mg/kg)

Sample ID	Area	Depth (ft)	Date Collected	Matrix	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Chromium (Total) mg/kg	Cobalt mg/kg	Copper mg/kg	Lead mg/kg	Mercury mg/kg	Molybdenum mg/kg	Nickel mg/kg	Selenium mg/kg	Silver mg/kg	Thallium mg/kg	Vanadium mg/kg	Zinc mg/kg
MB7	Area 2	1.5		Soil	< 0.75	3.56	75.9	< 0.25	1.15	23.6	8.78	102	120	0.111	< 0.25	14.1	0.833	< 0.25	< 0.75	33.8	101
MB7	Area 2	5.5		Soil	< 0.75	2.24	14.7	< 0.25	< 0.5	7.56	2.24	6.74	0.989	< 0.0835	4.70	8.32	< 0.75	< 0.25	< 0.75	13.3	7.33
MB7 MB8	Area 2	15 1.5		Soil Soil	< 0.75 < 0.75	3.53 4.46	26.7 88.8	< 0.25 < 0.25	< 0.5 0.826	13.1 12.6	3.40 13.8	31.0	43.1 15.5	< 0.0835 < 0.0835	0.356 0.562	11.0 10.2	< 0.75 0.898	< 0.25 0.944	< 0.75	22.1 21.4	39.4 42.3
MB8	Area 2 Area 2	5.5		Soil	< 0.75	2.87	16.8	< 0.25	0.533	7.07	2.22	25 7.36	3.22	< 0.0835	< 0.25	8.19	< 0.75	< 0.25	< 0.75 < 0.75	11.7	11.5
MB8	Area 2	15	2/10/2004	Soil	< 0.75	1.96	27.2	< 0.25	0.532	7.56	2.49	5.27	1.25	< 0.0835	0.342	8.04	< 0.75	< 0.25	< 0.75	9.8	10.9
MB9	Area 2		2/10/2004	Soil	< 0.75	2.48	19.6	< 0.25	0.537	10.5	1.92	26.2	10.9	< 0.0835	0.3	6.91	< 0.75	< 0.25	< 0.75	9.12	28.7
MB9	Area 2	6.5		Soil	< 0.75	1.61	9.95	< 0.25	< 0.5	5.35	1.65	10	0.938	< 0.0835	< 0.25	6.01	< 0.75	< 0.25	< 0.75	8.24	9.27
MB9	Area 2	15.5		Soil	< 0.75	< 0.75	89	< 0.69	0.724	18.2	6.47	16	5.3	< 0.0835	< 0.25	15	1.21	< 0.25	< 0.75	30.1	28.5
MB10	Area 2	1.5	2/10/2004	Soil	< 0.75	5.56	87.5	< 0.25	0.811	12.1	5.69	32.8	15.1	< 0.0835	0.406	10.9	< 0.75	< 0.25	< 0.75	21.9	60.8
MB10	Area 2			Soil	< 0.75	2.18	12.8	< 0.25	< 0.5	6.71	2.01	25	1.6	< 0.0835	< 0.25	4.91	< 0.75	< 0.25	< 0.75	6.03	15.1
MB10	Area 2	15.5		Soil	< 0.75	0.972	50.8	0.371	0.576	9.89	3.75	12.2	3.28	< 0.0835	< 0.25	8.53	< 0.75	< 0.25	< 0.75	17.3	23.4
MB11	Area 2	1.5	2/12/2004	Soil	< 0.75	4.11	49.8	< 0.25	< 0.5	7.9	3.28	7.3	6.14	< 0.0835	0.409	8.08	1.27	< 0.25	< 0.75	12.9	29.6
MB11 MB11	Area 2 Area 2	5.5 15.5		Soil Soil	< 0.75 < 0.75	0.946 0.883	16.8 16.2	< 0.25 < 0.25	< 0.5 < 0.5	4.58 5.69	1.41 1.6	1.25 1.75	< 0.5 < 0.5	< 0.0835 < 0.0835	< 0.25 0.39	4.4 6.3	< 0.75 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	5.24 6.54	2.41
MB12	Area 2	1.5		Soil	< 0.75	3.82	39.9	< 0.25	0.524	9.49	4.16	45.7	11.6	< 0.0835	0.335	7.14	< 0.75	< 0.25	< 0.75	11.7	46.3
MB12	Area 2	5.5		Soil	< 0.75	2.62	17.8	< 0.25	< 0.5	6.24	4.16	23.7	2.44	< 0.0835	< 0.25	5.43	< 0.75	< 0.25	< 0.75	6.28	19.3
MB12	Area 2	15.5	2/10/2004	Soil	< 0.75	< 0.75	38.1	< 0.25	< 0.5	6.49	5.19	7.45	2.16	0.1	< 0.25	5.87	< 0.75	< 0.25	< 0.75	10.4	17.2
MB13	Area 2	1.5	2/10/2004	Soil	< 0.75	1.76	12.8	< 0.25	< 0.5	4.64	1.67	34	1.33	< 0.0835	< 0.25	5.86	< 0.75	< 0.25	< 0.75	7.21	22.6
MB13	Area 2	5.5	2/10/2004	Soil	< 0.75	1.27	8.82	< 0.25	< 0.5	2.55	0.883	8.27	1.65	< 0.0835	< 0.25	2.75	< 0.75	< 0.25	< 0.75	3.58	8.53
MB13	Area 2	15.5	2/10/2004	Soil	< 0.75	1.82	118	0.595	0.683	26.2	11.2	15.8	5.43	< 0.0835	< 0.25	14.6	0.962	< 0.25	< 0.75	43.5	37.8
MB20	Area 2	1.5	2/10/2004	Soil	< 0.75	1.94	17.1	< 0.25	0.579	7.02	2.43	19.7	18.9	< 0.0835	< 0.25	7.19	< 0.75	< 0.25	< 0.75	11.2	58.8
MB20	Area 2	5.5	2/10/2004	Soil	< 0.75	1.58	21.2	< 0.25	0.686	7.32	2.56	41.3	28.2	< 0.0835	< 0.25	6.77	< 0.75	< 0.25	< 0.75	10.2	54.8
MB20	Area 2	15.5		Soil	< 0.75	< 0.75	99.8	< 0.445	0.789	19	11.5	21.2	5.94	< 0.0835	< 0.25	13.5	1.2	< 0.25	< 0.75	33.2	39.2
MB17	Area 3	3.5	2/13/2004	Soil	< 0.75	3.33	44.1	< 0.25	< 0.5	13.0	4.69	63.8	97.1	0.111	4.79	12.5	< 0.75	< 0.25	< 0.75	24.1	59.9
MB17 MB14	Area 3 Area 4	15 1.5	2/13/2004 2/13/2004	Soil Soil	< 0.75 < 0.75	< 0.75 2.58	71.1 16.0	0.562 < 0.25	< 0.5 < 0.5	17.1 10.6	7.27 2.99	10.4 6.56	4.23 5.35	< 0.0835 < 0.0835	< 0.25 < 0.25	10.6 9.99	0.846 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	36.0 15.3	26.5 9.83
MB14	Area 4	5.5	2/13/2004	Soil	< 0.75	1.69	12.9	< 0.25	< 0.5	5.12	1.95	2.25	0.71	< 0.0835	0.254	7.48	< 0.75	< 0.25	< 0.75	9.53	7.46
MB14	Area 4	10.5	2/13/2004	Soil	< 0.75	2.07	13.8	< 0.25	< 0.5	6.45	2.00	8.67	2.56	< 0.0835	< 0.25	6.74	< 0.75	< 0.25	< 0.75	9.29	8.04
MB15	Area 4	1.5		Soil	< 0.75	1.28	11.4	< 0.25	< 0.5	3.89	1.73	5.90	1.81	< 0.0835	< 0.25	5.12	< 0.75	< 0.25	< 0.75	6.85	6.68
MB15	Area 4	5.5	2/13/2004	Soil	< 0.75	1.71	14.3	< 0.25	< 0.5	9.35	2.37	2.69	1.32	< 0.0835	< 0.25	7.20	< 0.75	< 0.25	< 0.75	10.3	7.70
MB15	Area 4	10.5	2/13/2004	Soil	< 0.75	2.96	15.4	< 0.25	< 0.5	6.27	2.23	2.25	1.08	< 0.0835	< 0.25	7.83	< 0.75	< 0.25	< 0.75	13.6	7.26
MB16	Area 4	1.5	2/13/2004	Soil	< 0.75	2.65	15.9	< 0.25	< 0.5	6.66	2.46	2.30	0.957	< 0.0835	< 0.25	8.60	< 0.75	< 0.25	< 0.75	13.3	9.38
MB16	Area 4	5.5	2/13/2004	Soil	< 0.75	2.09	12.5	< 0.25	< 0.5	5.20	2.00	1.98	1.02	< 0.0835	< 0.25	7.36	< 0.75	< 0.25	< 0.75	9.42	7.01
MB16	Area 4	10	2/13/2004	Soil	< 0.75	2.24	15.4	< 0.25	< 0.5	6.49	2.11	3.34	0.820	< 0.0835	< 0.25	7.77	0.763	< 0.25	< 0.75	11.9	9.68
MB18	Area 4	1	2/13/2004	Soil	0.882	2.57	56.5	< 0.25	< 0.5	7.04	3.38	79.4	189	0.108	< 0.25	8.11	< 0.75	< 0.25	< 0.75	9.24	63.5
MB18	Area 4	3	2/13/2004	Soil	- 0.75	- 2.00	- 40.0	- 0.05	- 0.5	- 7.00	- 0.70	- 2.04	< 0.5	- 0.0005	- 4.40	- 0.70	- 0.75	- 0.05	- 0.75	-	- 0.05
MB21 MB21	Area 4	1 5 5	2/13/2004 2/13/2004	Soil Soil	< 0.75 < 0.75	3.22 2.57	16.3 15.5	< 0.25 < 0.25	< 0.5 < 0.5	7.89 8.20	2.76 2.52	3.81 3.15	2.79 1.01	< 0.0835 < 0.0835	4.48 0.311	9.78 8.82	< 0.75 0.979	< 0.25 < 0.25	< 0.75 < 0.75	15.8 14.1	8.95 7.74
11001	Area 4 Area 4	5.5 10	0/40/0004	Soil	< 0.75	2.30	17.3	< 0.25	< 0.5	6.20	2.32	6.23	2.58	< 0.0835	< 0.25	6.57	< 0.75	< 0.25	< 0.75		9.82
MB22				Soil	< 0.75	2.97	15.2	< 0.25	< 0.5	8.96	2.70	4.91	1.18	< 0.0835	< 0.25	9.25	< 0.75	< 0.25	< 0.75	17.2	9.74
	Area 4			Soil	< 0.75	2.26	14.3	< 0.25	< 0.5	8.37	2.28	9.25	1.26	< 0.0835	< 0.25	7.94	< 0.75	< 0.25	< 0.75	14.7	11.1
MB22	Area 4			Soil	< 0.75	1.68	29.2	< 0.25	< 0.5	9.34	3.17	6.18	1.38	< 0.0835	< 0.25	9.94	< 0.75	< 0.25	< 0.75	17.2	14.0
MB23	Area 4			Soil	< 0.75	2.99	17.7	< 0.25	< 0.5	8.68	2.74	4.44	1.54	< 0.0835	< 0.25	8.91	0.751	< 0.25	< 0.75	15.4	8.16
MB23	Area 4	5		Soil	< 0.75	2.54	13.4	< 0.25	< 0.5	6.00	2.28	2.22	0.866	< 0.0835	4.75	8.47	0.866	< 0.25	< 0.75	12.1	7.62
MB23	Area 4	10		Soil	< 0.75	2.71	26.9	< 0.25	< 0.5	6.85	2.56	3.10	1.21	< 0.0835	4.62	8.03	0.773	< 0.25	< 0.75	11.7	10.8
MB24	Area 4			Soil	< 0.75	3.11	18.2	< 0.25	< 0.5	9.18	2.71	17.7	26.5	< 0.0835	< 0.25	9.37	< 0.75	< 0.25	< 0.75	14.8	20.5
MB24	Area 4			Soil	< 0.75	1.49	10.5	< 0.25	< 0.5	4.09	1.36	1.75	0.564	< 0.0835	< 0.25	4.59	< 0.75	< 0.25	< 0.75	6.24	6.20
MB24		_		Soil	< 0.75	2.20	14.6	< 0.25	< 0.5	5.80	2.48	7.73	15.0	< 0.0835	< 0.25	7.63	< 0.75	< 0.25	< 0.75	11.1	11.7
MB25		_		Soil	< 0.75	2.03	14.4	< 0.25	< 0.5	6.18	2.08	2.13	1.75	< 0.0835	< 0.25	7.17	< 0.75	< 0.25	< 0.75	9.56	10.3
MB25	Area 4			Soil	< 0.75	1.08	9.21	< 0.25	< 0.5	3.77	1.02	1.23	0.809	< 0.0835	< 0.25	3.63	< 0.75	< 0.25	< 0.75	4.89	5.19 7.94
MB25	Area 4	10.5	2/11/2004	Soil	< 0.75	2.86	15.5	< 0.25	< 0.5	6.99	2.52	2.14	3.05	< 0.0835	< 0.25	9.64	< 0.75	0.276	< 0.75	12.8	7.94

Table 6: Title 22 Metals Soil Analytical Results (mg/kg)

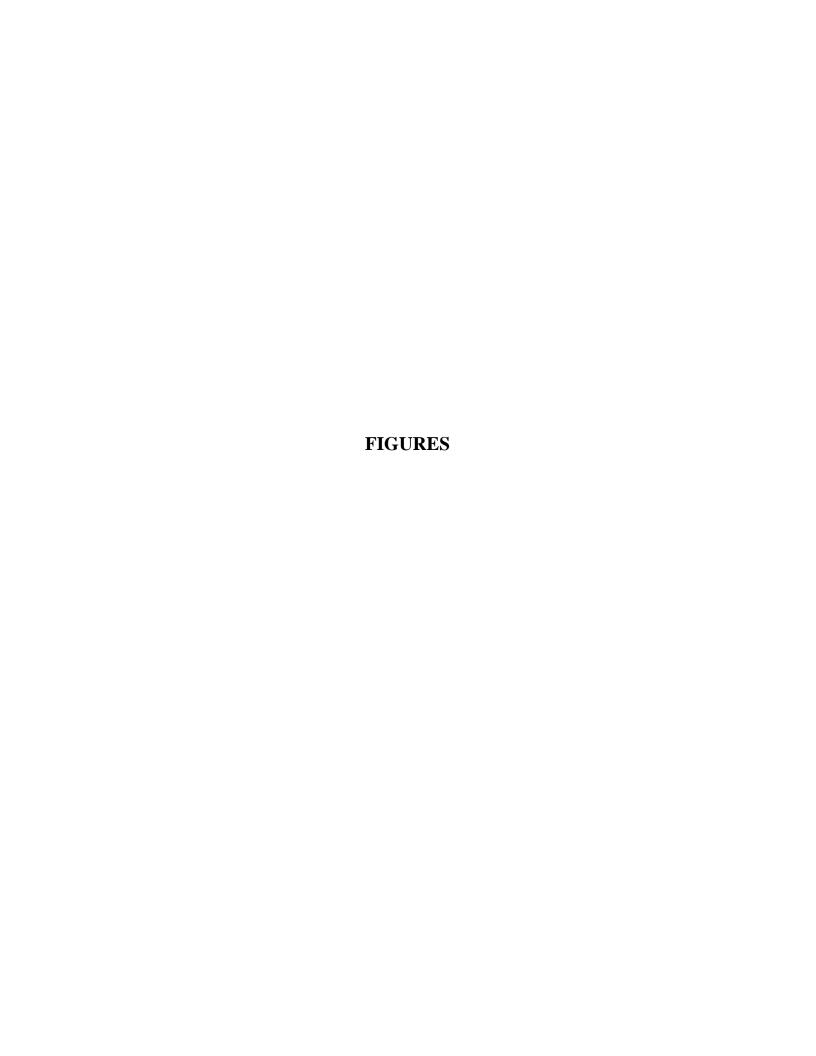

Sample ID	Area	Depth (ft)	Date Collected	Matrix	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Chromium (Total) mg/kg	Cobalt mg/kg	Copper mg/kg	Lead mg/kg	Mercury mg/kg	Molybdenum mg/kg	Nickel mg/kg	Selenium mg/kg	Silver mg/kg	Thallium mg/kg	Vanadium mg/kg	Zinc mg/kg
MB26	Area 4	1.5		Soil	< 0.75	2.16	11.5	< 0.25	< 0.5	4.22	1.37	1.76	< 0.5	< 0.0835	< 0.25	4.83	0.866	< 0.25	< 0.75	5.63	4.27
MB26	Area 4	5.5		Soil	< 0.75	2.77	14.4	< 0.25	< 0.5	5.65	2.06	1.89	1.64	< 0.0835	< 0.25	7.1	< 0.75	< 0.25	< 0.75	10.4	7.88
MB26 MB27	Area 4 Area 4	10.5 1.5		Soil Soil	< 0.75 < 0.75	2.57 1.32	16.5 9.08	< 0.25 < 0.25	< 0.5 < 0.5	6.52 3.07	2.62 1.06	6.06 2.02	3.23 < 0.5	< 0.0835 < 0.0835	< 0.25 < 0.25	9.45 3.86	< 0.75 0.941	< 0.25 < 0.25	< 0.75 < 0.75	14.5 4.63	8.92 < 1
MB27	Area 4	5.5		Soil	< 0.75	1.71	11.41	< 0.25	< 0.5	6	1.41	2.02	< 0.5	< 0.0835	< 0.25	5.49	0.954	< 0.25	< 0.75	5.73	2.65
MB27	Area 4	10.5		Soil	< 0.75	1.88	12.4	< 0.25	< 0.5	4.36	1.75	11.2	2.64	< 0.0835	< 0.25	5.98	1.21	< 0.25	< 0.75	8.85	8.84
MB28	Area 4	1.5		Soil	< 0.75	2.6	19	< 0.25	< 0.5	7.96	2.4	20.8	42.1	< 0.0835	< 0.25	9.2	< 0.75	< 0.25	< 0.75	11.5	23.4
MB28	Area 4	5.5		Soil	< 0.75	2.67	28.2	< 0.25	< 0.5	7.37	2.45	31.7	34.3	< 0.0835	< 0.25	9.03	1.45	< 0.25	< 0.75	11.1	19.9
MB28	Area 4	10.5		Soil	< 0.75	2.65	20.6	< 0.25	< 0.5	5.43	1.91	23.8	25.8	< 0.0835	< 0.25	7.04	1.32	< 0.25	< 0.75	8.82	14.5
MB29	Area 4	2		Soil	< 0.75	3.11	17.8	< 0.25	< 0.5	9.59	3.21	9.2	12.5	< 0.0835	0.3	11.1	< 0.75	< 0.25	< 0.75	17	16.2
MB29	Area 4	5.5		Soil	< 0.75	2.18	15.7	< 0.25	< 0.5	7.24	2.01	17.5	27	< 0.0835	< 0.25	7.31	< 0.75	< 0.25	< 0.75	10.3	17.1
MB29	Area 4	10.5		Soil	< 0.75	2.36	14.9	< 0.25	< 0.5	7.65	2.39	4.82	5.36	< 0.0835	< 0.25	8.43	< 0.75	< 0.25	< 0.75	13.8	12.4
MB30	Area 4	1.5		Soil	1.38	2.67	23.6	< 0.25	< 0.5	9.94	2.55	31.7	69.2	< 0.0835	< 0.25	9.15	< 0.75	< 0.25	< 0.75	13.9	31.4
MB30	Area 4	5.5		Soil	2.47	3.7	21.6	< 0.25	< 0.5	8.05	2.67	28.6	48.1	< 0.0835	< 0.25	9.93	0.947	< 0.25	< 0.75	15.9	26.4 23.5
MB31 MB31	Area 4 Area 4	3.5 15.5		Soil Soil	< 0.75 < 0.75	2.32 2.12	23.7 58.8	< 0.25 < 0.25	< 0.5 < 0.5	5.99 6.97	1.78 13.1	24.6 22.9	34.5 30.1	< 0.0835 < 0.0835	< 0.25 < 0.25	6.52 6.57	< 0.75 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	7.55 14.4	30.1
MB32	Area 4	3.5	2/11/2004	Soil	4.2	4.94	29.8	< 0.25	< 0.5	6.92	2.66	73.5	382	< 0.0835	< 0.25	7.14	< 0.75	< 0.25	< 0.75	11.2	42.7
MB32	Area 4	15.5		Soil	< 0.75	1.67	13.2	< 0.25	< 0.5	4.34	1.71	2.33	1.23	< 0.0835	< 0.25	6.43	< 0.75	< 0.25	< 0.75	7.9	8.7
MB33	Area 4	5.5		Soil	< 0.75	3.12	16.7	< 0.25	< 0.5	7.61	2.7	2.49	2.06	< 0.0835	< 0.25	10	0.968	< 0.25	< 0.75	15.4	11.7
MB33	Area 4	15		Soil	< 0.75	1.7	14.1	< 0.25	< 0.5	5.62	2.01	1.98	1.27	< 0.0835	< 0.25	7.56	< 0.75	< 0.25	< 0.75	9.89	11.3
CL1	Area 5	10.5		Soil	< 0.75	3.02	43.3	< 0.25	< 0.5	9.16	3.38	32.8	58.3	0.0895	< 0.25	9.68	< 0.75	< 0.25	< 0.75	17.1	87.7
CL1	Area 5	15.5	2/11/2004	Soil	< 0.75	< 0.75	52.1	0.455	< 0.5	9.02	4.84	8.51	3.88	< 0.0835	< 0.25	6.74	0.818	< 0.25	< 0.75	21	21.6
CL2	Area 5	10.5		Soil	< 0.75	2.46	17.5	< 0.25	< 0.5	7.79	2.69	14.9	23.6	< 0.0835	< 0.25	9.54	< 0.75	< 0.25	< 0.75	17.6	66
CL2	Area 5	15.5		Soil	< 0.75	0.811	68.5	0.5	< 0.5	11.5	6.17	8.92	4.62	< 0.0835	< 0.25	8.88	1.67	< 0.25	< 0.75	26.3	24.9
CL3	Area 5	10.5		Soil	5.29	5.05	68.3	< 0.25	< 0.5	9.74	3.41	96.3	178	0.109	< 0.25	9.14	0.956	< 0.25	< 0.75	16.3	87.1
CL3	Area 5	15.5		Soil	< 0.75	< 0.75	59.4	0.257	< 0.5 0.747	8.04	4.58	6.7	2.71	0.0839	< 0.25	5.48	< 0.75	< 0.25	< 0.75	16.7	20.3 58.8
CL4 CL4	Area 5 Area 5	1.5 5.5		Soil Soil	< 0.75 < 0.75	5.49 3.45	55.5 19.4	< 0.25 < 0.25	0.747	10.3 10.8	3.91 2.34	151 32.2	117 28.4	0.107 < 0.0835	< 0.25 0.314	10.2 9.19	< 0.75 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	16.9 10.8	23.4
CL4	Area 5	15.5		Soil	< 0.75	1.91	17.8	< 0.25	< 0.5	6.82	2.23	4.37	1.07	< 0.0835	< 0.25	9.14	< 0.75	< 0.25	< 0.75	10.2	8.89
CL5	Area 5	1.5		Soil	3.99	7.52	51.7	< 0.25	< 1.25	15	5.03	327	300	0.164	< 0.25	14.3	< 0.75	0.86	< 0.75	19.6	133
CL5	Area 5	5.5		Soil	< 0.75	1.57	11	< 0.25	< 0.5	6.45	1.09	5.91	2.81	< 0.0835	< 0.25	4.17	< 0.75	< 0.25	< 0.75	4.77	6.64
CL5	Area 5	15.5	2/10/2004	Soil	< 0.75	1.38	17.9	< 0.25	< 0.5	4.89	1.68	4.6	0.91	< 0.0835	< 0.25	5.74	< 0.75	< 0.25	< 0.75	7.75	8.32
CL6	Area 5	10.5	2/12/2004	Soil	< 0.75	1.69	13.4	< 0.25	< 0.5	4.82	1.29	1.77	< 0.5	< 0.0835	< 0.25	5.23	0.983	< 0.25	< 0.75	5.65	1.12
CL6	Area 5	15.5		Soil	< 0.75	2.04	20.5	< 0.25	< 0.5	6.99	1.84	1.83	< 0.5	< 0.0835	0.497	7.77	0.765	< 0.25	< 0.75	8	1.91
CL7	Area 5	10.5		Soil	< 0.75	2.67	20	< 0.25	< 0.5	6.93	2.24	17.5	19.6	< 0.0835	< 0.25	8.25	0.954	< 0.25	< 0.75	10.4	12
CL7	Area 5	15.5		Soil	< 0.75	1.84	13.9	< 0.25	< 0.5	3.75	1.25	0.917	< 0.5	< 0.0835	< 0.25	4.54	0.756	< 0.25	< 0.75	5.24	< 1
CL8	Area 5	10.5		Soil Soil	< 0.75	2.64 3.00	16.5 24.1	< 0.25	< 0.5	8.11	2.82	12.5 24.0	2.88	< 0.0835	< 0.25	10.2	< 0.75 0.988	< 0.25	< 0.75	11.9	11.1
CL8 CL9	Area 5 Area 5	14.5 10.5		Soil	< 0.75 < 0.75	2.99	23.9	< 0.25 < 0.25	< 0.5 < 0.5	9.48 10.6	3.59 3.51	3.01	23.5 2.15	< 0.0835 < 0.0835	0.470 < 0.25	12.0 13.1	< 0.75	< 0.25 < 0.25	< 0.75 < 0.75	21.9 24.6	22.7 11.4
CL9	Area 5	15.5		Soil	< 0.75	< 0.75	101	0.376	< 0.5	17.7	8.62	11.3	3.77	< 0.0835	< 0.25	10.7	1.07	< 0.25	< 0.75	29.6	30.6
SV1		4		Soil	< 0.75	1.04	9.03	< 0.25	< 0.5	2.76	0.855		0.56	< 0.0835	< 0.25	3.49	< 0.75	< 0.25	< 0.75	3.99	6.25
SV14		4.5		Soil	< 0.75	1.79	15.2	< 0.25	< 0.5	10.1	2.17	2.08	1.61	< 0.0835	< 0.25	9.34	< 0.75	< 0.25	< 0.75		11.7
SV31		4.5		Soil	< 0.75	2.32	31	< 0.25	< 0.5	7.87	3.27	8.55	3.27	< 0.0835	< 0.25	9.46	< 0.75	< 0.25	< 0.75	16.3	18.5
SV33		4.5	1/30/2004	Soil	< 0.75	2	15.06	< 0.25	< 0.5	7.21	2.43	1.72	1.53	< 0.0835	< 0.25	10.1	< 0.75	< 0.25	< 0.75	17.5	12.1
			diation Goals		31	22	5400	150	37	210	900	3100	150.0*	23	390	1600	390	390	5.2	550	2300
Ke			_	_	0.15 1.95	0.6 11	133 1,400	0.25 2.7	0.05 1.7	23 1579	2.7 46.9	9 96.4	12 97.1	0.1 0.9	0.1 9.6	9 509	0.015 0.43	0.1 8.3	5.3 36.2	39 288	88 236
		L EVALUATIO	N OF ALL RESU	LTS, BY MET																	
	count				95	95	95	95	95	95	95	95	96	95	95	95	95	95	95	95	95
	#NDs Range (Min	Max)			89 0.75 5.29	7 0.75 7.52	0 8.82-101	87 0.25 0.69		0 2.55 26.2	0 0.855 13.8	0 0.9 327		86 0.084 0.164		0 2.75 15		92 0.25 0.944	95 0.75 0.75		1 133
	mean/averaç				0.89	2.32	30	0.27	0.54	8.08	3.28	23.28	25.67	0.09	0.27	7.93	0.82	0.26	0.75	12.92	24.72
	standard dev	/.			0.69	1.31	25	0.07	0.12	4.29	2.74	45.66	63.71	0.01	0.05	2.69	0.17	0.09	0.0	7.57	25.52
	confidence				0.14	0.26	5	0.01	0.02	0.86	0.55	9.18	12.74	0.00	0.01	0.54	0.03	0.02	NA	1.52	5.13
	95% UCL				1.03	2.59	35	0.28	0.56	8.94	3.83	32.46	38.41	0.09	0.28	8.47	0.86	0.28	0.75	14.44	29.85

Table 7: Title 22 Metals Groundwater Analytical Results (mg/L)

		Date																		
Sample ID	Area	Collected	Matrix	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (Total)	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MB3-GW (Filt)	Area 1	2/12/2004	Water	0.0291	< 0.015	0.127	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB3-GW (Total)	Area 1	2/12/2004	Water	0.0233	< 0.015	0.121	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00808	< 0.005	0.0255	< 0.005	< 0.015	< 0.005	< 0.01
MW05 (Filt)	Area 1	2/10/2004	Water	0.0238	< 0.015	0.0915	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00977	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	0.0316
MW05 (Total)	Area 1	2/10/2004	Water	0.0244	< 0.015	0.093	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00722	< 0.005	< 0.015	< 0.005	< 0.015	0.00692	0.0392
MB11-GW (Filt)	Area 2	2/12/2004	Water	0.0269	< 0.015	0.141	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.012	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB11-GW (Total)	Area 2	2/12/2004	Water	0.0285	< 0.015	0.143	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.0111	< 0.005	0.0278	< 0.005	< 0.015	< 0.005	< 0.01
MW03 (Filt)	Area 3	2/10/2004	Water	0.0228	< 0.015	0.087	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00746	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	0.0339
MW03 (Total)	Area 3	2/10/2004	Water	0.0247	< 0.015	0.0944	< 0.001	< 0.005	< 0.005	< 0.005	0.0065	0.0219	< 0.0005	0.00762	< 0.005	< 0.015	< 0.005	< 0.015	0.00501	0.033
MB31-GW (Filt)	Area 4	2/12/2004	Water	0.0273	< 0.015	0.162	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.0129	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB31-GW (Total)	Area 4	2/12/2004	Water	0.0241	< 0.015	0.2163	< 0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.0165	0.00527	0.0224	< 0.005	< 0.015	< 0.005	< 0.01
MB33-GW (Filt)	Area 4	2/11/2004	Water	< 0.015	< 0.015	0.153	< 0.001	< 0.005	< 0.005	0.00719	< 0.005	< 0.01	< 0.0005	0.0478	0.0135	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB33-GW (Total)	Area 4	2/11/2004	Water	< 0.015	0.0303	0.901	0.00384	< 0.005	0.167	0.0617	0.149	0.0857	0.000807	0.0436	0.0996	< 0.015	< 0.005	< 0.015	0.094	0.423
California Maxi	num Cont	tamination Le	evles (mg/L)	0.006	0.05	1	0.004	0.005	0.05	NA	1	NA	0.002	NA	0.1	0.05	0.1	0.002	NA	5

Notes:

mg/L - milligrams per liter NA - Not available

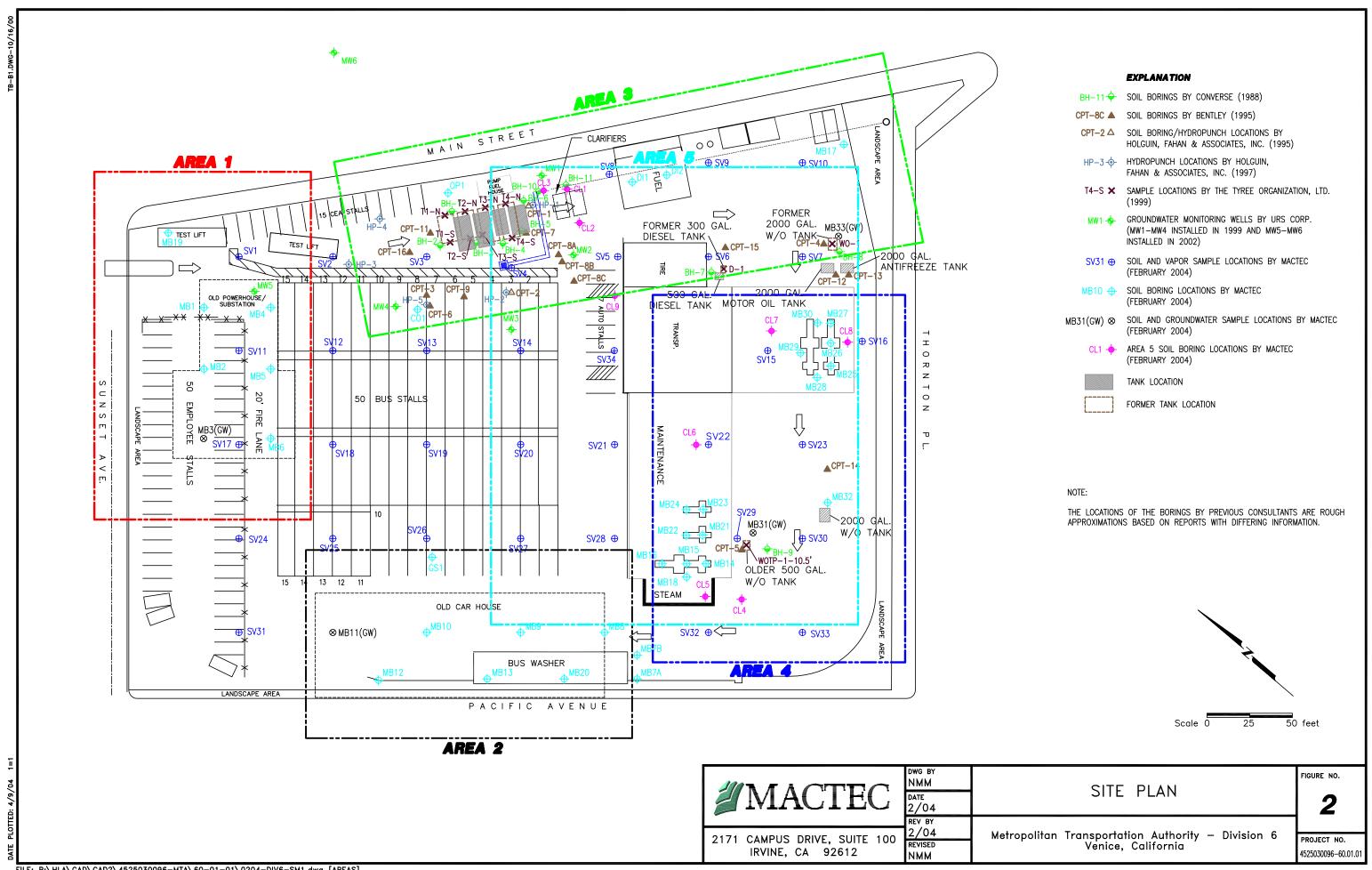
Metropolitan Transportation Authority Division 6 Facility Plan 100 Sunset Avenue Venice, California

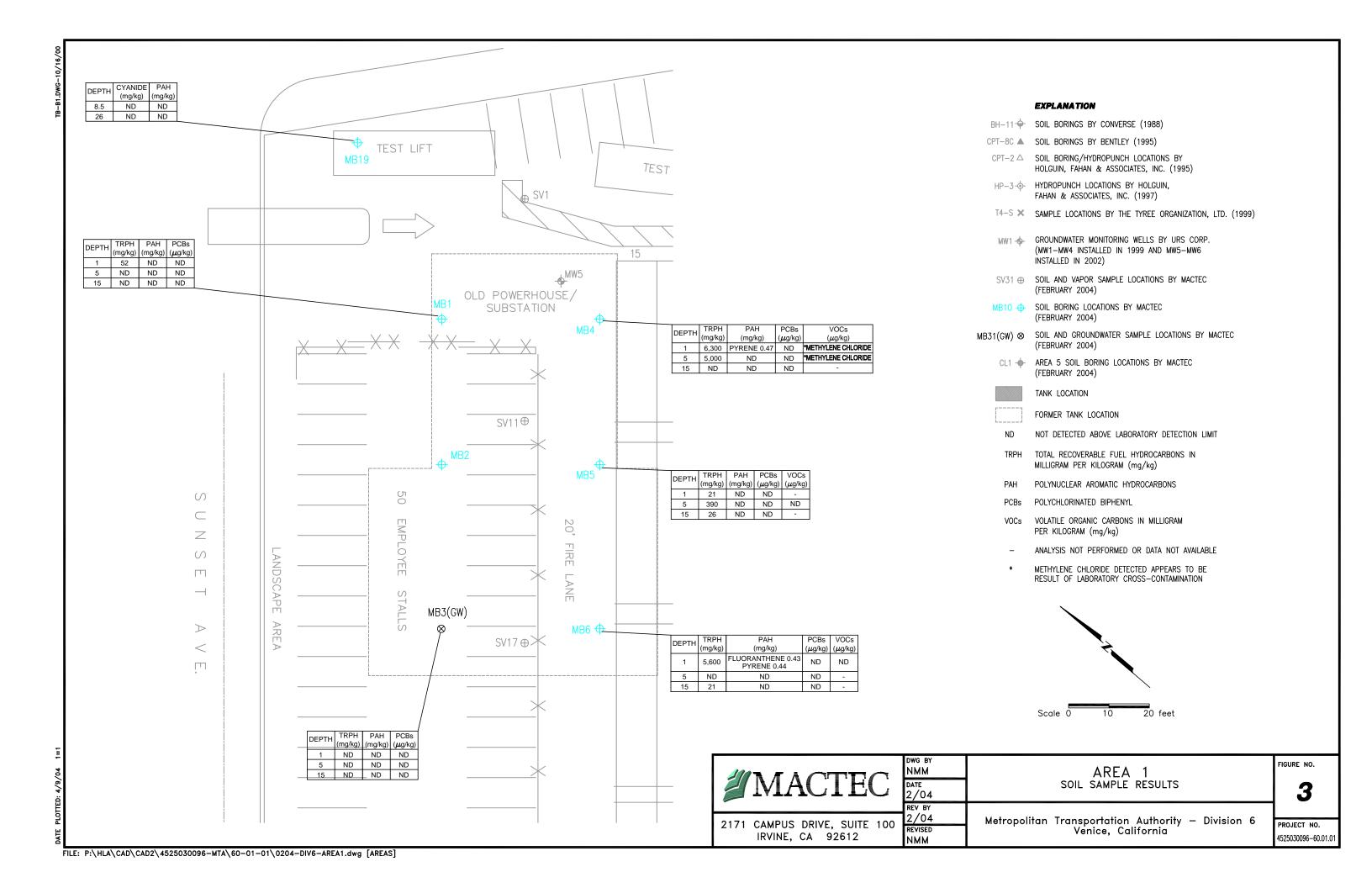
PROJECT NO.

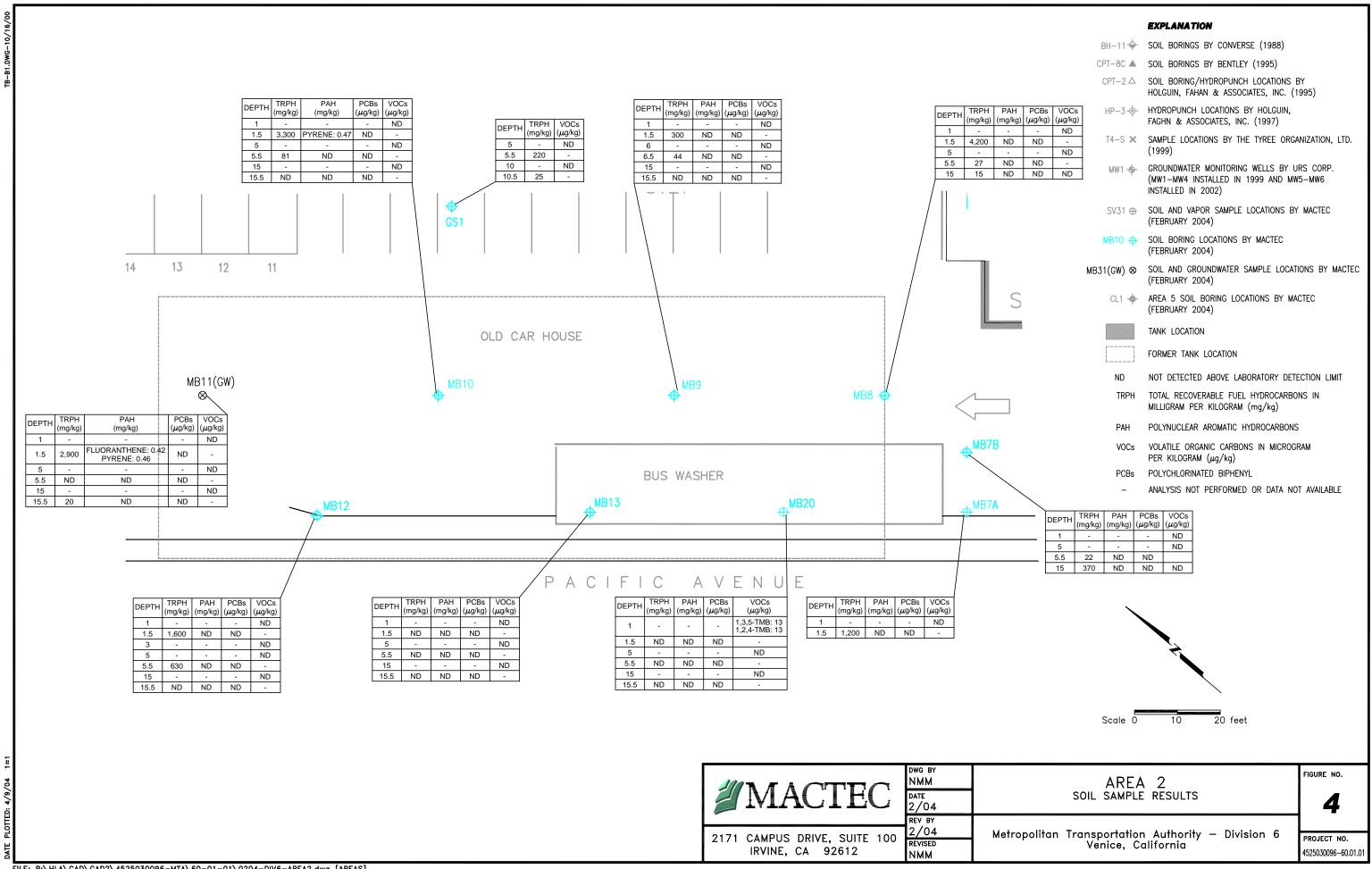
4525030096-60.01.01

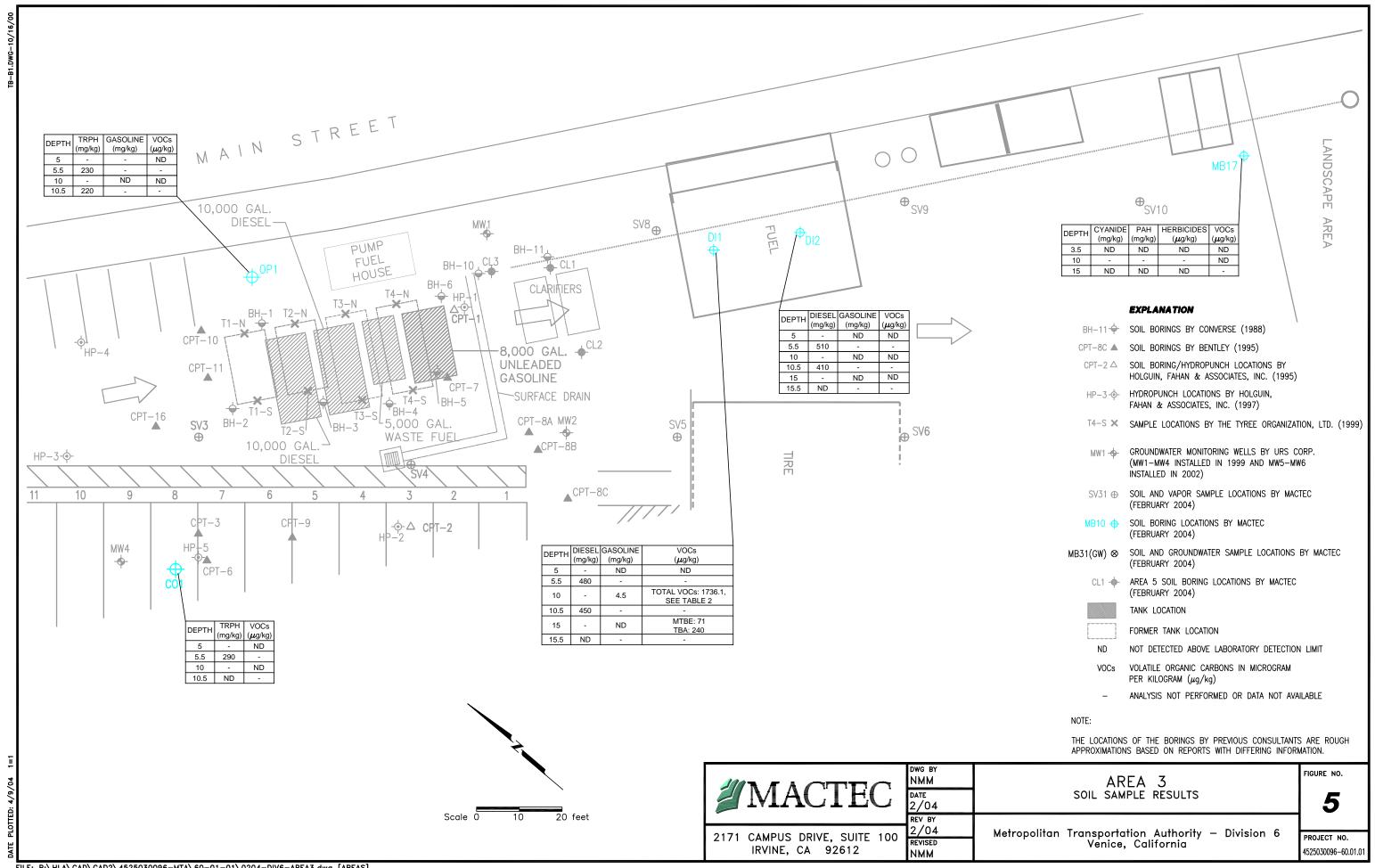
PLOTTED: 2/25/04

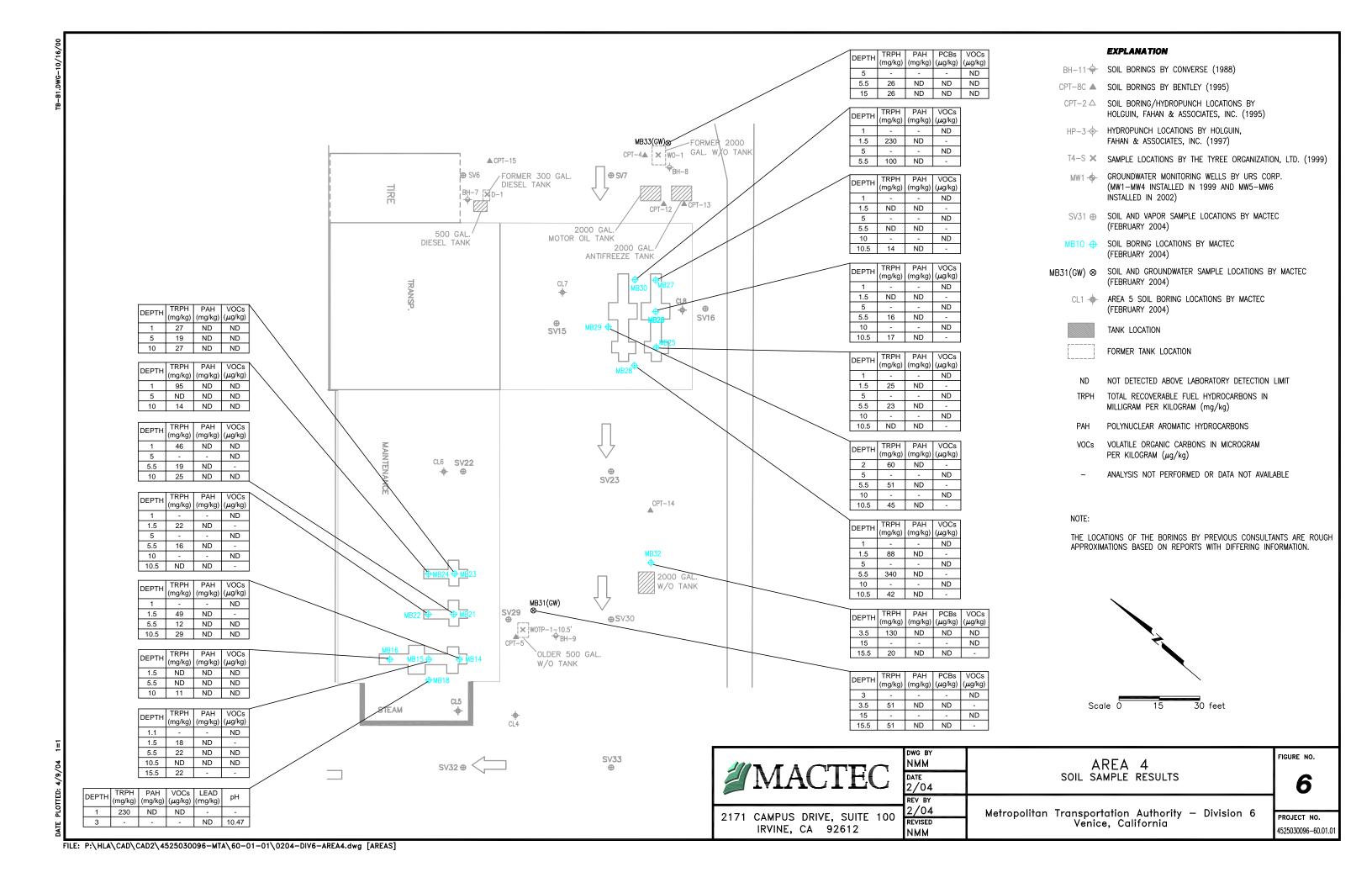
2/04

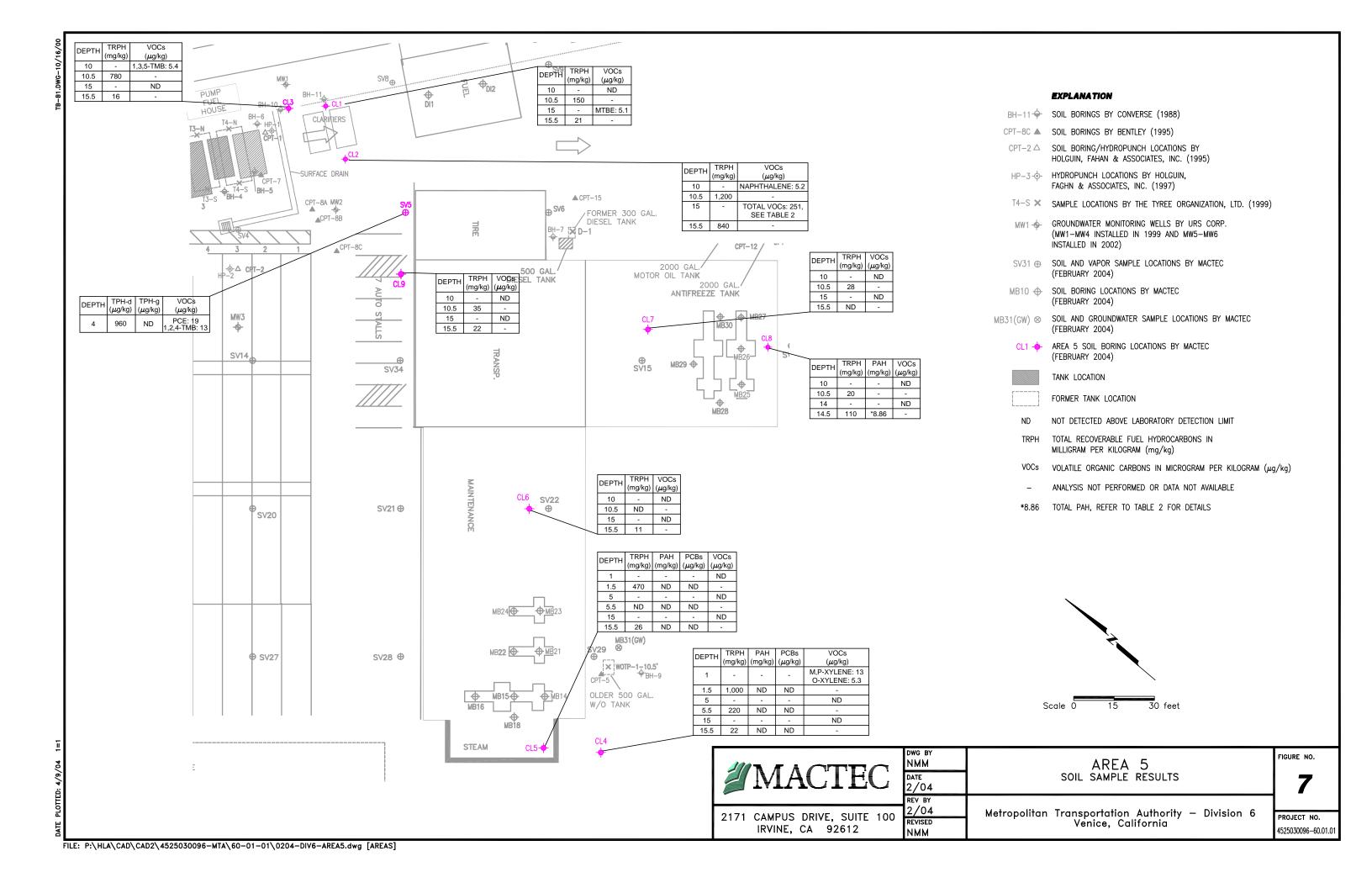

REV BY


REVISED


FILE: K:\DWGS\P:\HLA\CAD\CAD2\4525030096-60.01.01\0204-DIV6-LM1


2171 CAMPUS DRIVE, SUITE 100

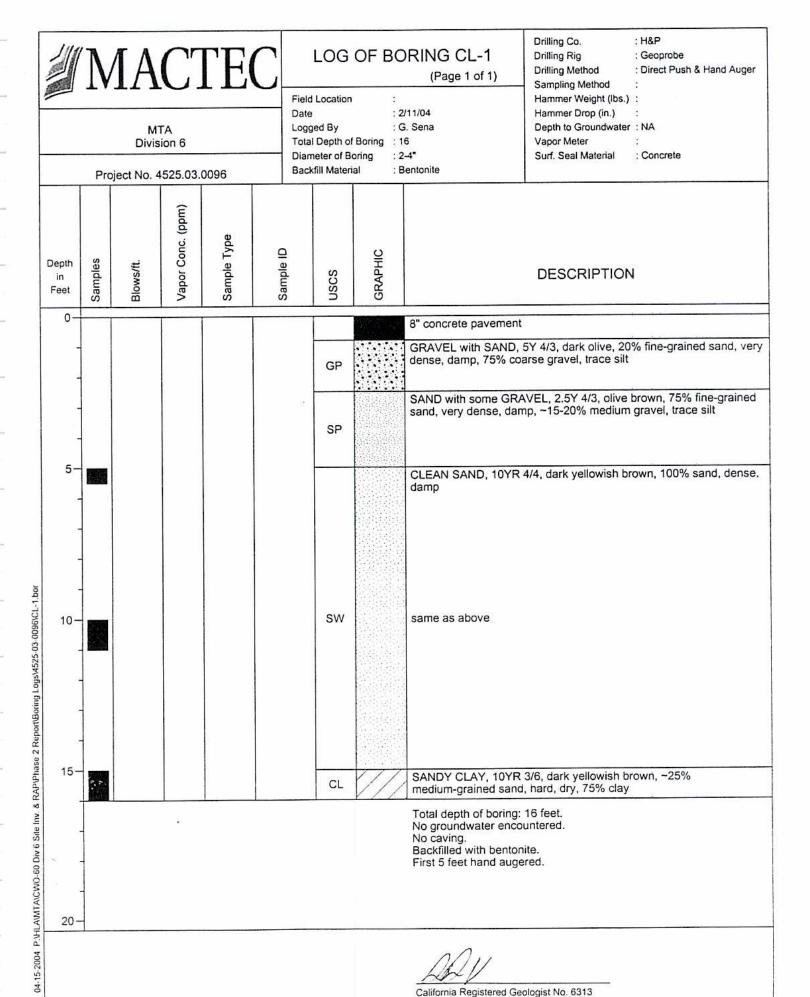

IRVINE, CA 92612

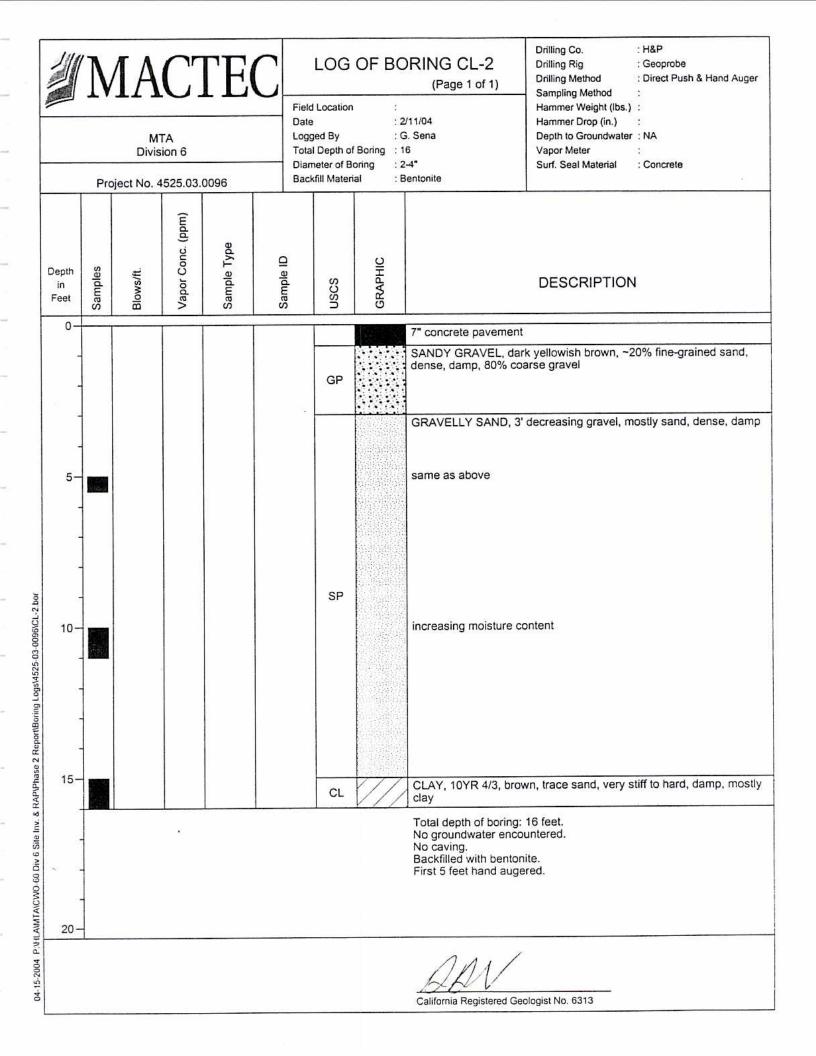


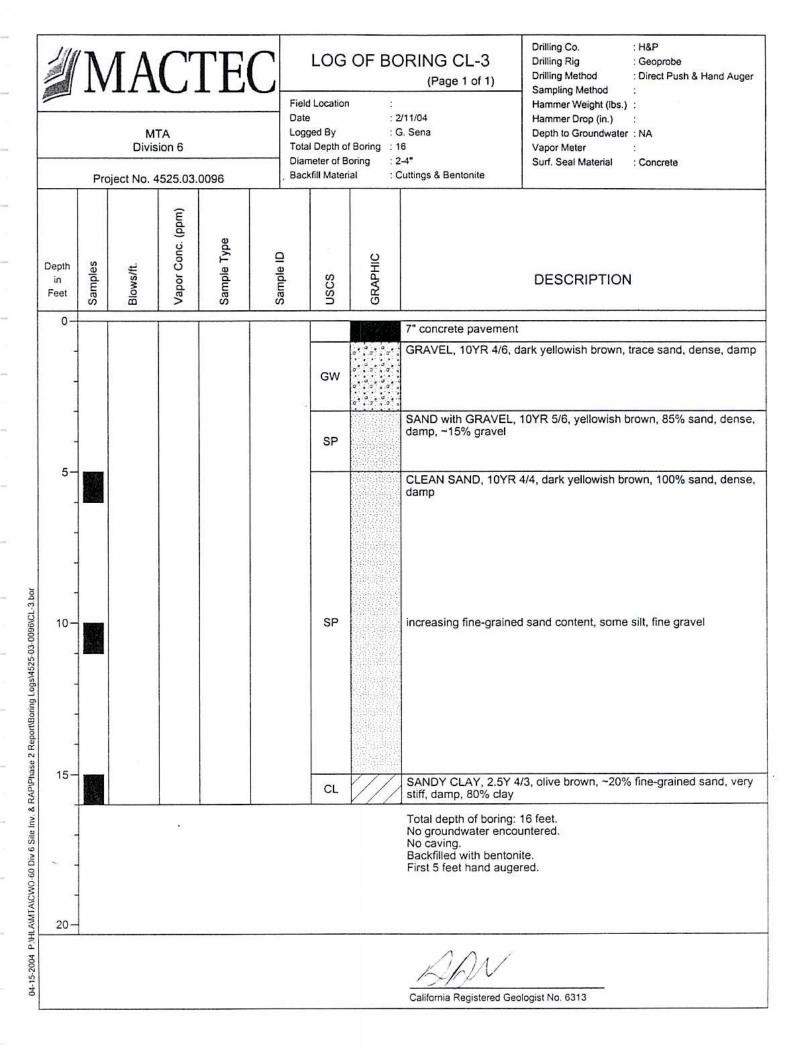
APPENDIX A STANDARD STRATAPROBE SOIL SAMPLING PROTOCOL

STRATAPROBE SOIL SAMPLING PROTOCOL

The following procedures are followed when sampling soil with the Strataprobe hydraulic soil sampling system.


- 1. Stainless steel probes (1.5" outside diameter) are used.
- 2. Probes and samplers are cleaned before use. Equipment is washed with TSP phosphate-free soap and triple rinsed between borings. This reduces the probability of cross-contamination.
- 3. A registered geologist or other appropriately trained personnel observes the drilling, visually logs the soils, and obtains soil samples at appropriate intervals as determined by field conditions.
- 4. The Unified Soils Classification System (USCS) is used to classify the soils. Rocks are classified according to the Colorado School of Mines "Classification of Rocks."
- 5. The soil samples are obtained using a Strataprobe hydraulic soil sampling system. The sampler accommodates 1" diameter acetate or brass sleeves.
- 6. After the sample rings are removed from the sampler, the latter is completely disassembled and scrubbed in TSP and tap water. The sampler is rinsed with tap and distilled water and reassembled with the required number (four) of clean brass sleeves.
- 7. The sampler is driven 24" at each sampling interval. Generally, the lowest tube or most intact brass sleeve is retained for analysis. The soil in the remaining brass sleeves is used for field screening with a photoionization detector (PID) and for screening by the USCS.
- 8. The sample is logged on the boring log. The ends of the sleeve are capped with a Teflon lner and tight-fitting plastic cap to minimize leaching, volatilization, and cross-contamination. The samples are then labeled, identified on a chain of custody, and placed in a clean ice chest to retain the samples at or about 4° Celsius until delivery to the analytical laboratory.
- 9. The samples are kept in the ice chest until delivered to a California Department of Health Services (CADHS)-certified analytical laboratory.
- 10. Samples are accompanied by a chain-of-custody form, documenting the time, date, and person-in-charge since retrieval of the sample from the sampler.


A-1


- 11. In case of visual and/or olfactory evidence of contamination, soil cuttings are impounded in drums carrying cautionary labels. The drums are secured from random contact. Custody of the drums and their content will remain with the client at all times.
- 12. If chemical analyses of the soil samples show the presence of elevated levels of pollutants, then the client will be informed of the test results and advised about the lawful means of disposal or detoxification. Upon the written request and authorization of the Client, MACTEC will organize the disposal or detoxification of the impounded soil according to applicable federal, state, county and local regulations.
- 13. The sleeve soil sample label includes:
 - Job Number;
 - Boring Number and Depth;
 - Sampling Date;
 - Sampler's Initials; and
 - Test to be performed (if known at the time of sampling).
- 14. An indelible marking pen is used to label the sleeves.
- 15. A detailed daily log is kept of field activities; this will include the number of drums generated during the daily field activities.

APPENDIX B

BORING LOGS

LOG OF BORING CL-4

(Page 1 of 1)

Field Location

Date

: 2/10/04

Logged By

: G. Sena

Total Depth of Boring : 16

Diameter of Boring **Backfill Material**

: 2-4" : Bentonite Drilling Co.

: H&P

Drilling Rig

: Geoprobe : Direct Push & Hand Auger

Drilling Method Sampling Method

Hammer Weight (lbs.) :

Hammer Drop (in.)

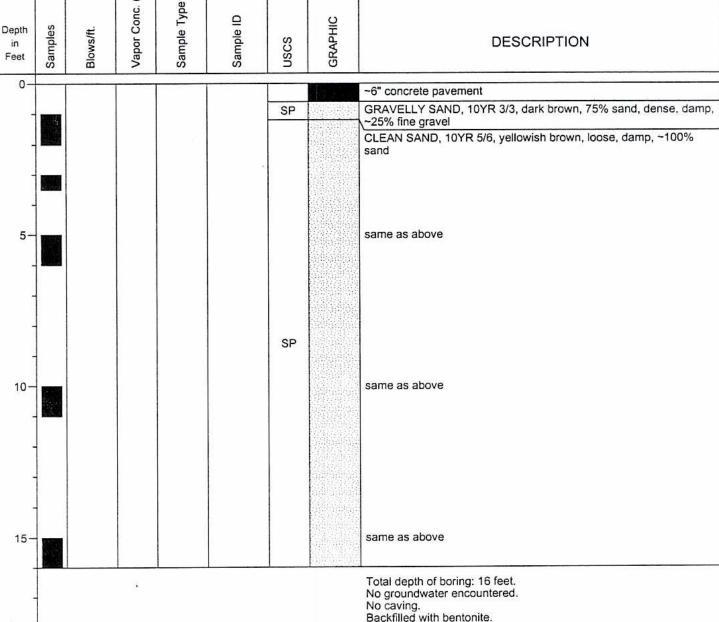
Depth to Groundwater: NA Vapor Meter

Surf. Seal Material

: Concrete

Project No. 4525.03.0096

04-15-2004 P:\HLA\MTA\CWO-60 Div 6 Site Inv. & RAP\Phase 2 Report\Boring Logs\4525-03-0096\CL-4.bor


20

MTA

Division 6

Vapor Conc. (ppm)

GRAPHIC

Backfilled with bentonite. First 5 feet hand augered.

LOG OF BORING CL-5

(Page 1 of 1)

Field Location Date

: 2/10/04

Logged By

Backfill Material

: G. Sena

Total Depth of Boring : 16 Diameter of Boring

: 2-4" : Bentonite Drilling Co. **Drilling Rig** : H&P : Geoprobe

: Direct Push & Hand Auger

Drilling Method Sampling Method

Hammer Weight (lbs.) : Hammer Drop (in.)

Depth to Groundwater: NA

Vapor Meter

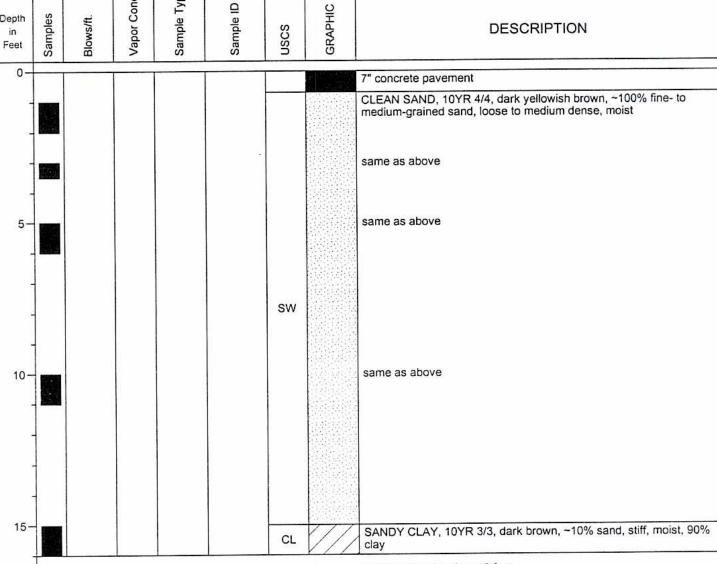
Surf. Seal Material : Concrete

Project No. 4525.03.0096

Depth

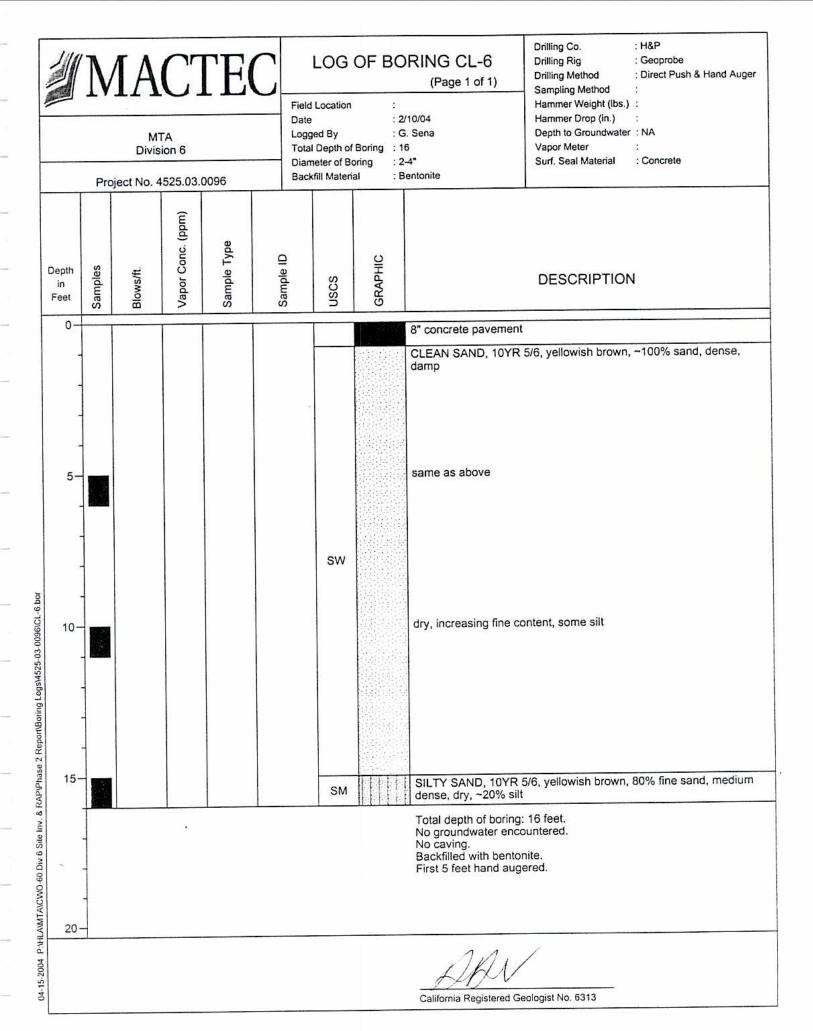
P:\HILA\MTA\CWO-60 Div 6 Site Inv. & RAP\Phase 2 Repor\Boring Logs\4525-03-0096\CL-5.bor

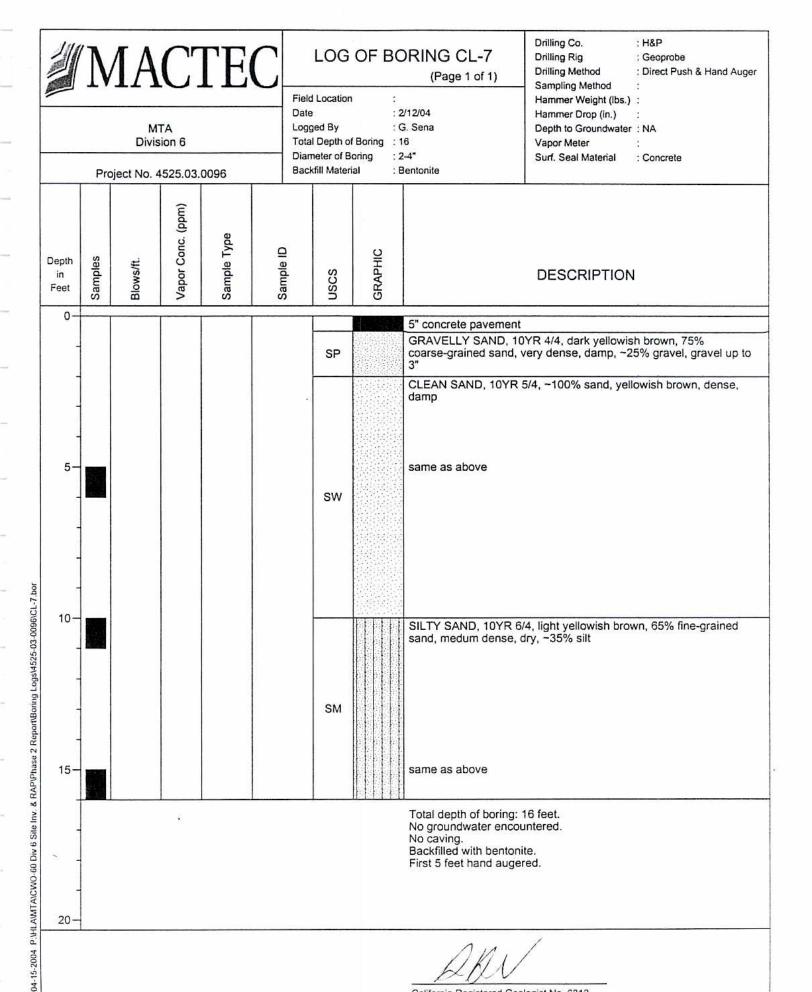
20

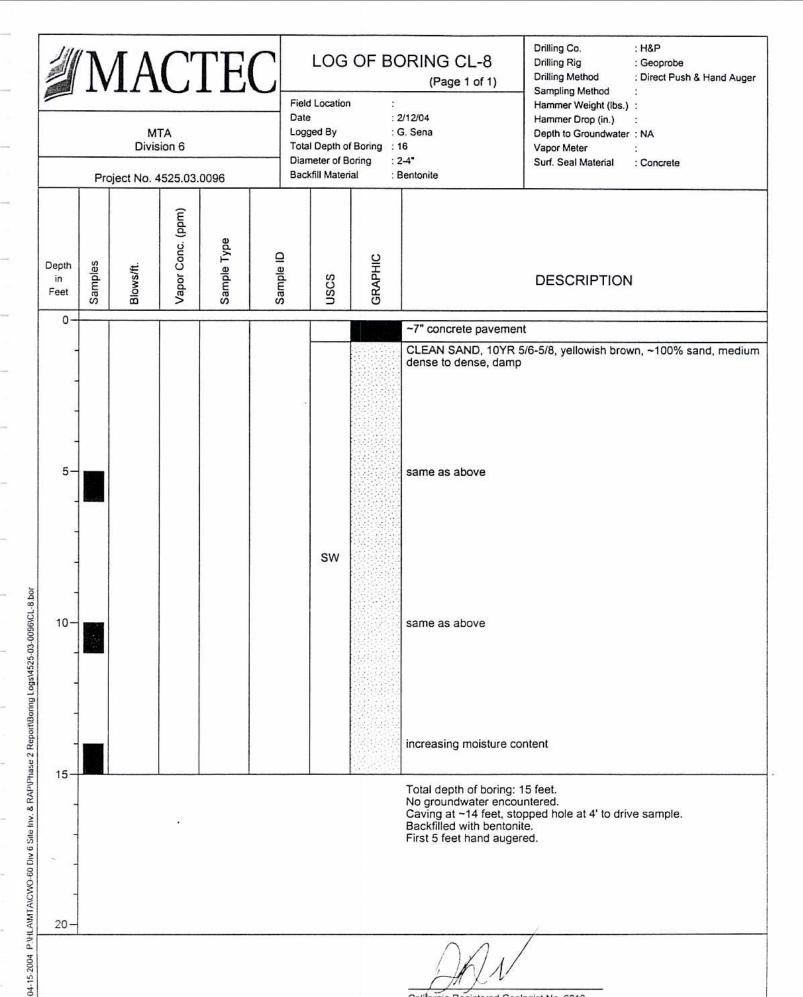

04-15-2004

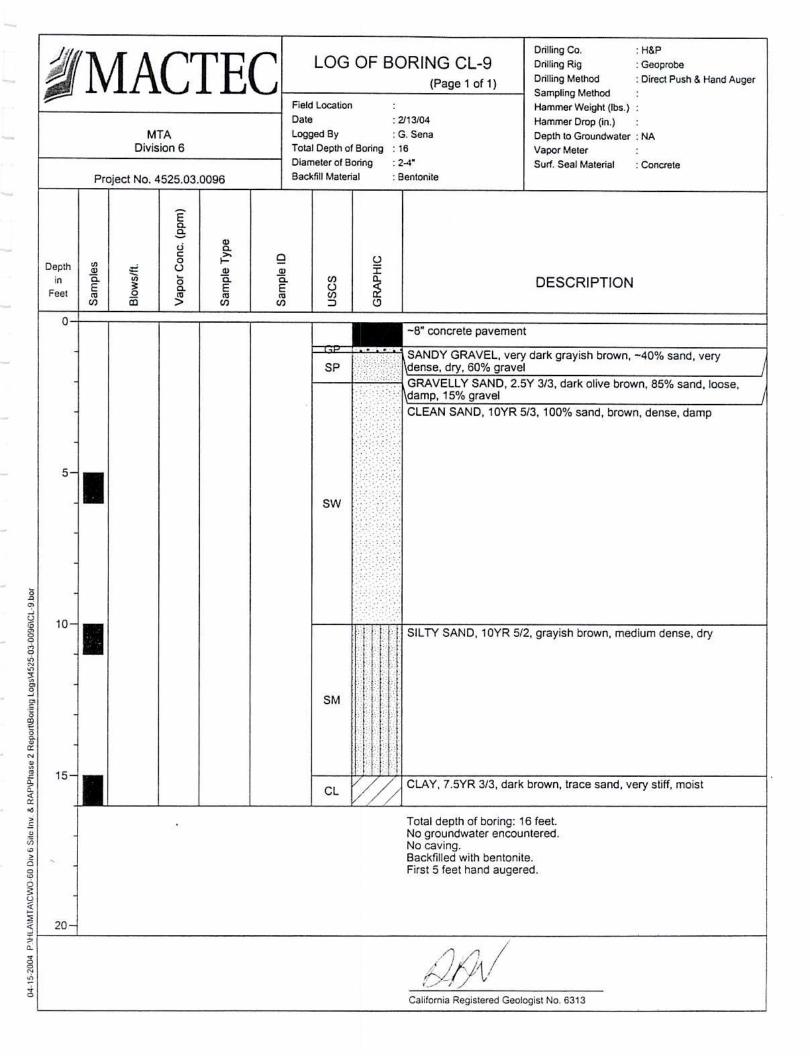
MTA Division 6

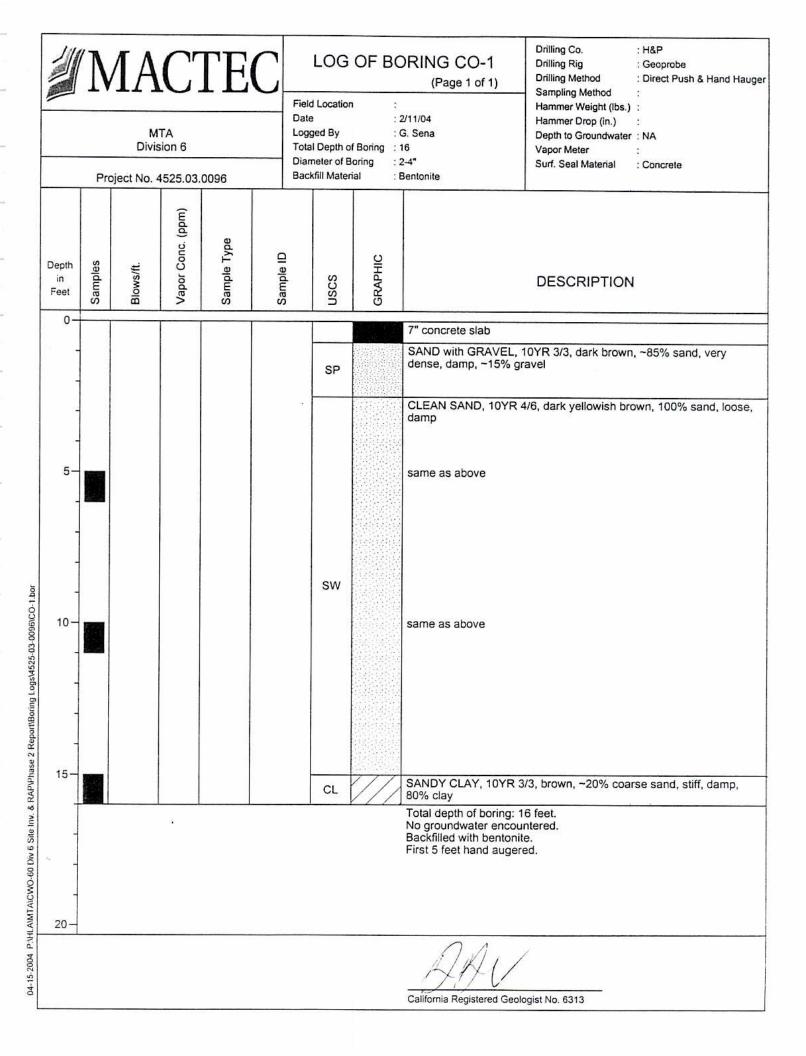
Vapor Conc. (ppm) Sample Type

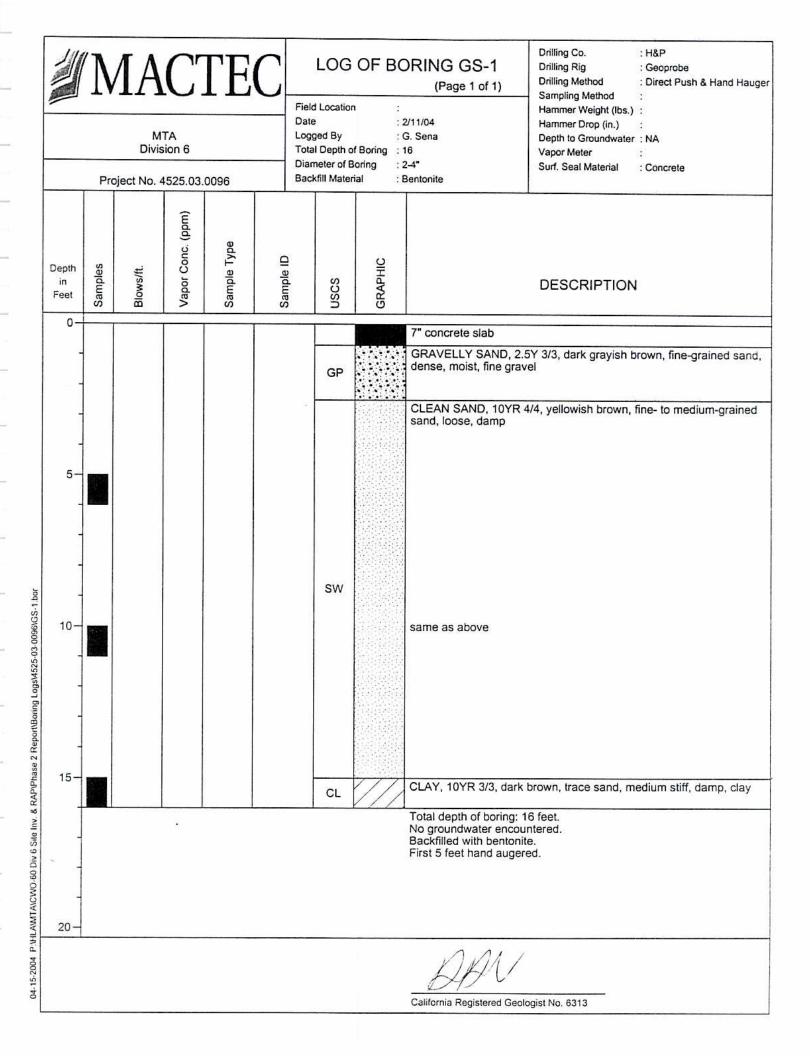

uscs

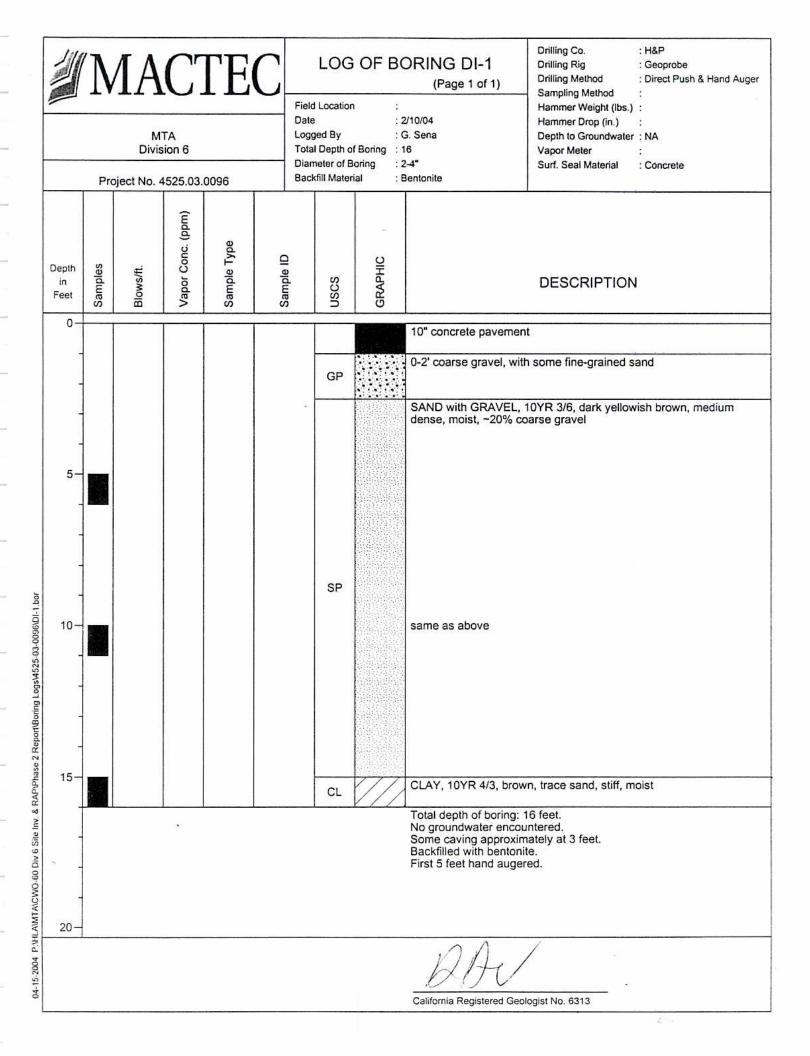

DESCRIPTION

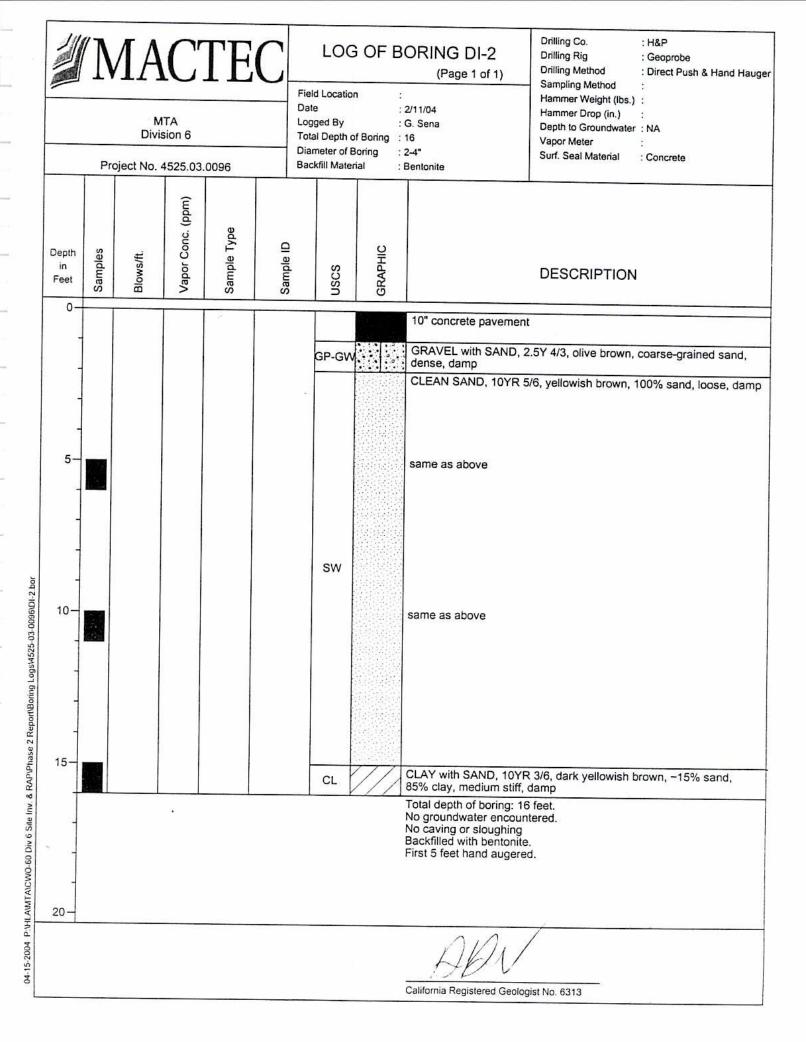


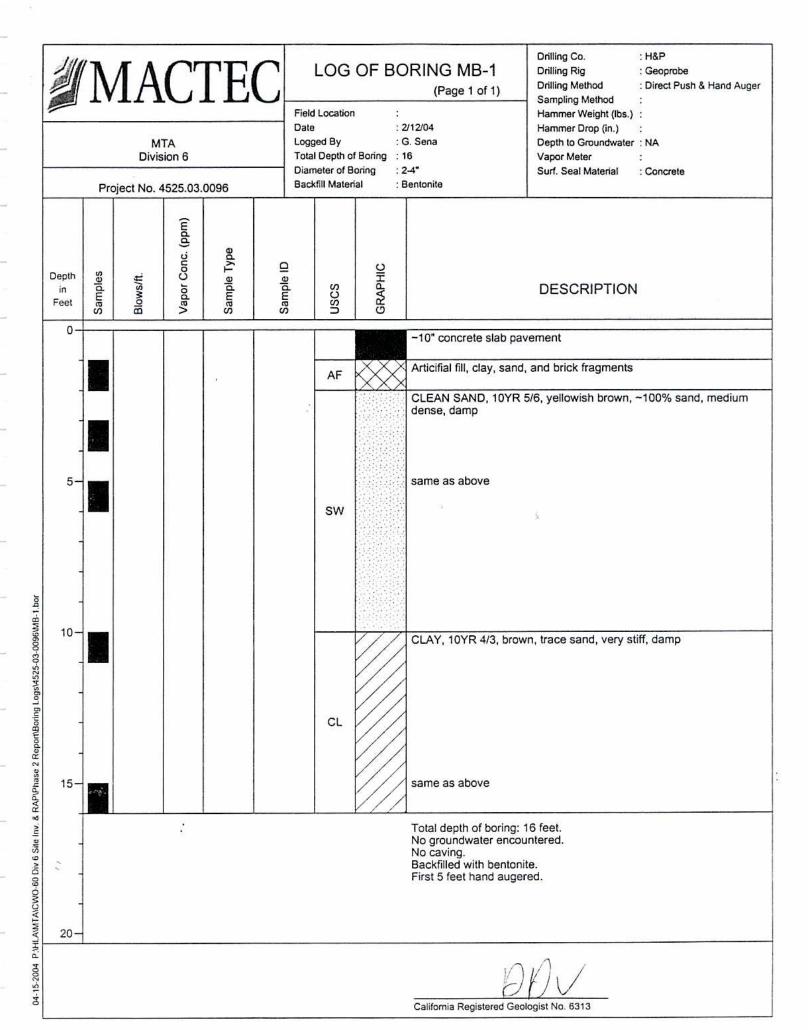

Total depth of boring: 16 feet. No groundwater encountered. No caving. Backfilled with bentonite.

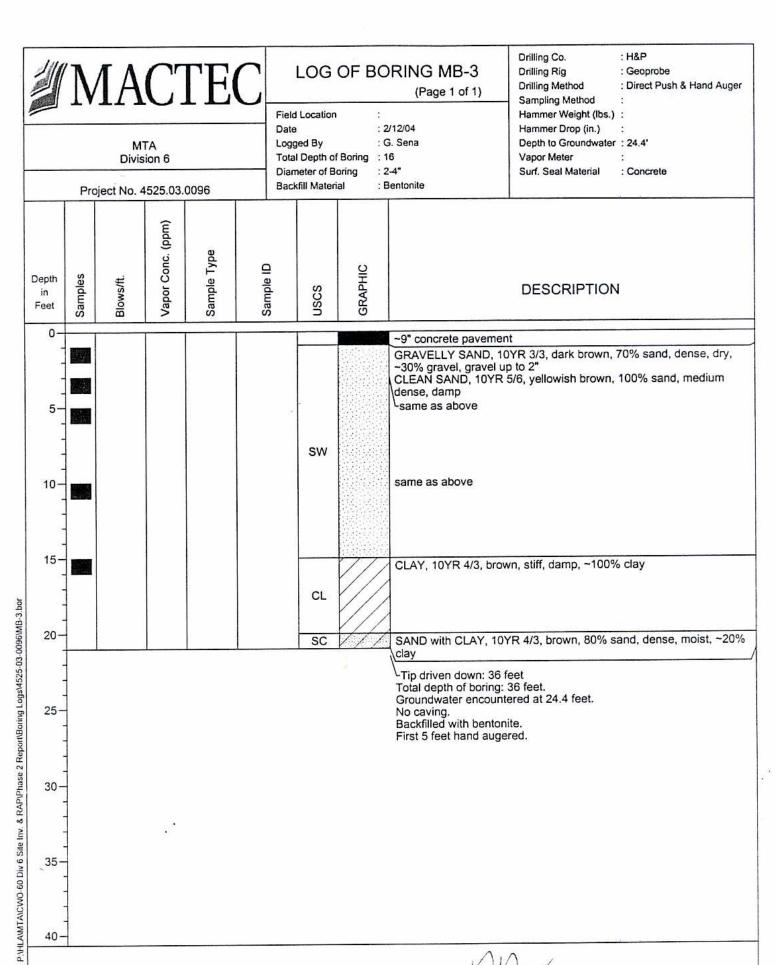

First 5 feet hand augered.

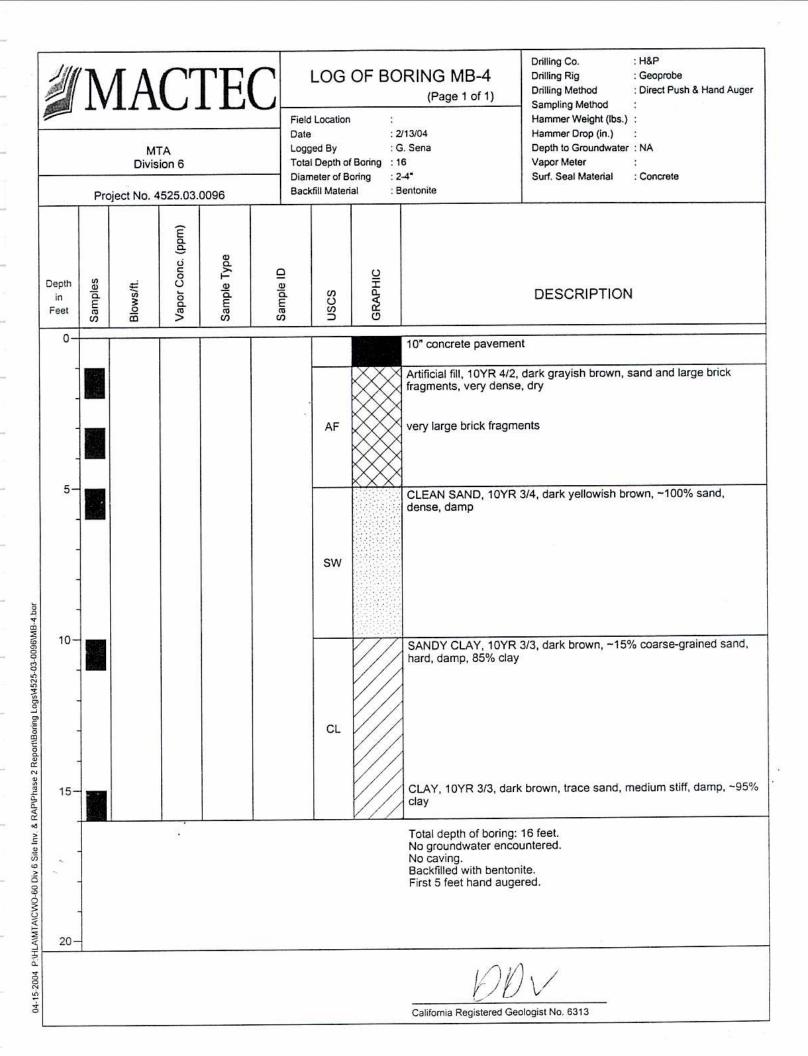


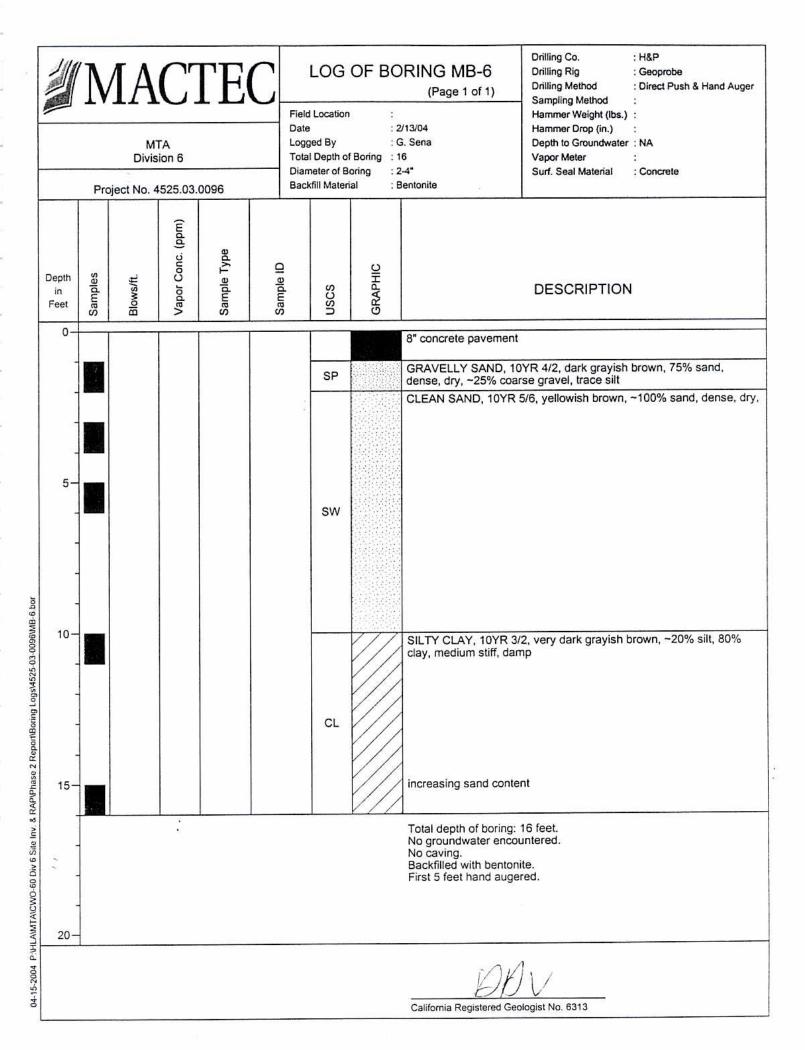


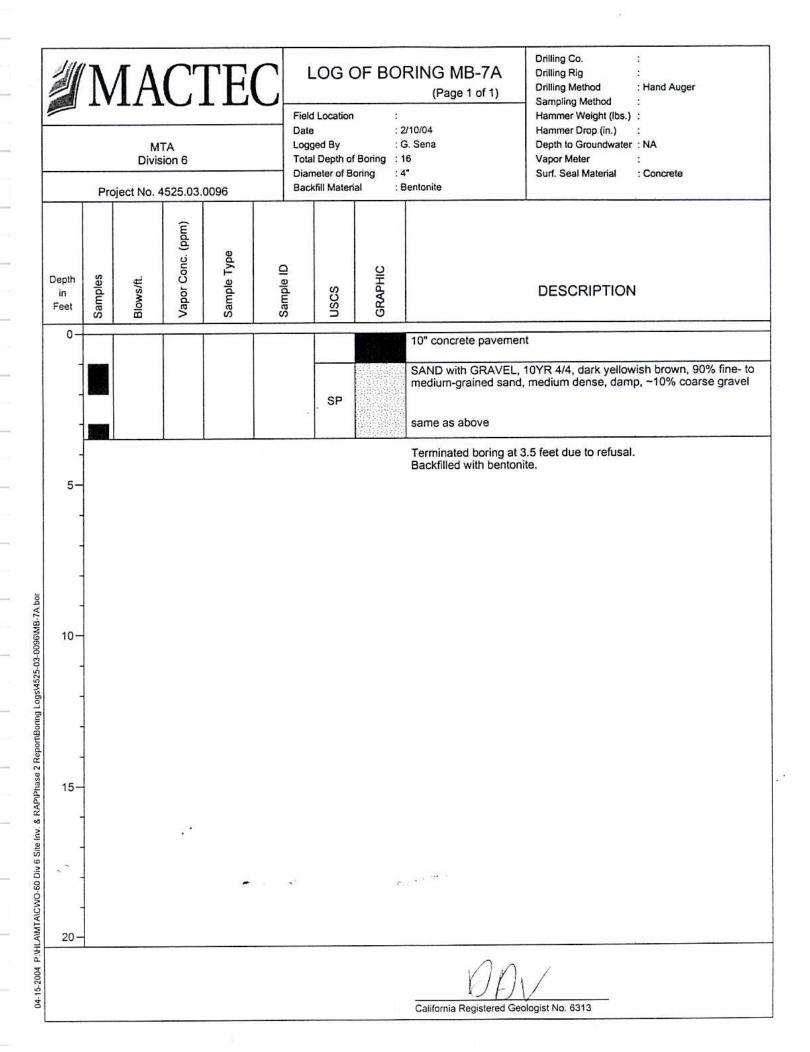


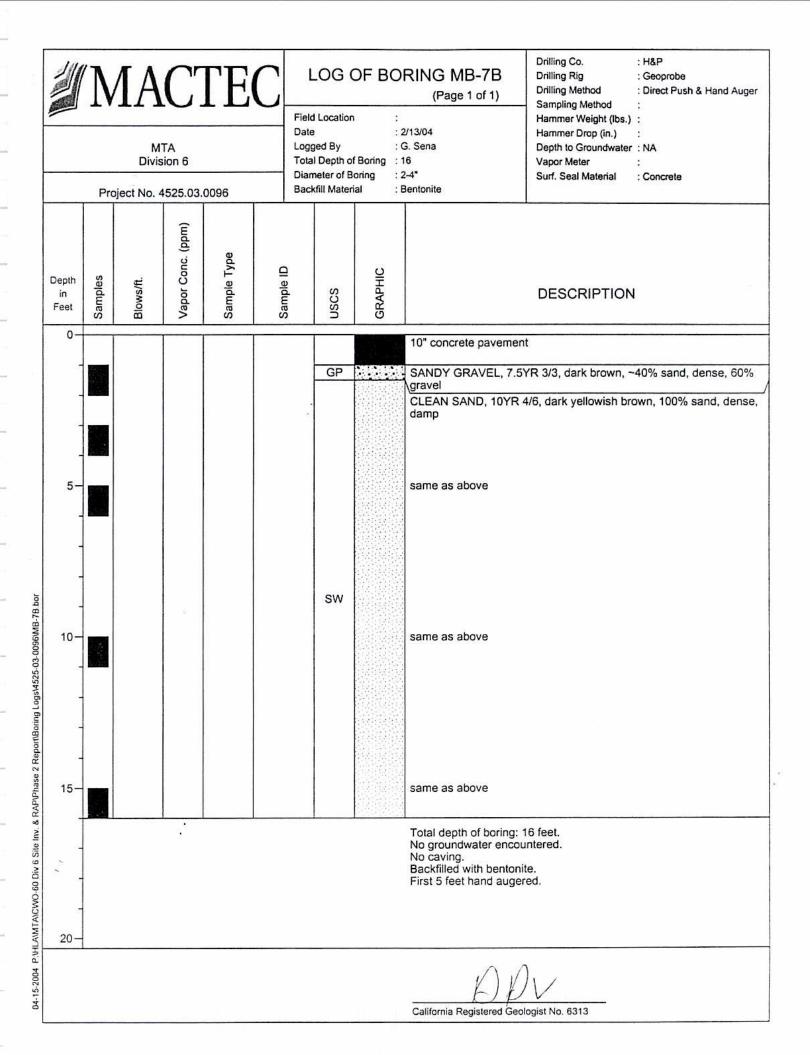


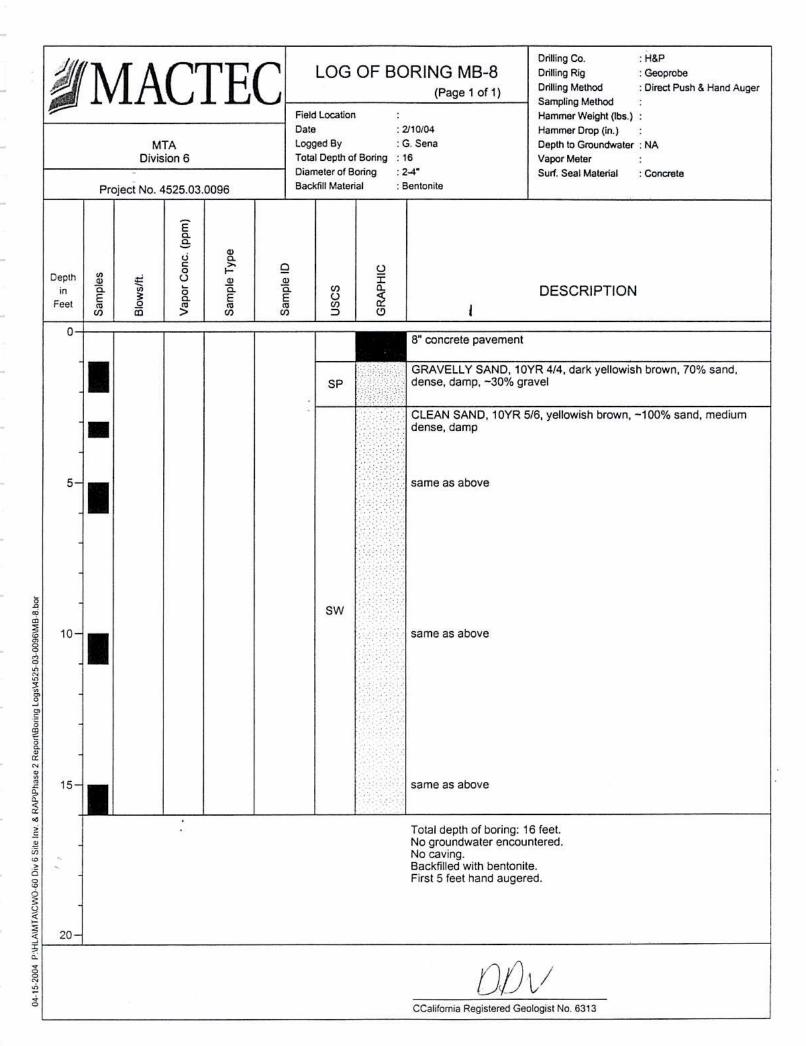


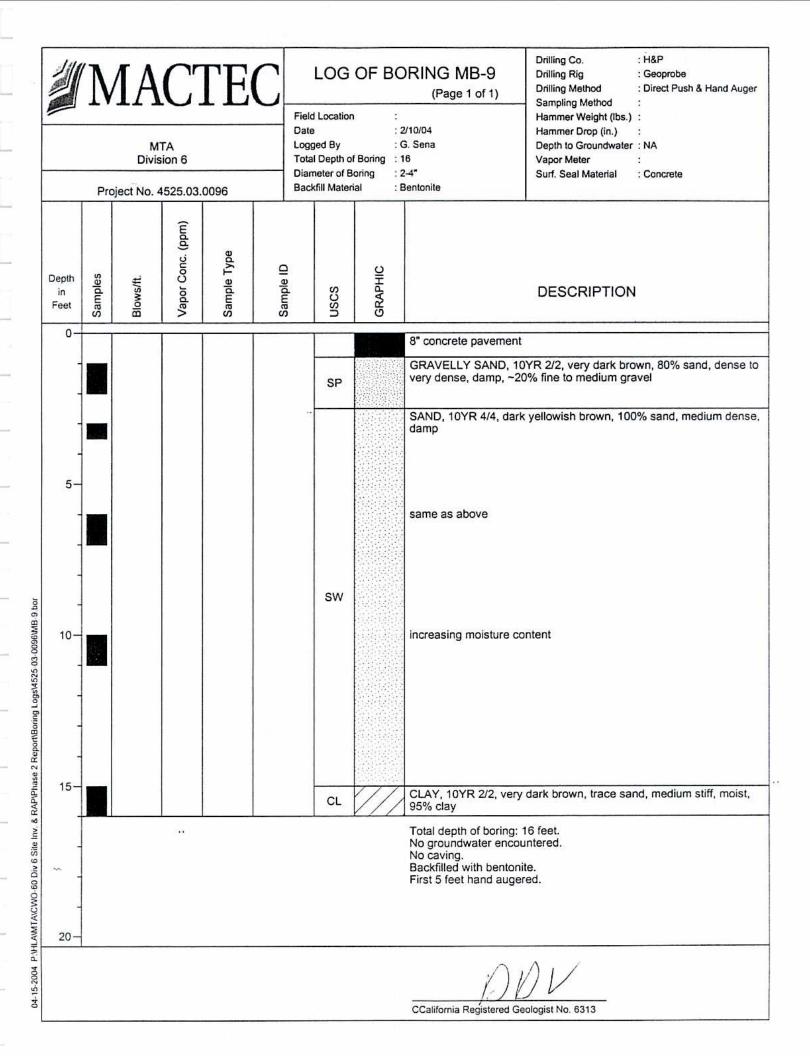


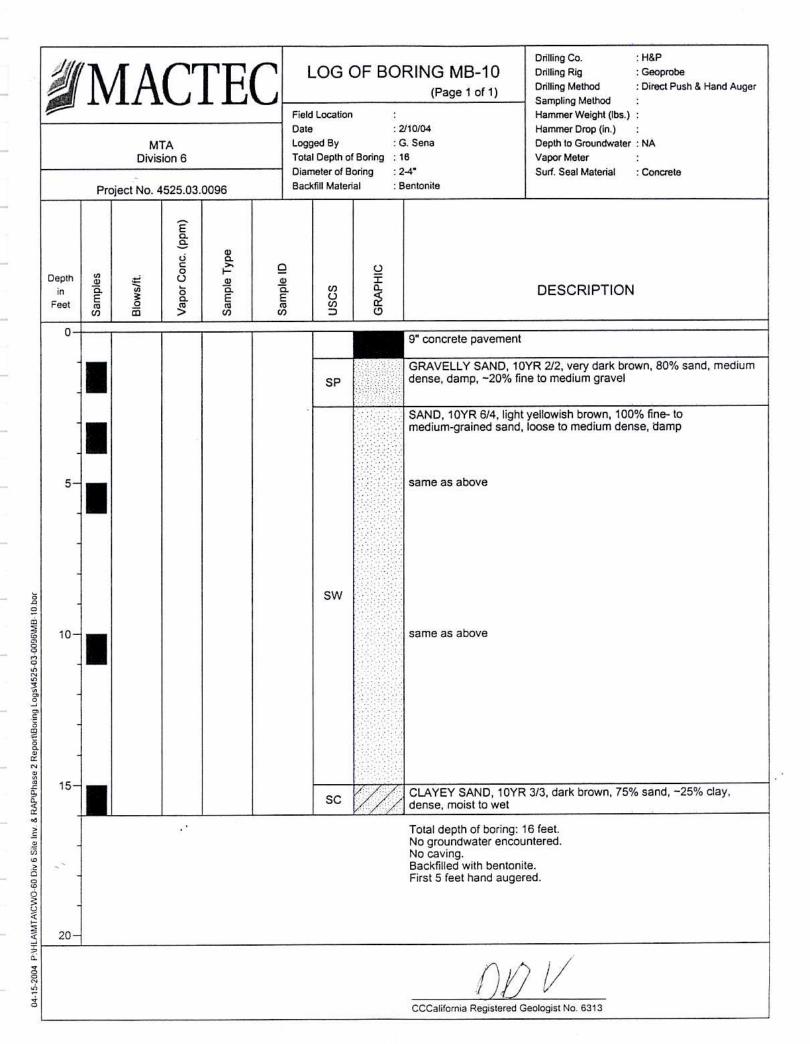


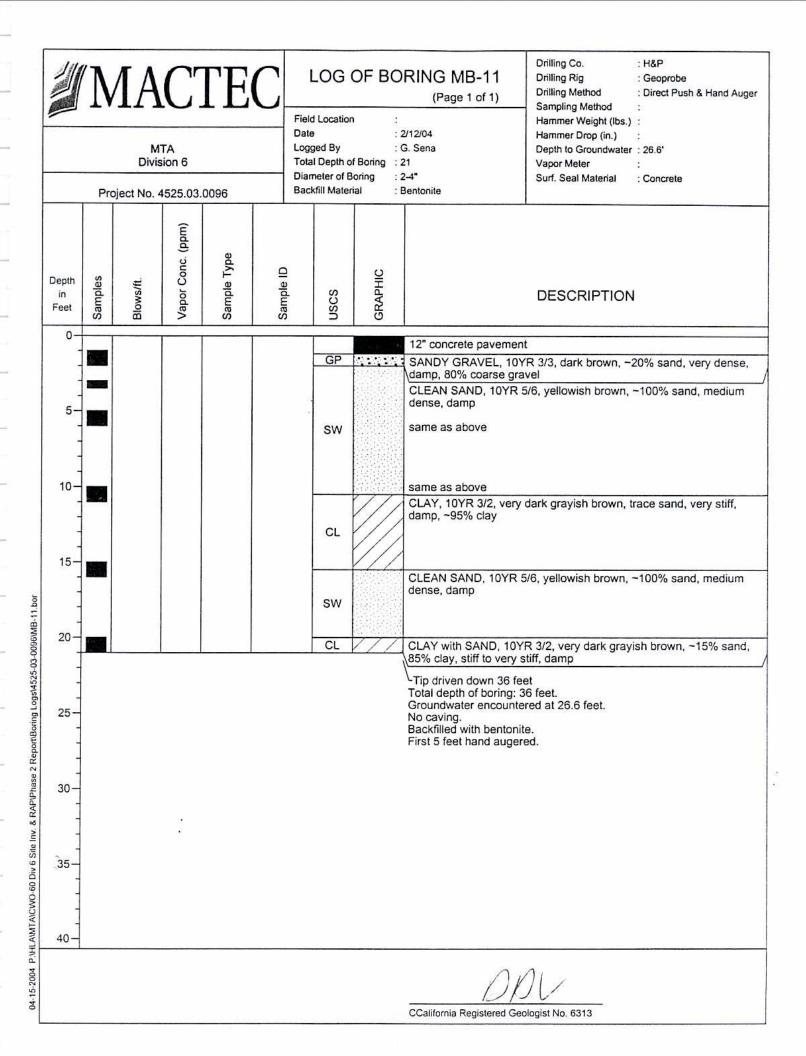

WY)V

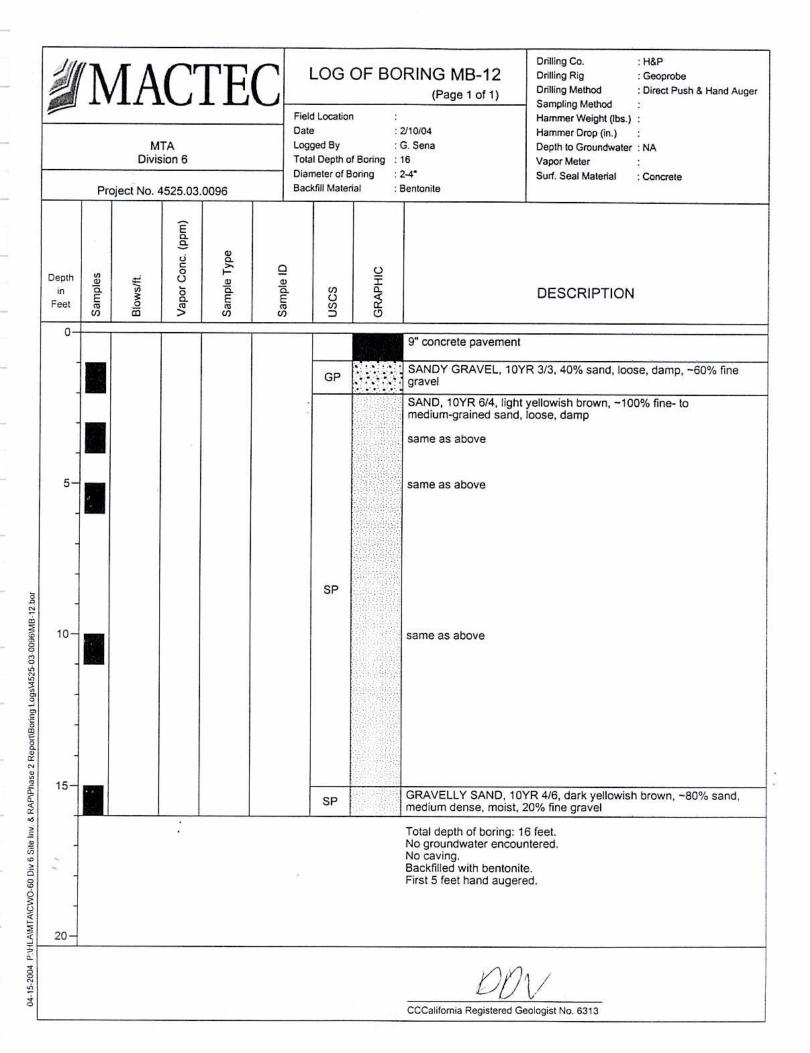

04-15-2004

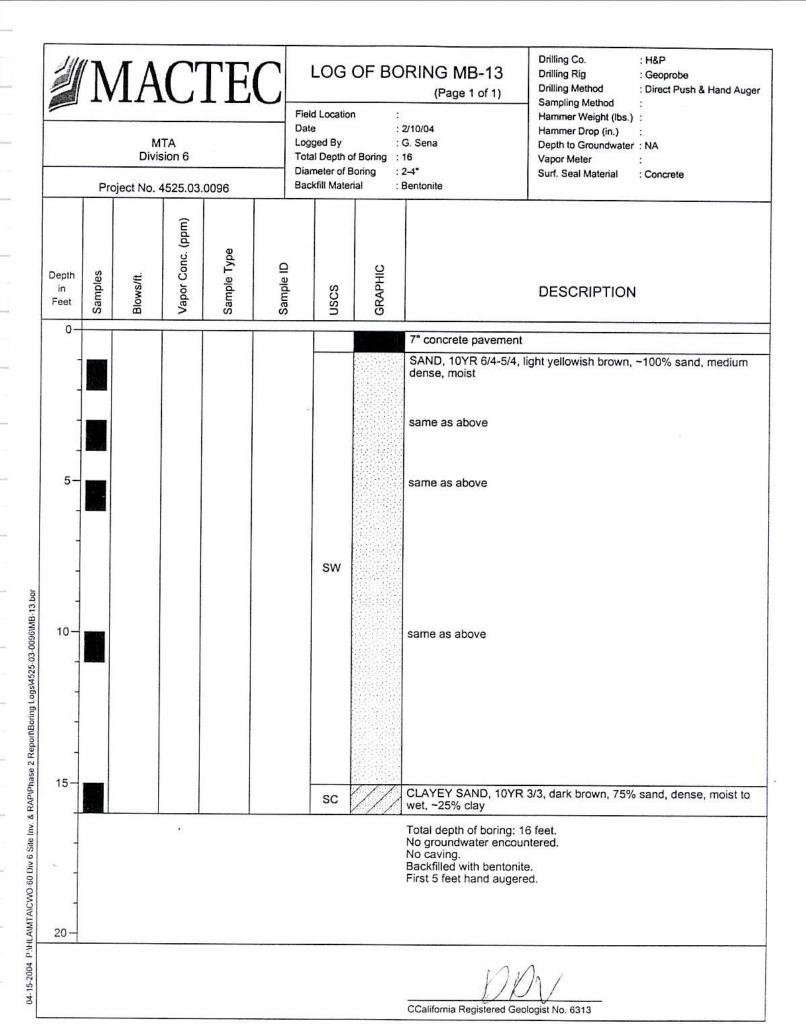


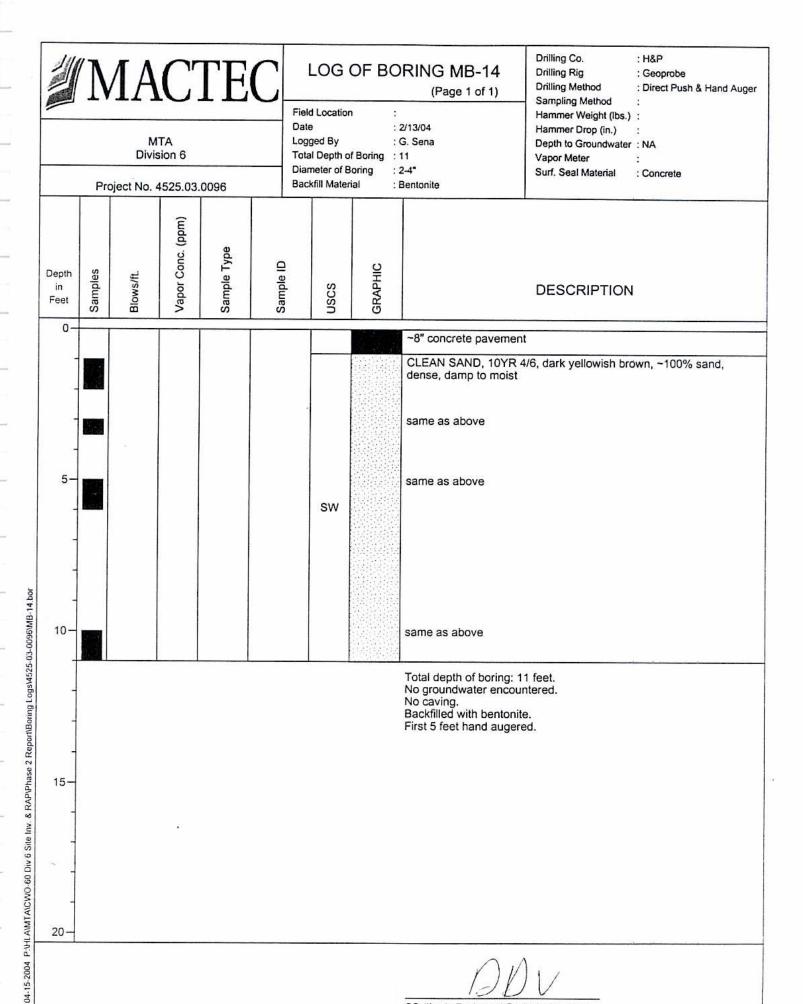

	MACTEC LOG O							n :	ORING MB-5 (Page 1 of 1)	Drilling Co. Drilling Rig Drilling Method Sampling Method Hammer Weight (lbs.) Hammer Drop (in.)	: H&P : Geoprobe : Direct Push & Hand Auger :	
		TA sion 6			Logged By : G Total Depth of Boring : 16			3. Sena 16 2-4*	Depth to Groundwater Vapor Meter Surf. Seal Material	ater : NA :		
	Project No. 4525.03.0096								Bentonite I			
Depth in Feet	Samples	Blows/ft.	Vapor Conc. (ppm)	Sample Type	Sample ID		nscs	GRAPHIC		DESCRIPTION	I	
0									10" concrete paveme	nt		
-						. 8	SP		GRAVELLY SAND, 1 dense, damp, ~15%	0YR 5/6, yellowish bro coarse gravel	own, ~85% sand, very	
5-						S	:w		same as above		100% sand, dense, dam	
15—							CL		clay	YR 4/3, brown, ~10%	sand, stiff, damp, 90%	
						1		Y D	Total depth of boring: No groundwater enco No caving. Backfilled with bentol First 5 feet hand aug	ountered. nite.		
20-									W) (
									California Registered Ge	pologist No. 6313		











20

LOG OF BORING MB-15

(Page 1 of 1)

Field Location

Date : 2/13/04 Logged By : G. Sena

Total Depth of Boring : 11 Diameter of Boring

Backfill Material

: 2-4" : Bentonite Drilling Co.

: H&P

Drilling Rig : Geoprobe

Drilling Method Sampling Method

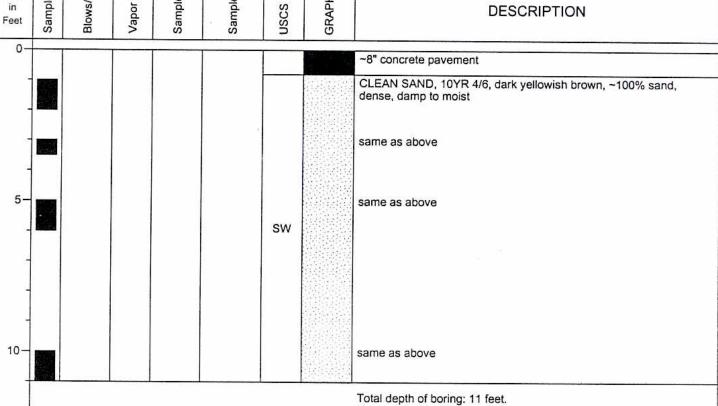
: Direct Push & Hand Auger

Hammer Weight (lbs.) : Hammer Drop (in.) Depth to Groundwater: NA

Vapor Meter

Surf. Seal Material : Concrete

Project No. 4525.03.0096

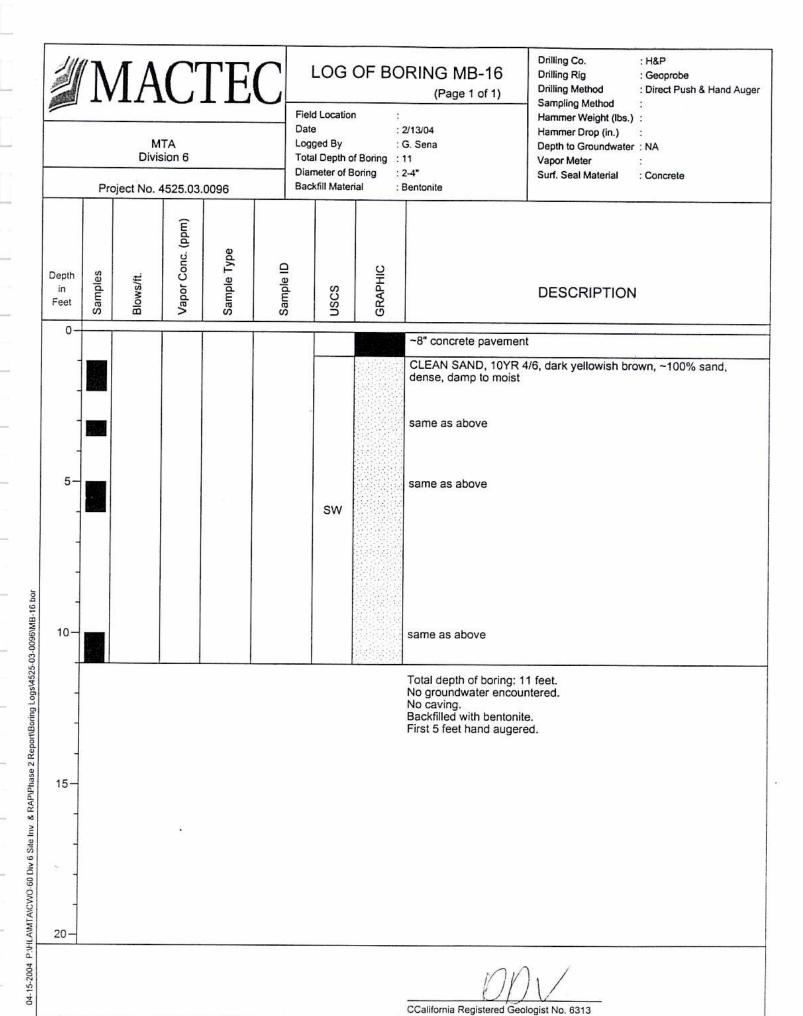

Depth

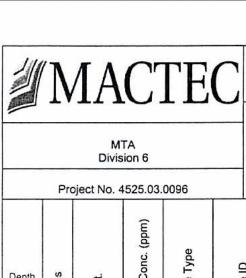
MTA

Division 6

Vapor Conc. (ppm) Sample Type Sample ID GRAPHIC Blows/ft.

DESCRIPTION


No groundwater encountered. No caving. Backfilled with bentonite. First 5 feet hand augered.


CCCalifornia Registered Geologist No. 6313

04-15-2004 P.'H-LAM/TAICWO-60 Div 6 Site Inv. & RAPIPhase 2 ReportBoring Logs/4525-03-0096/MB-15.bor

15-

20

04-15-2004 P:VHLAMMTAICWO-60 Div 6 Site Inv. & RAPIPhase 2 Report/Boring Logs/4525-03-0096MB-17.bor

40-

LOG OF BORING MB-17

(Page 1 of 1)

Field Location

18

Date : 2/11/04 Logged By : G. Sena

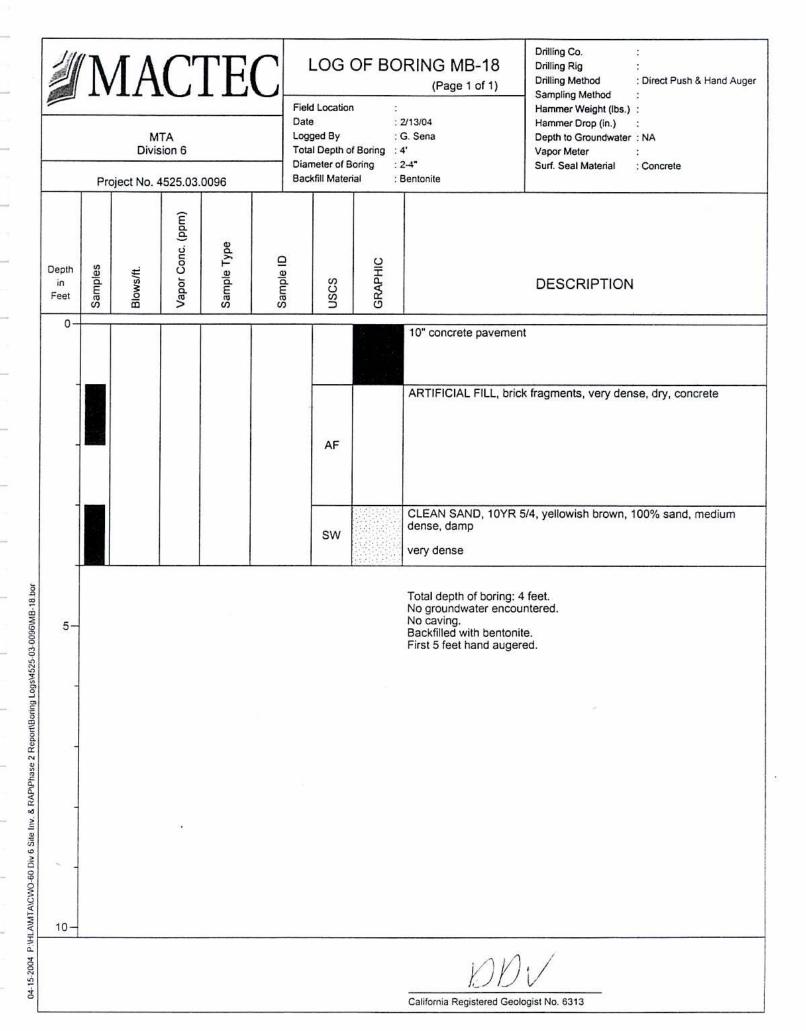
Logged By Total Depth of Boring Drilling Co.

: H&P

Drilling Rig : Geoprobe

: Direct Push & Hand Auger

Drilling Method Sampling Method


Hammer Weight (lbs.) :

Hammer Drop (in.)

Depth to Groundwater: NA Vapor Meter:

	Pro	Divis	sion 6 4525.03.	0096		Total Depth of Diameter of B Backfill Mate	Boring :	28' 2-4" Bentonite	Vapor Meter : Surf. Seal Material : Concrete
Depth in Feet	Samples	Blows/ft.	Vapor Conc. (ppm)	Sample Type	Sample ID	nscs	GRAPHIC		DESCRIPTION
0-	20301					AR		ARTIFICIAL FILL, 7.5Y 20% fine to coarse gra	'R 3/3, very dark brown, 60% sand, ~20% silt, vel
-						ML			/4, dark brown, 85% sand, dense, damp,
5- 5- - - - 10-						sw		CLEAN SAND, 10YR 4 fragments of very dark wood from rail-road ties	4/4, dark yellowish brown, dense, damp, trace green, 10YR 2/2, fibrous wood (possibly s)
- - 15-						sc		dense, damp,~20% cla	3/3, dark brown, 80% fine-grained sand, y, grading down to fine-grained sand or silt up to 2" diameter, increasing fines to silty
-						sw		SAND, 10YR 4/4, dark	yellowish brown, ~100% sand, dense, damp
						SP		SAND with GRAVEL, 1 coarse-grained sand, v ~1" diameter	0YR 5/6, yellowish brown, 80% ery dense, damp, ~20% gravel, gravel up to
20-						SM		SILTY SAND, 10YR 4/- sand, loose, dry, ~30%	4, dark yellowish brown, 70% fine-grained silt
-						SP		GRAVELLY SAND, 10 sand, very dense, dam	YR 6/5, brownish yellow, 60% coarse-grained p, ~30-40% medium gravel
25-						SM			4, dark yellowish brown, 70% fine-grained
-						SP			brownish yellow, coarse-grained sand, very
30 — - - - - - 35 —			3(4))					Total depth of boring: No groundwater encou No caving. Backfilled with bentonit First 5 feet hand auger	28 feet. ntered.
-									

DNV

LOG OF BORING MB-19

(Page 1 of 1)

: 2/13/04

: 2-4"

Logged By : G. Sena Total Depth of Boring : 28'

Diameter of Boring Backfill Material

Date

: Bentonite

Drilling Co.

: H&P

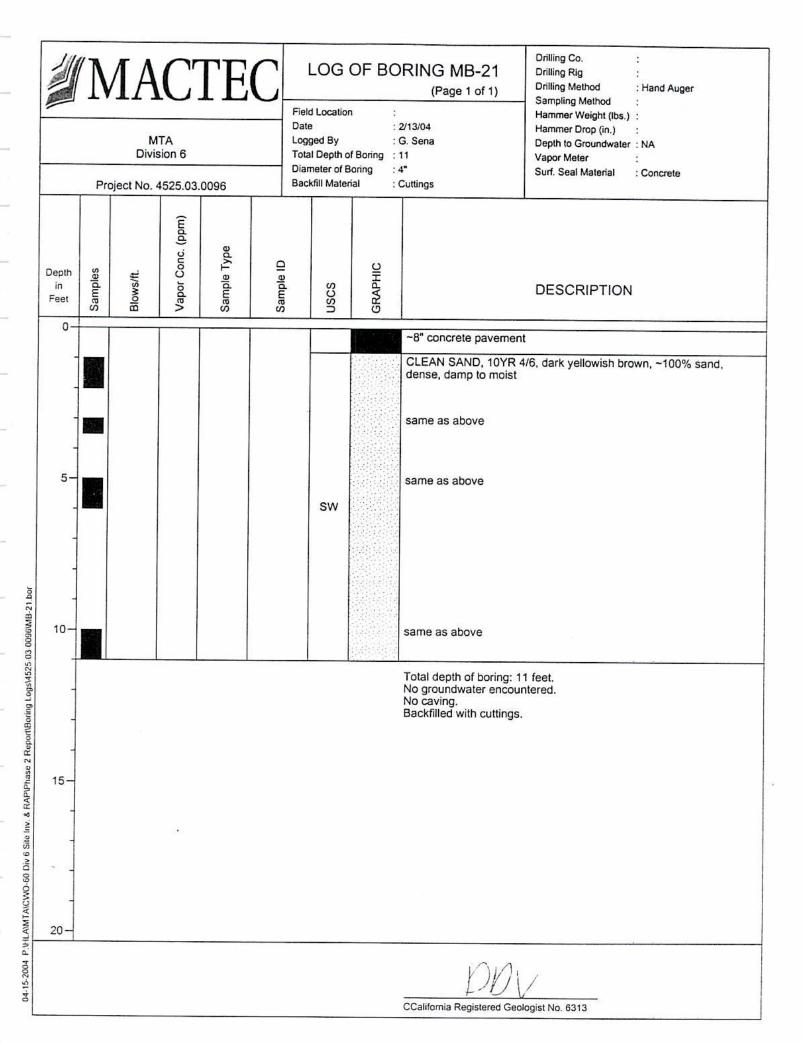
: Direct Push & Hand Auger

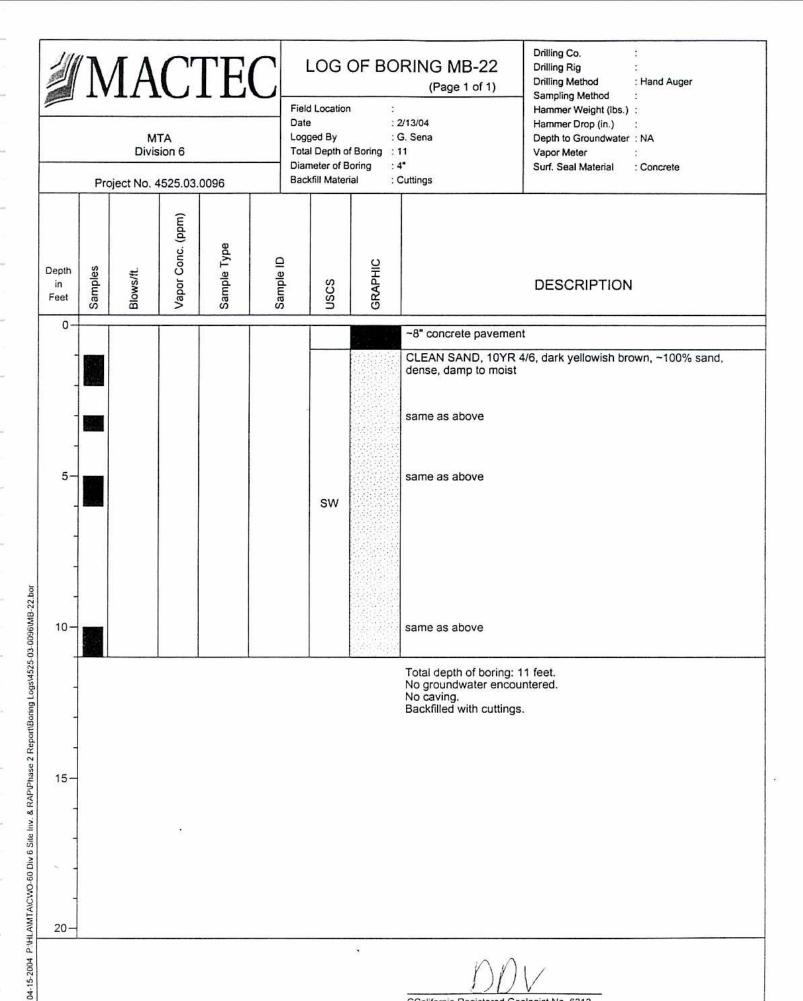
Drilling Rig : Geoprobe

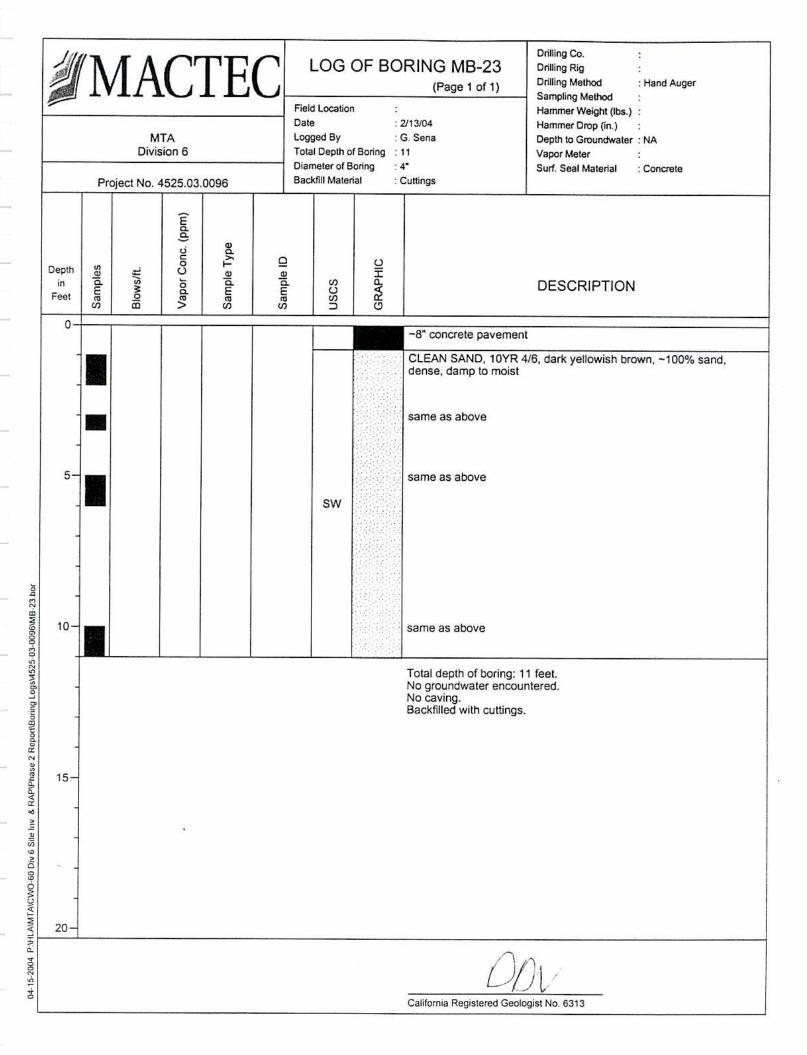
Drilling Method Sampling Method

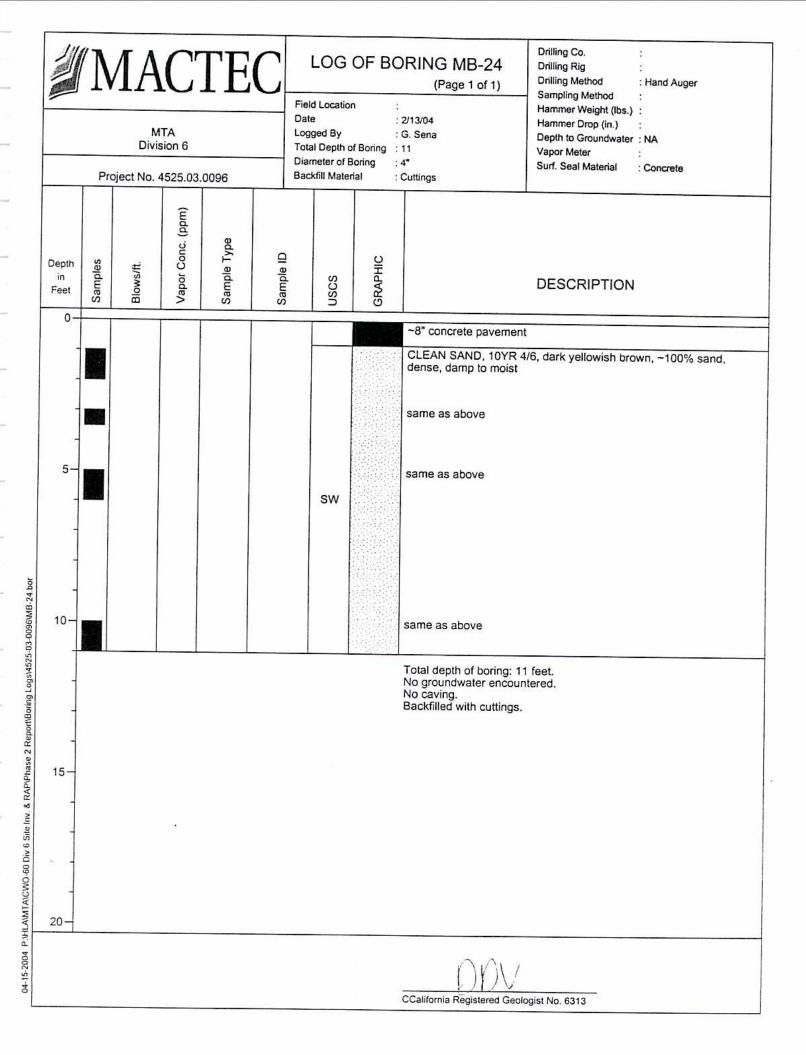
Hammer Weight (lbs.) : Hammer Drop (in.) Depth to Groundwater: 26'

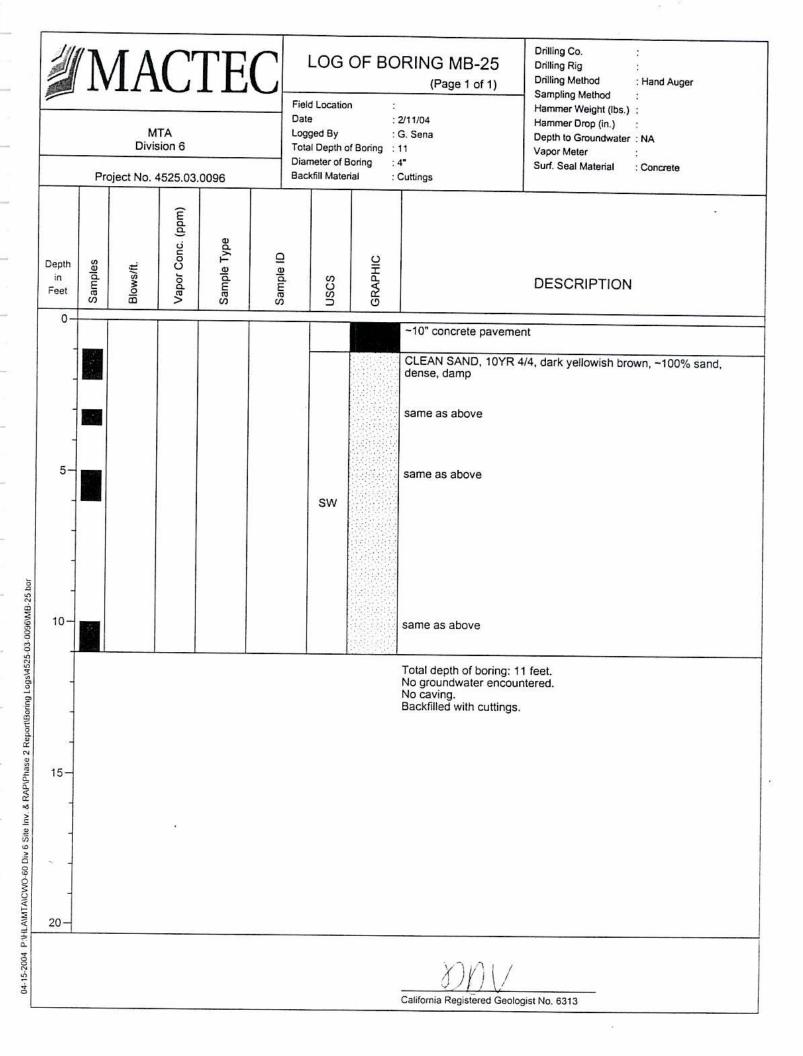
Vapor Meter


Surf. Seal Material : Concrete

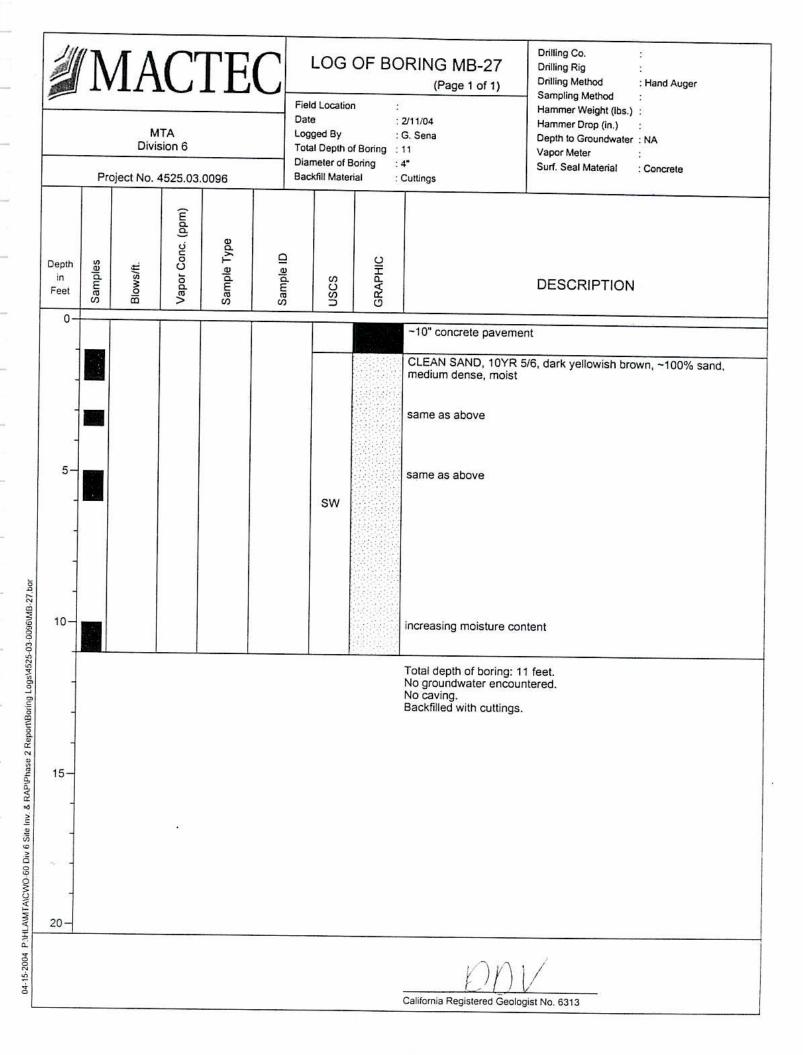

Project No. 4525.03.0096

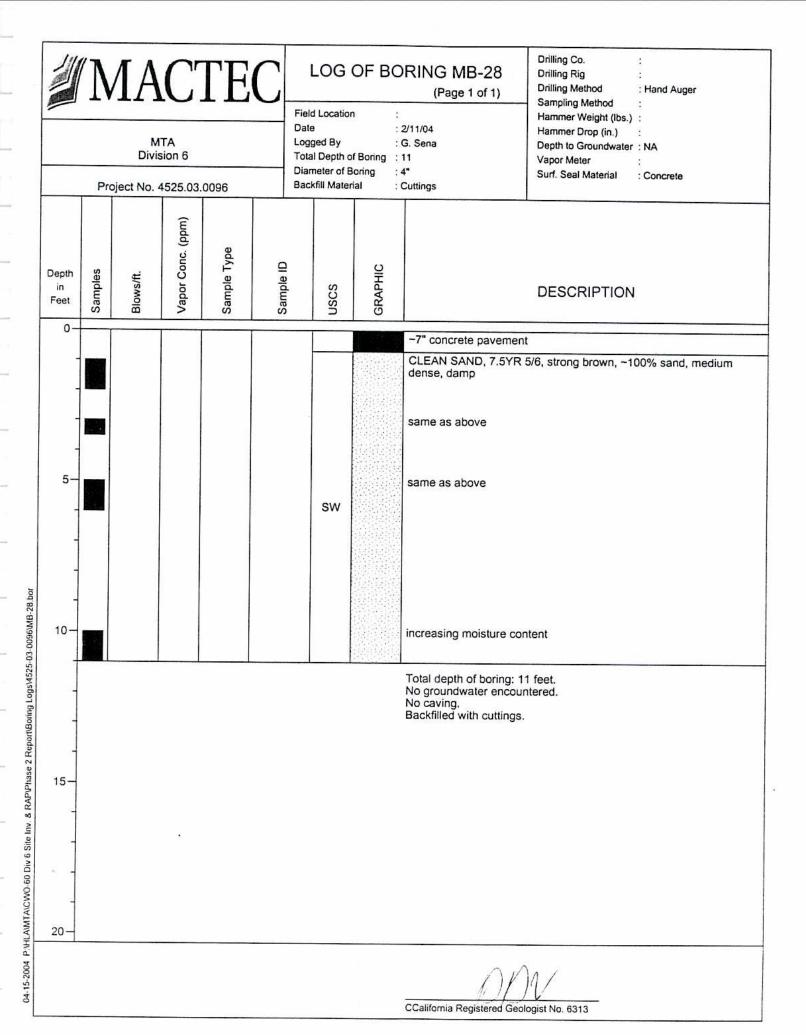

MTA

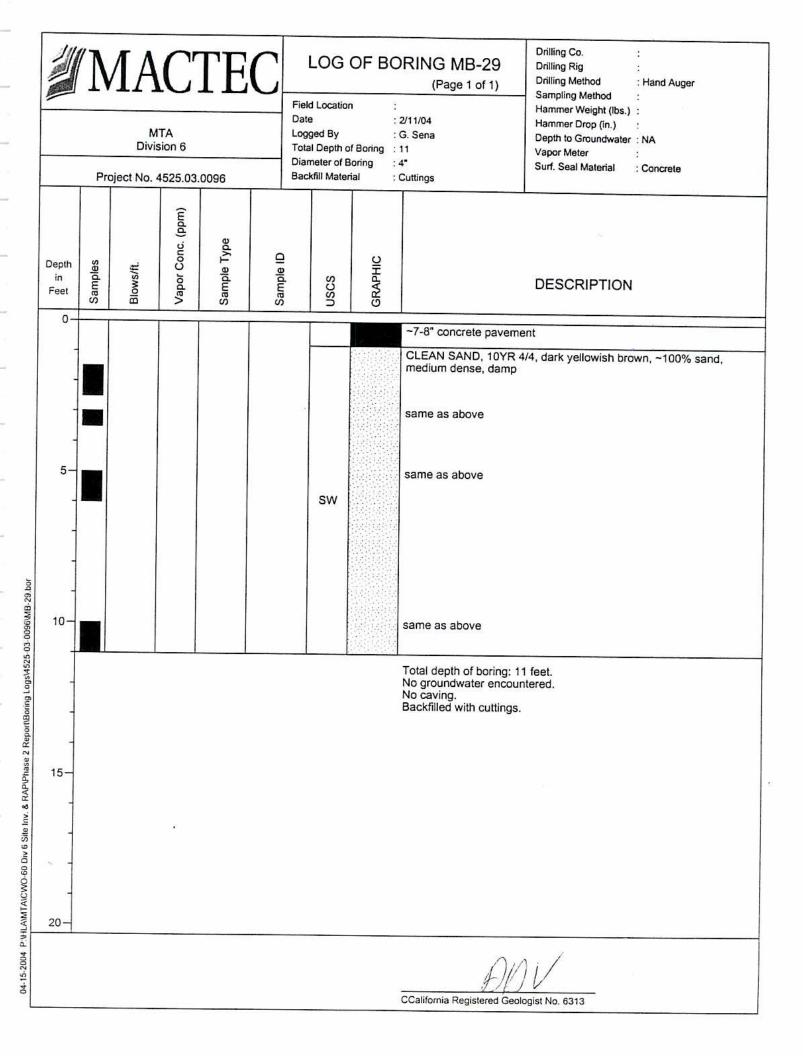

Division 6

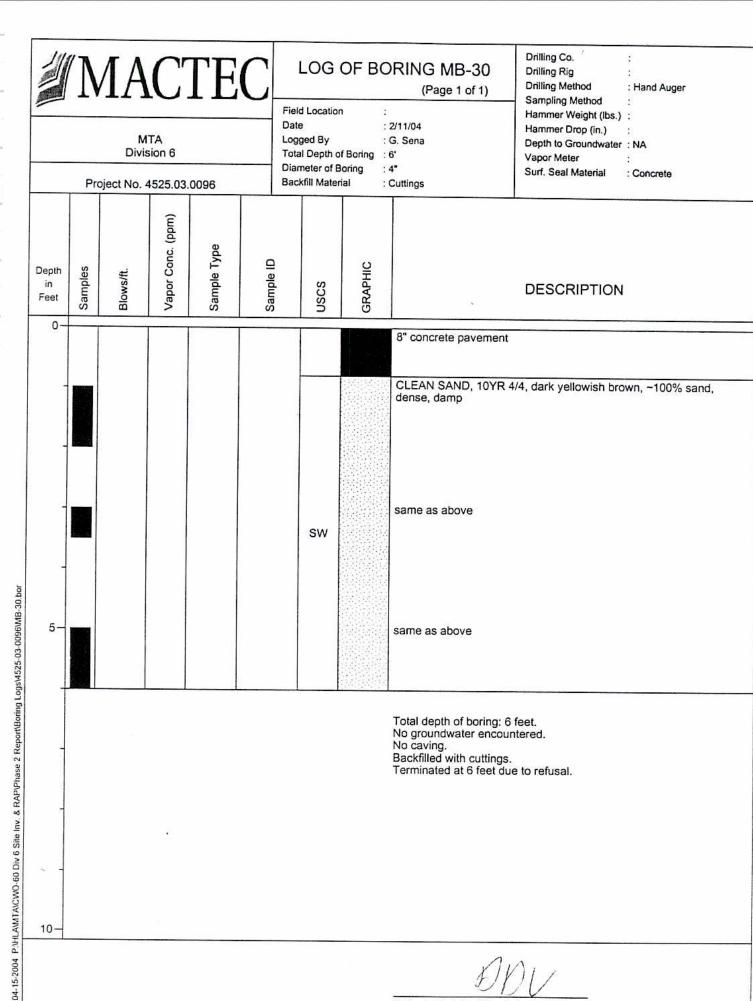

	Depth in Feet	Samples	Blows/ft.	Vapor Conc. (ppm)	Sample Type	Sample ID	nscs	GRAPHIC	DESCRIPTION
	0-								10" concrete pavement
]						SP		GRAVELLY SAND, 10YR 4/3, 5/4, brown to yellowish brown, 65%
	- - 5-						sw		Sand, very dense, damp, 65% sand, trace silt, ~30% coarse gravel CLEAN SAND, 10YR 5/4, yellowish brown, ~100% medium-grained sand, dense, damp to moist
	5					*	CL		SANDY CLAY, 10YR 3/3, dark brown, ~25-30% fine-grained sand, medium to stiff, very moist, 70% clay
	-						SP		SAND, 10YR 5/4, yellowish brown, coarse-grained sand, hard, very
	10-						sw		CLEAN SAND, 10YR 5/4, yellowish brown, ~100% sand, medium dense, moist
	1						SC	///	CLAYEY SAND, 10YR 4/3, brown, ~80% coarse-grained sand,
bor	15-						SP		\dense, damp, ~20% clay SAND, 10YR 4/3, dark yellowish brown, ~50% sand, loose, moist, trace clays and silt increasing fines content, trace coarse gravel
PIPhase 2 Report/Boring Logs\4525-03-0096\MB-19.bor	20-						sw		CLEAN SAND, 10YR 5/4, yellowish brown, ~100% sand, dense, damp coarse-grained sand, trace small (fine) gravel, moist coarse-grained sand, saturated, trace fine gravel
ite Inv. & RAP\Phase 2 Re	30-					•			Total depth of boring: 28 feet. Groundwater encountered at 26 feet. No caving. Backfilled with bentonite. First 5 feet hand augered.
04-15-2004 P.VH.AMTAXCWO-60 Div 6 Site Inv. & RA	35-								
04-15-2004 P.VHI									California Registered Geologist No. 6313

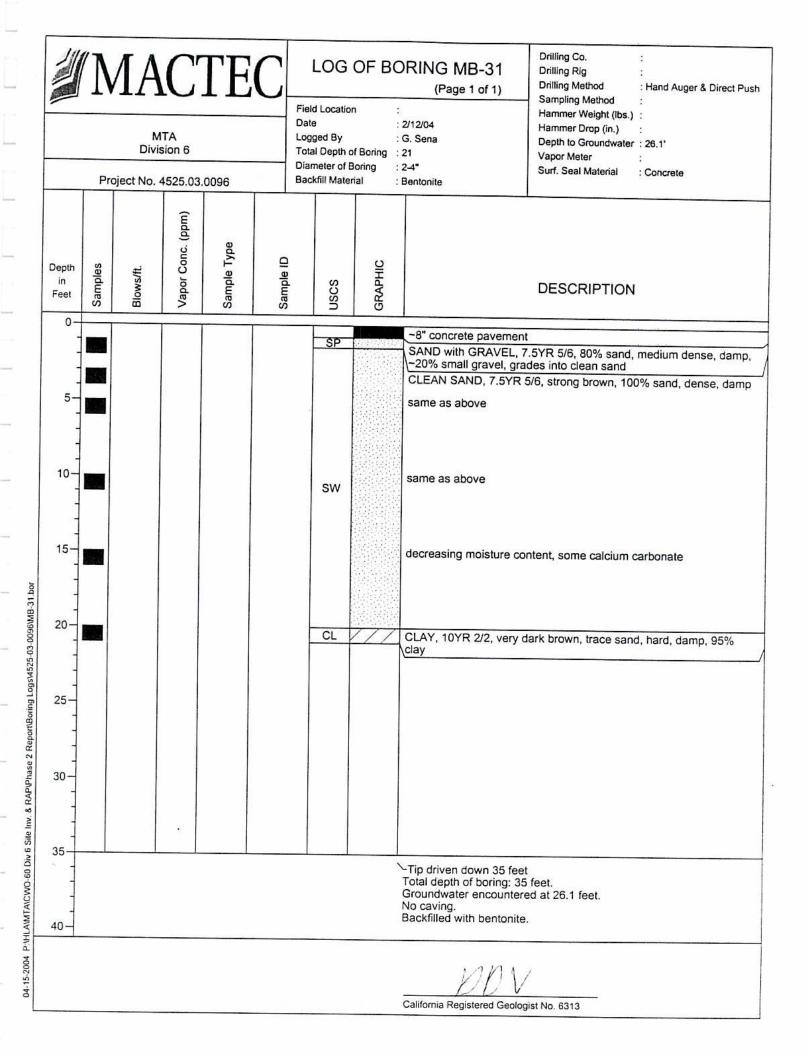


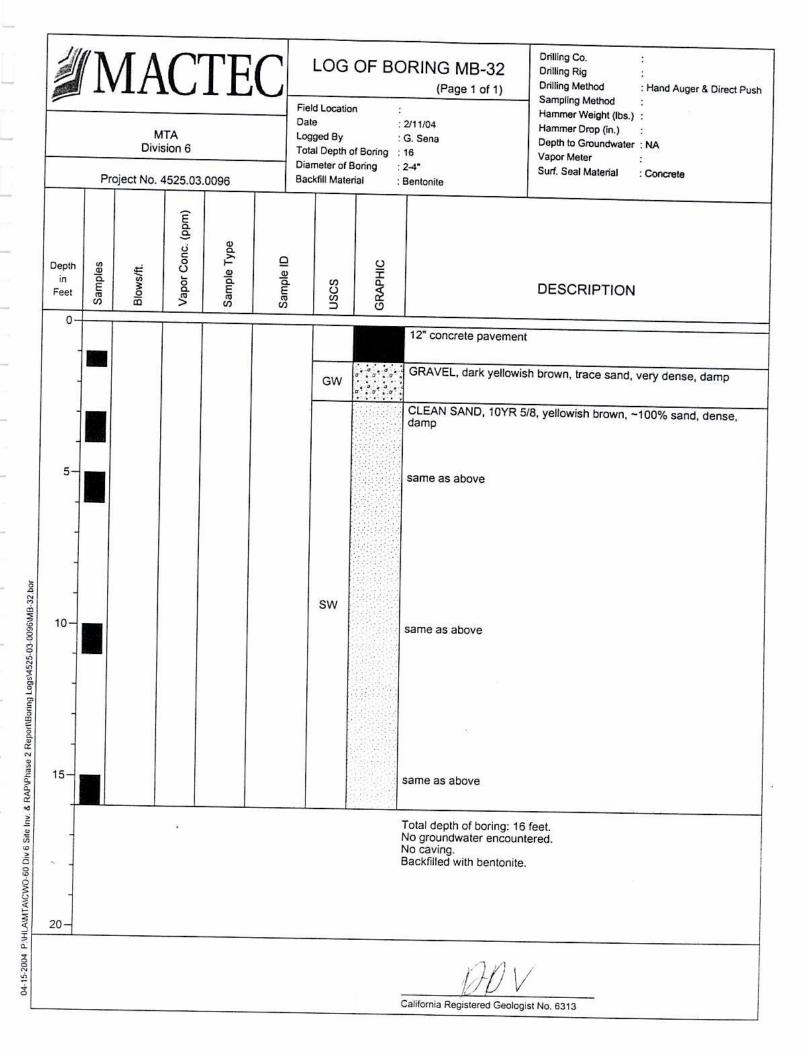


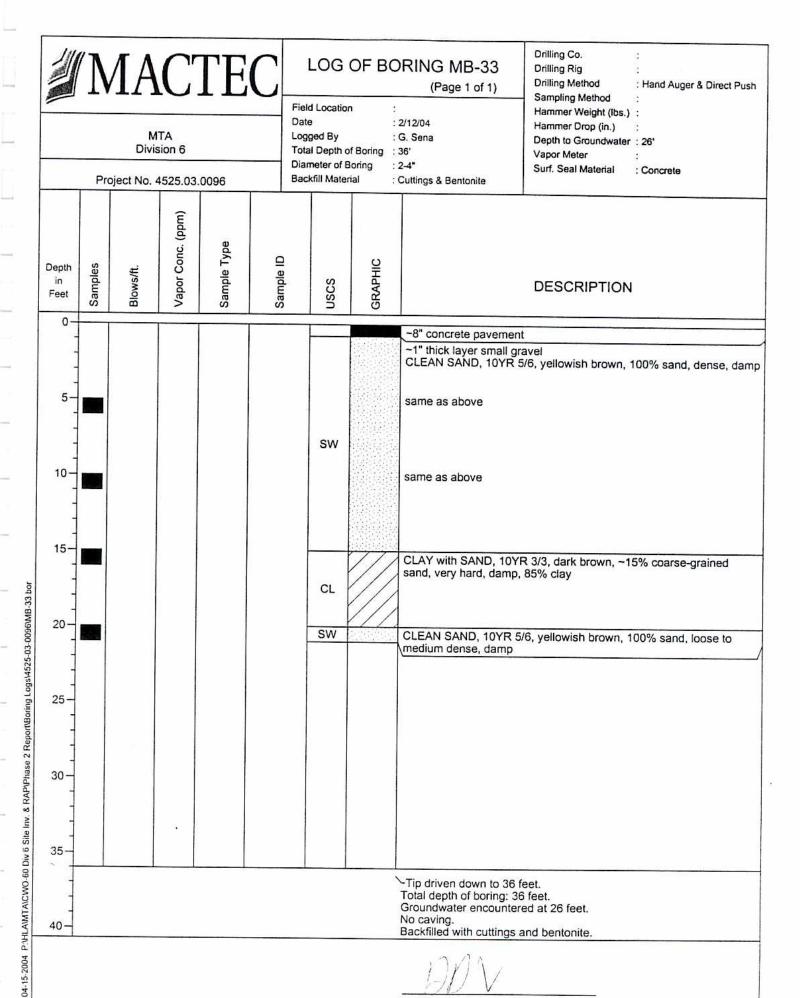




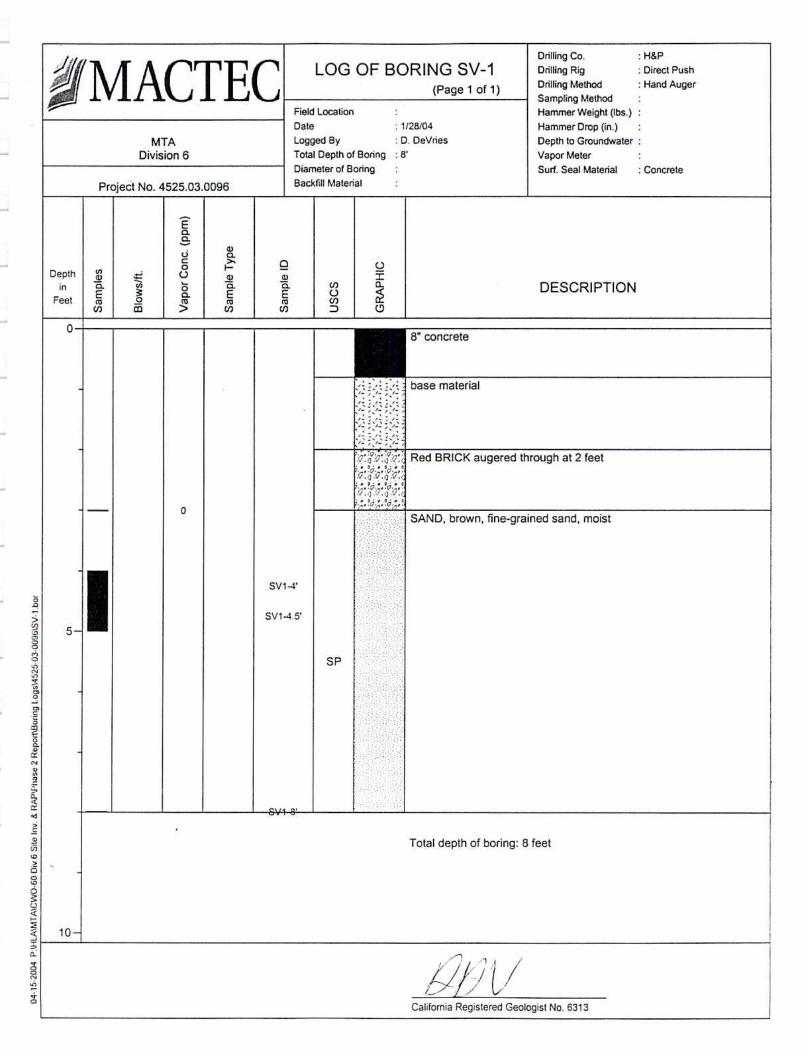


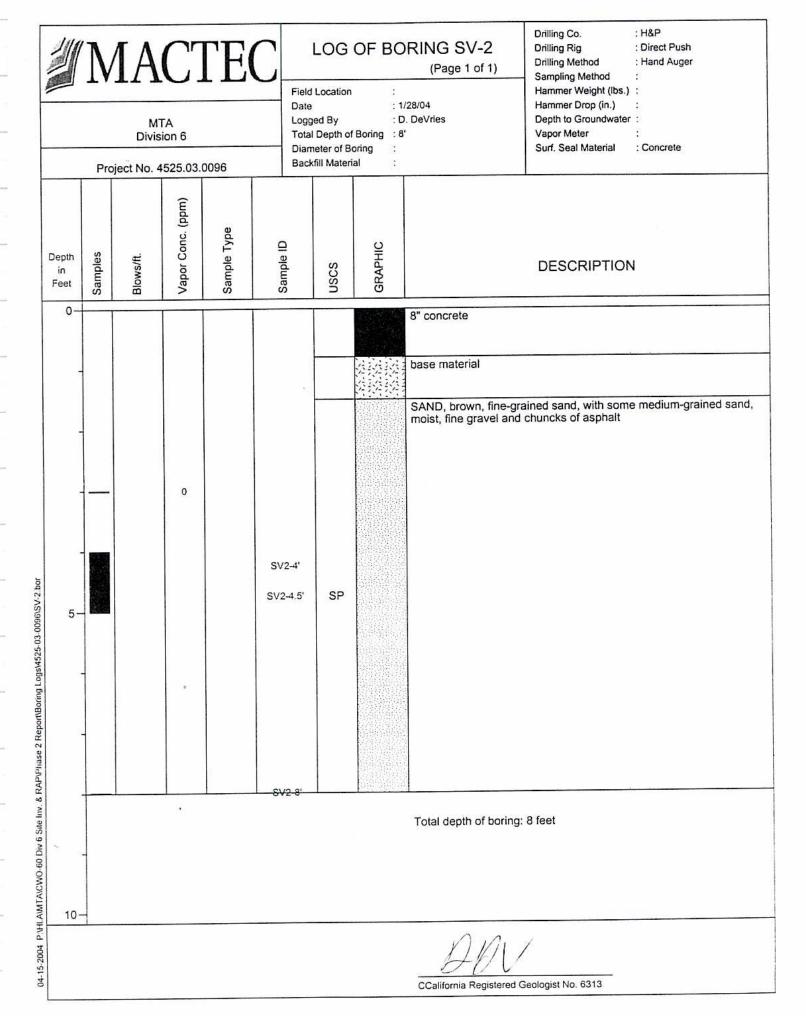


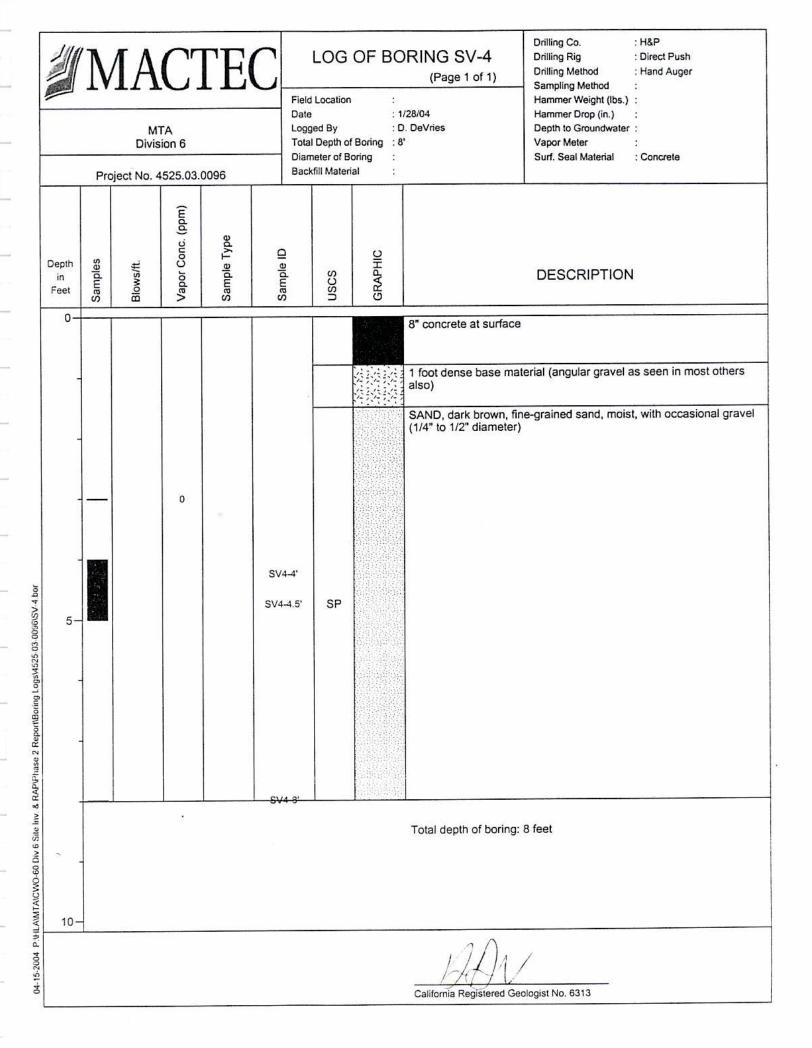

Total depth of boring: 6 feet. No groundwater encountered. No caving. Backfilled with cuttings.

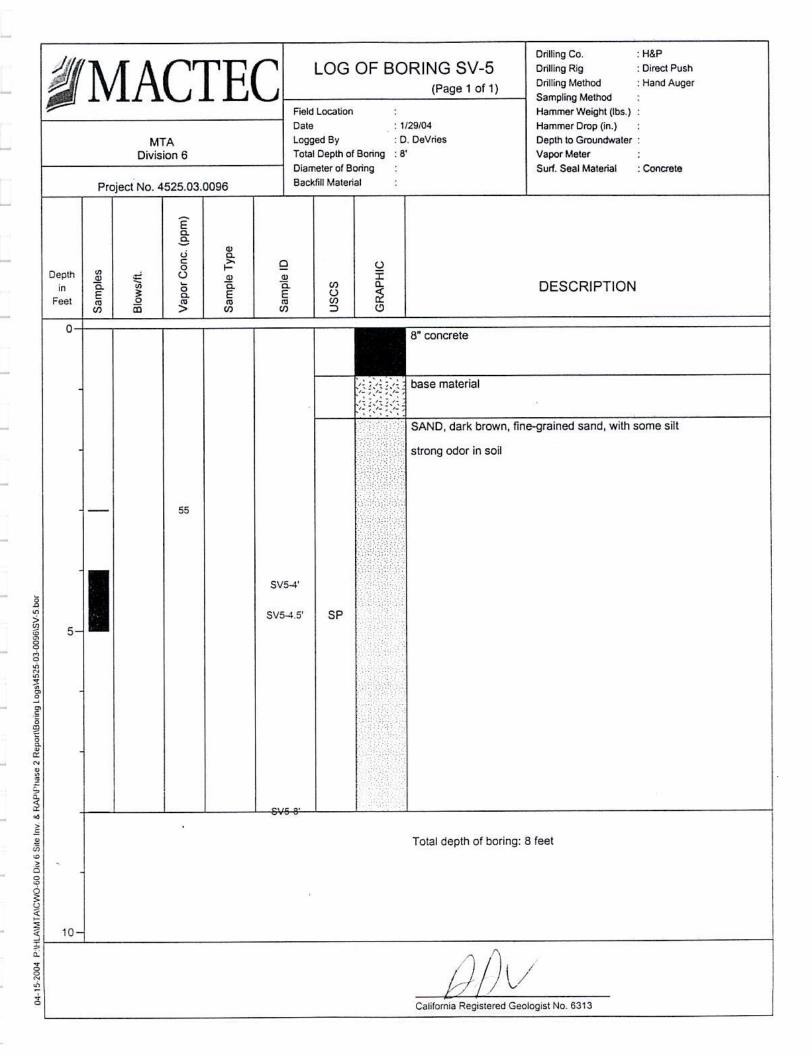

Terminated at 6 feet due to refusal.

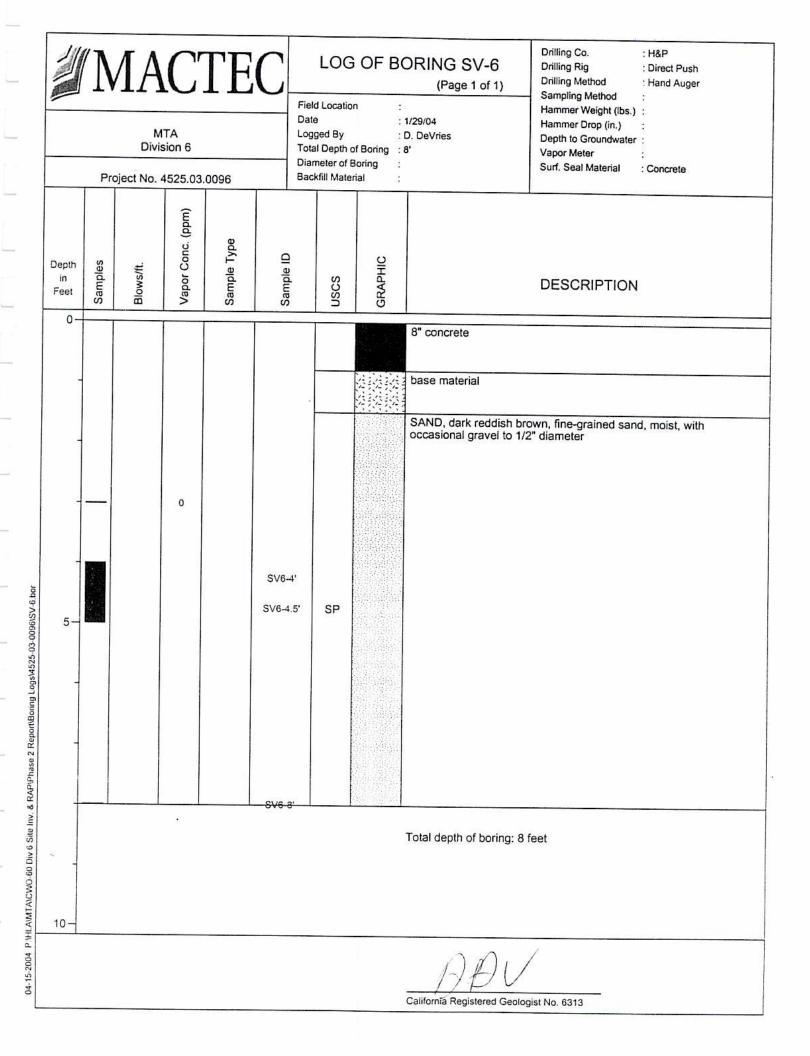
10-

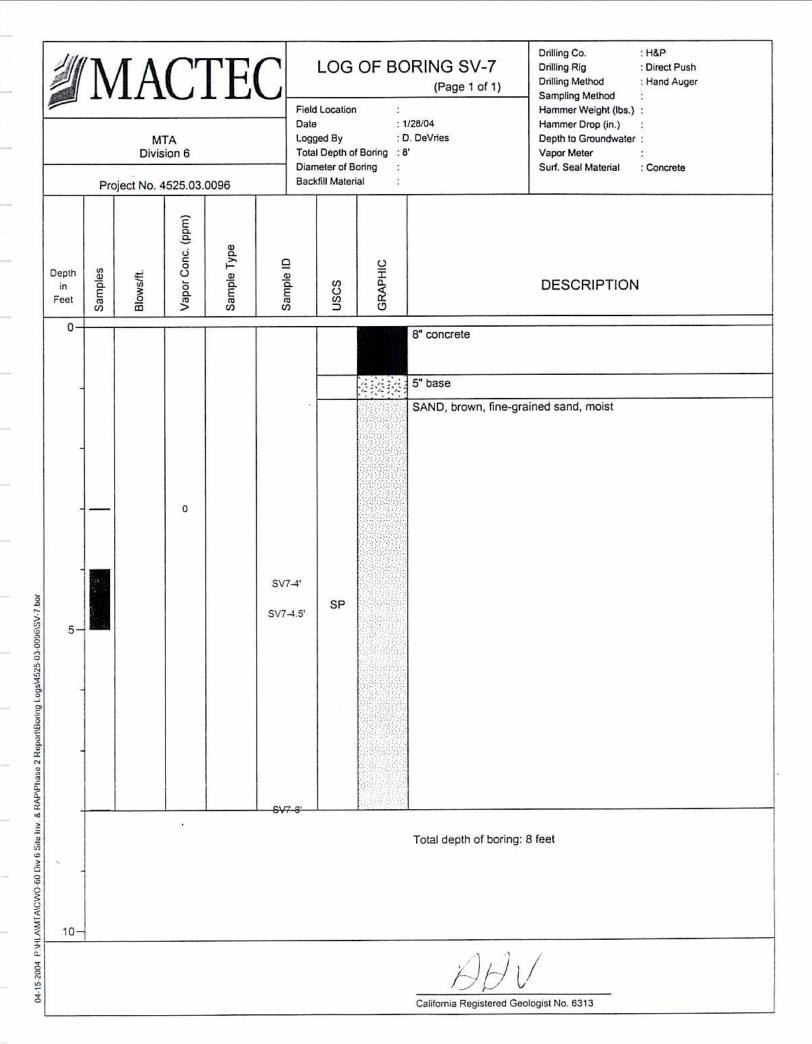

California Registered Geologist No. 6313

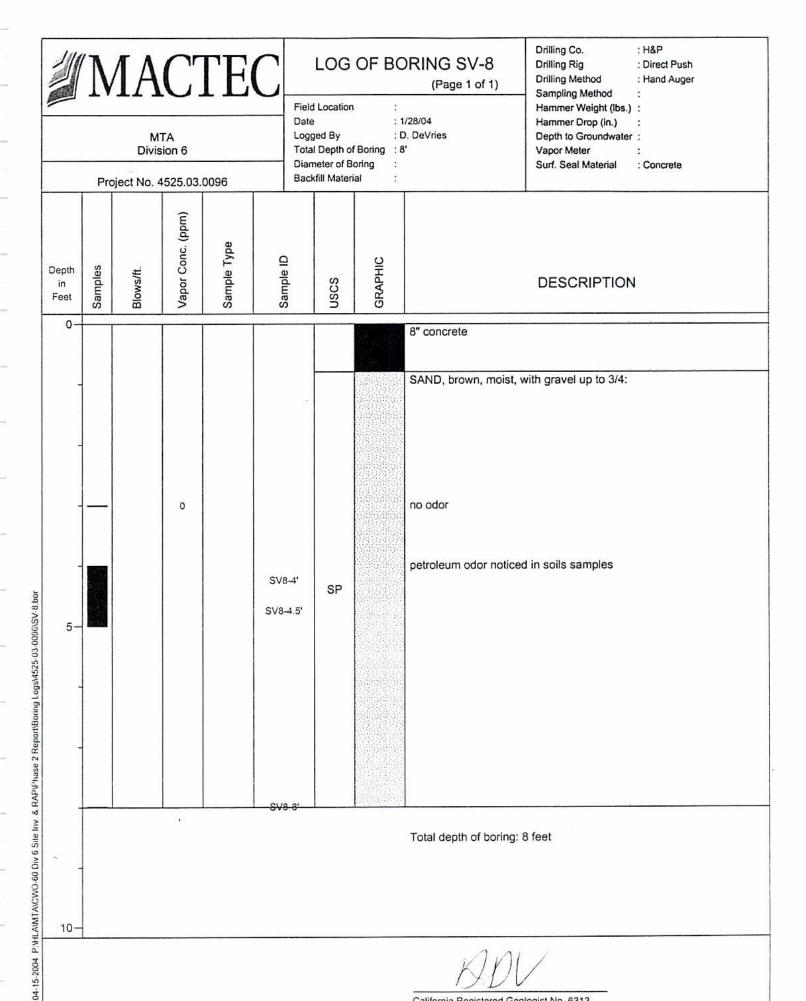


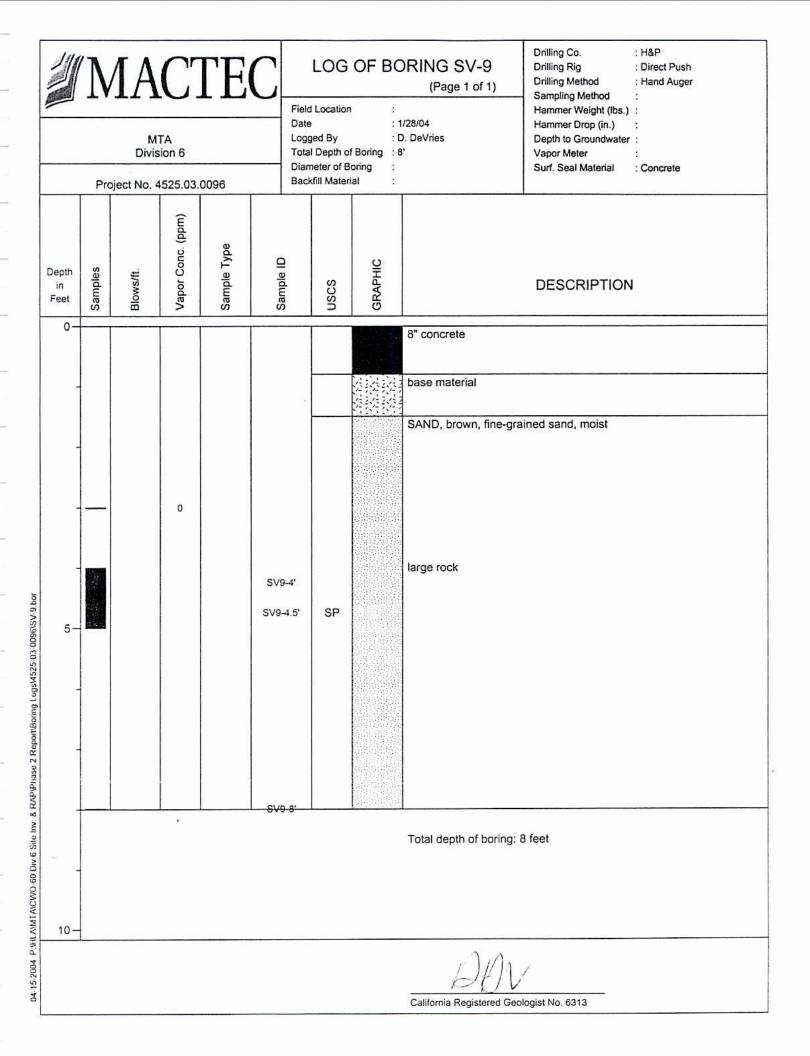


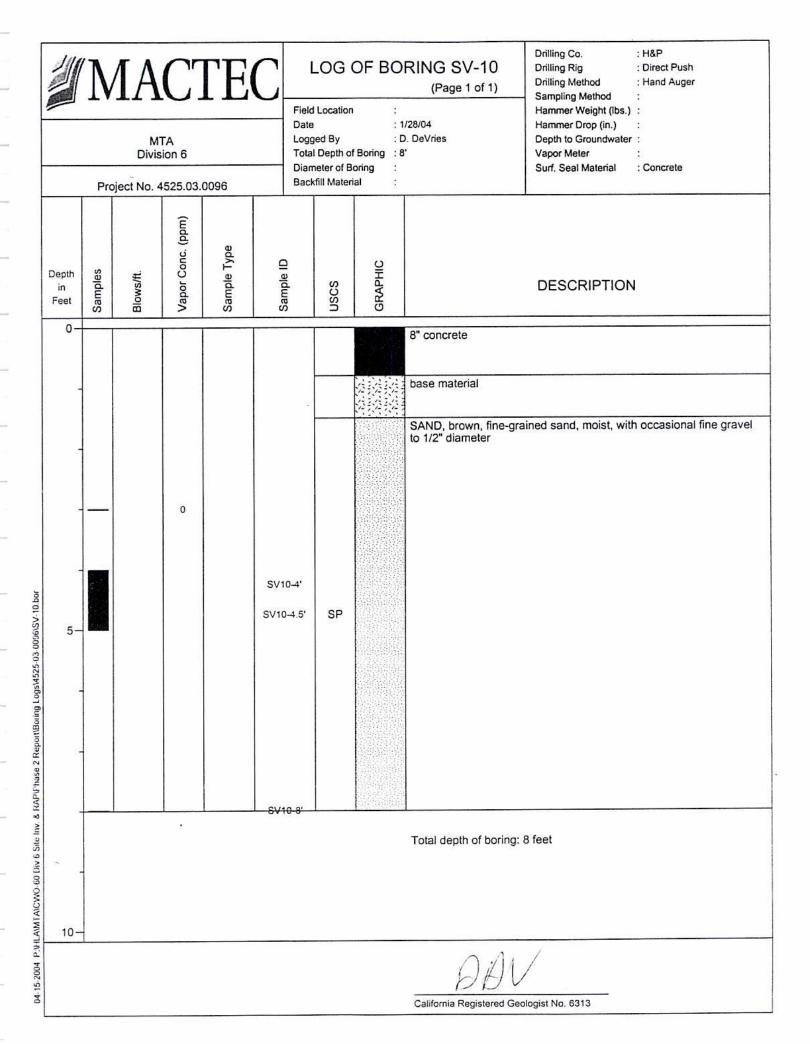


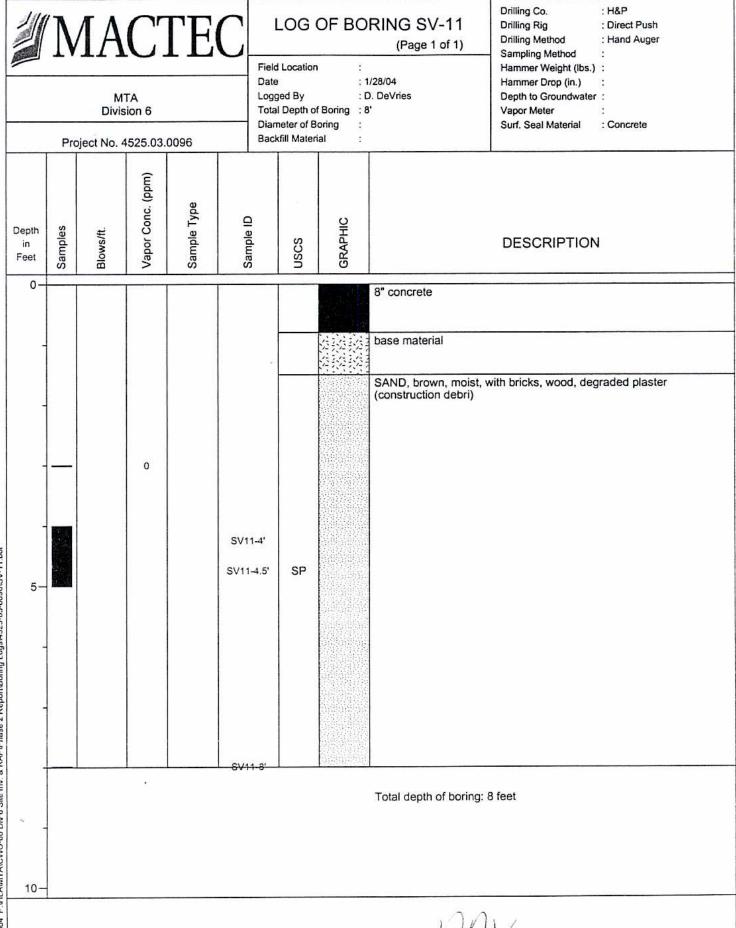

California Registered Geologist No. 6313



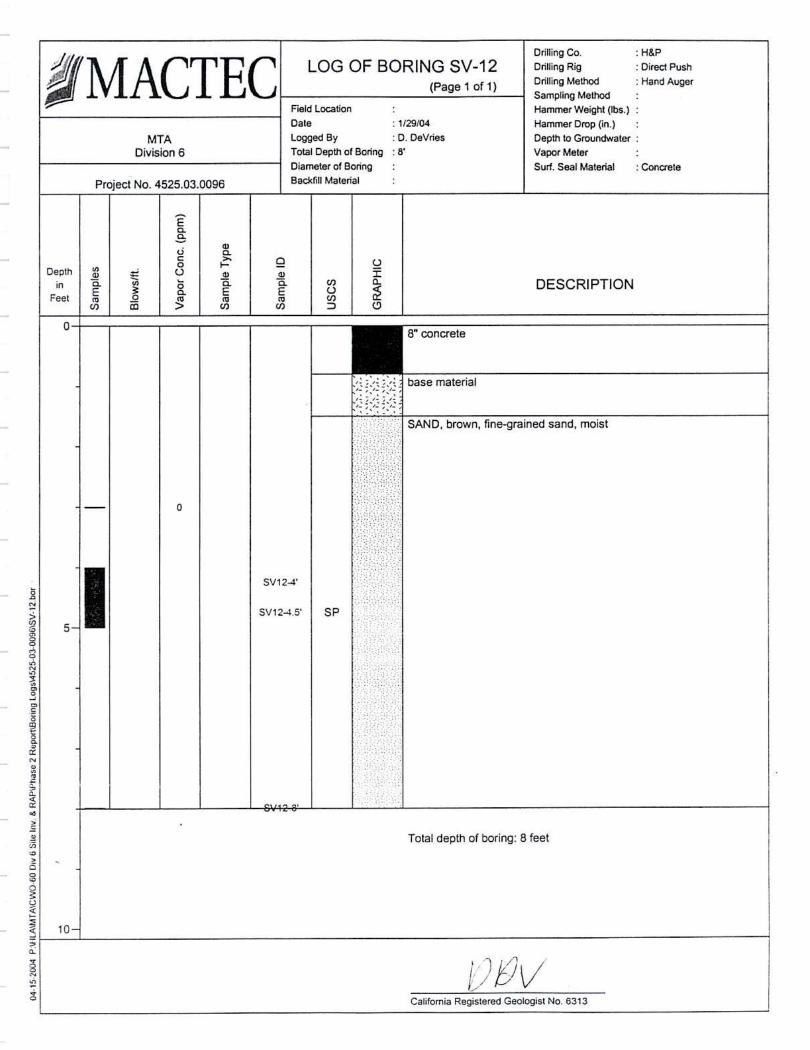


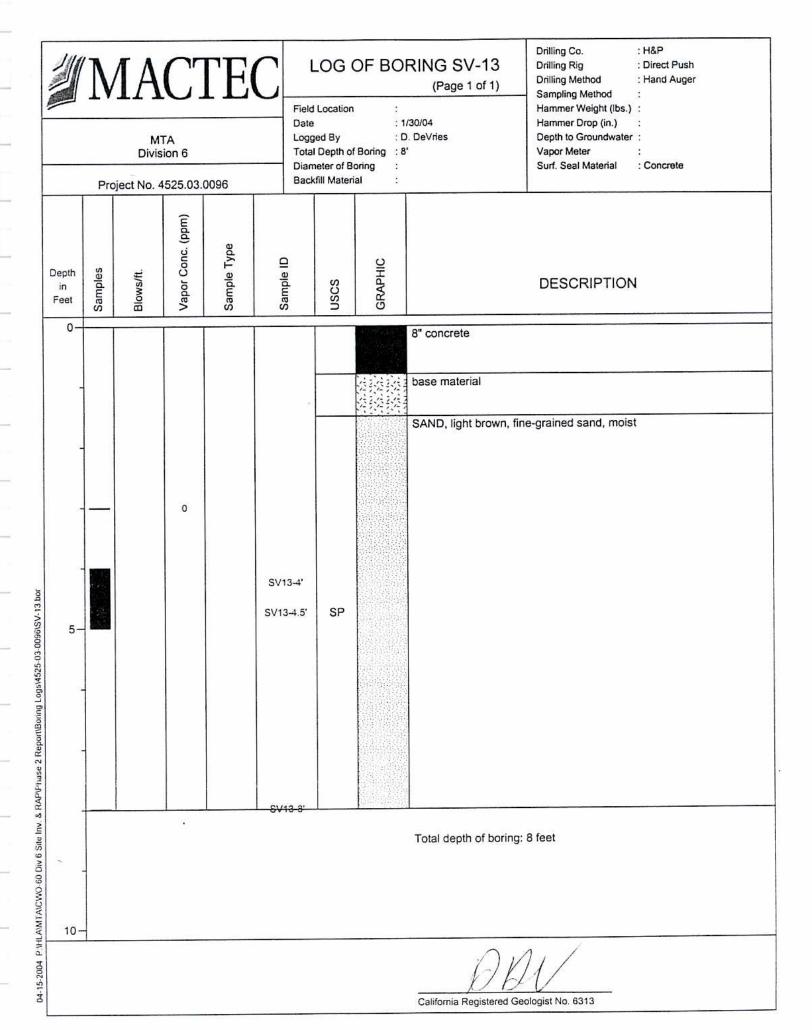


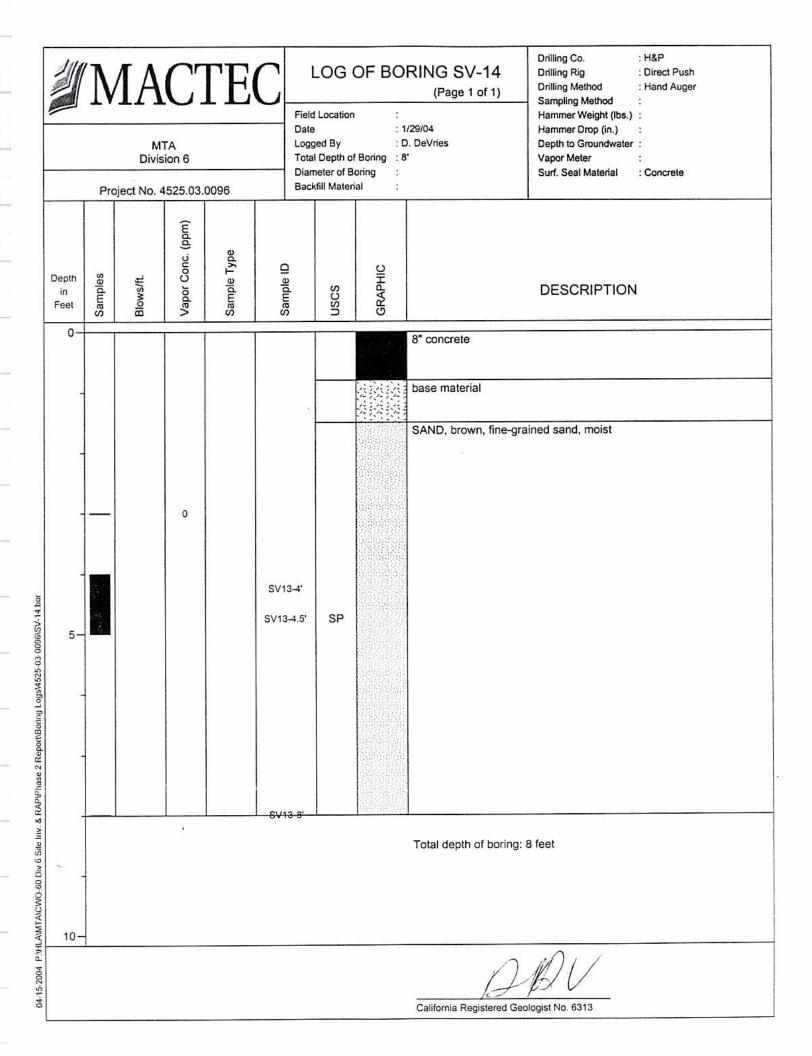


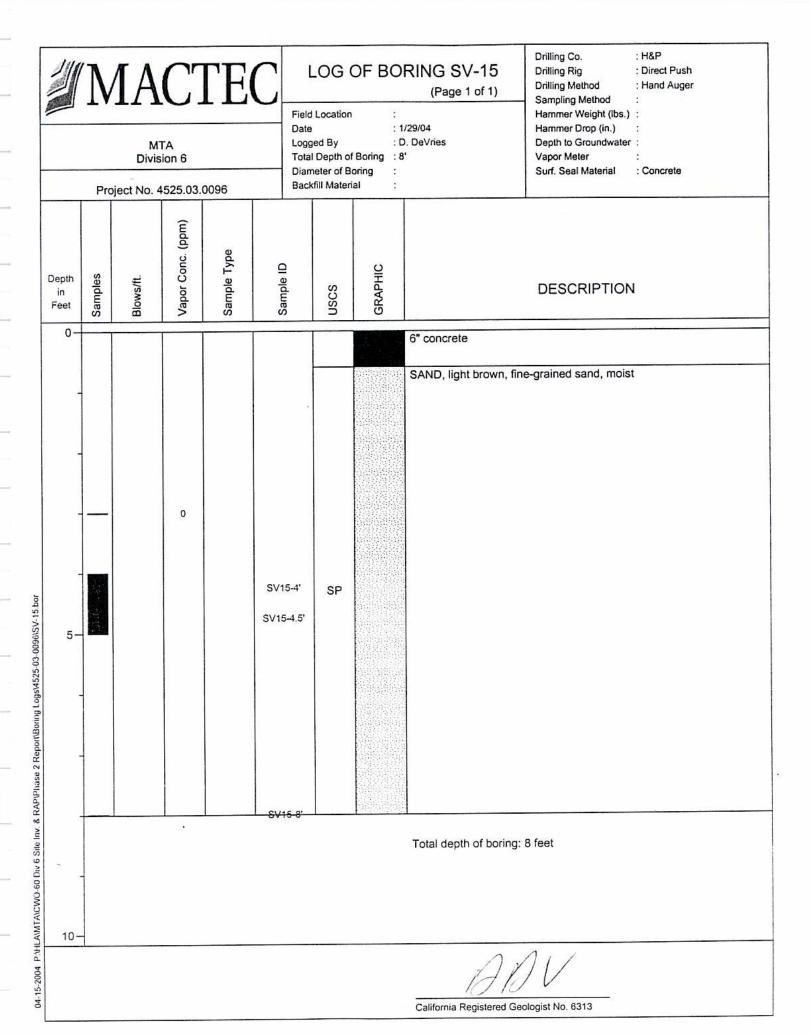


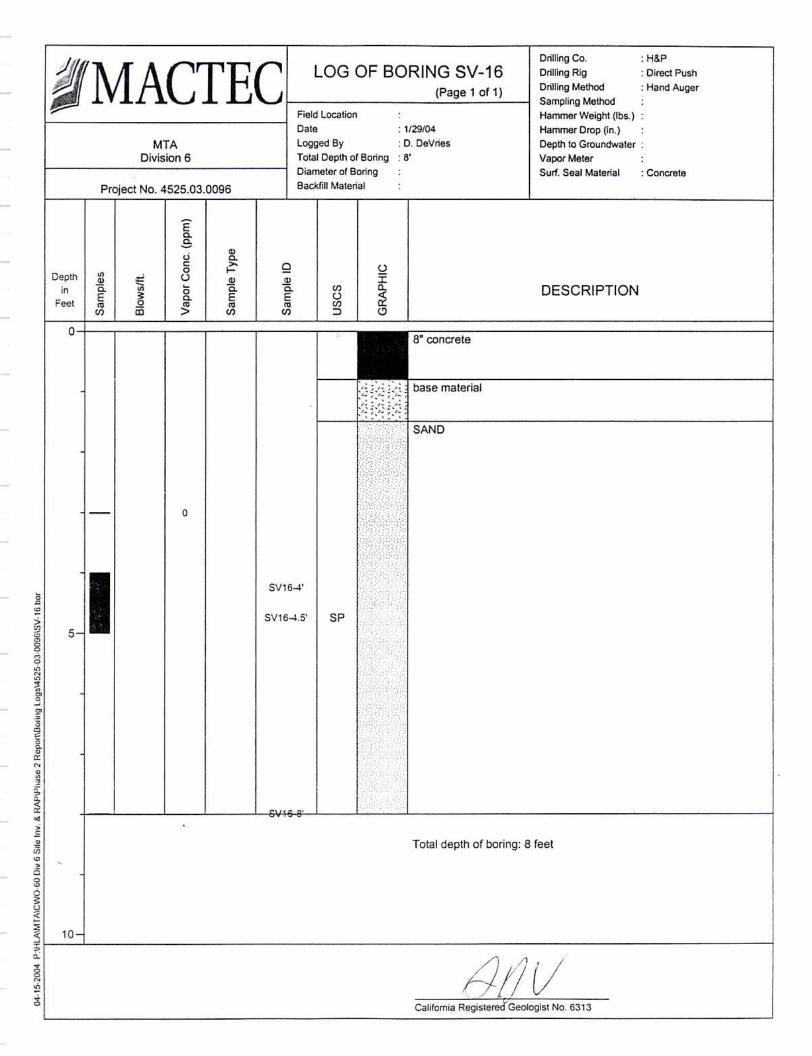
California Registered Geologist No. 6313

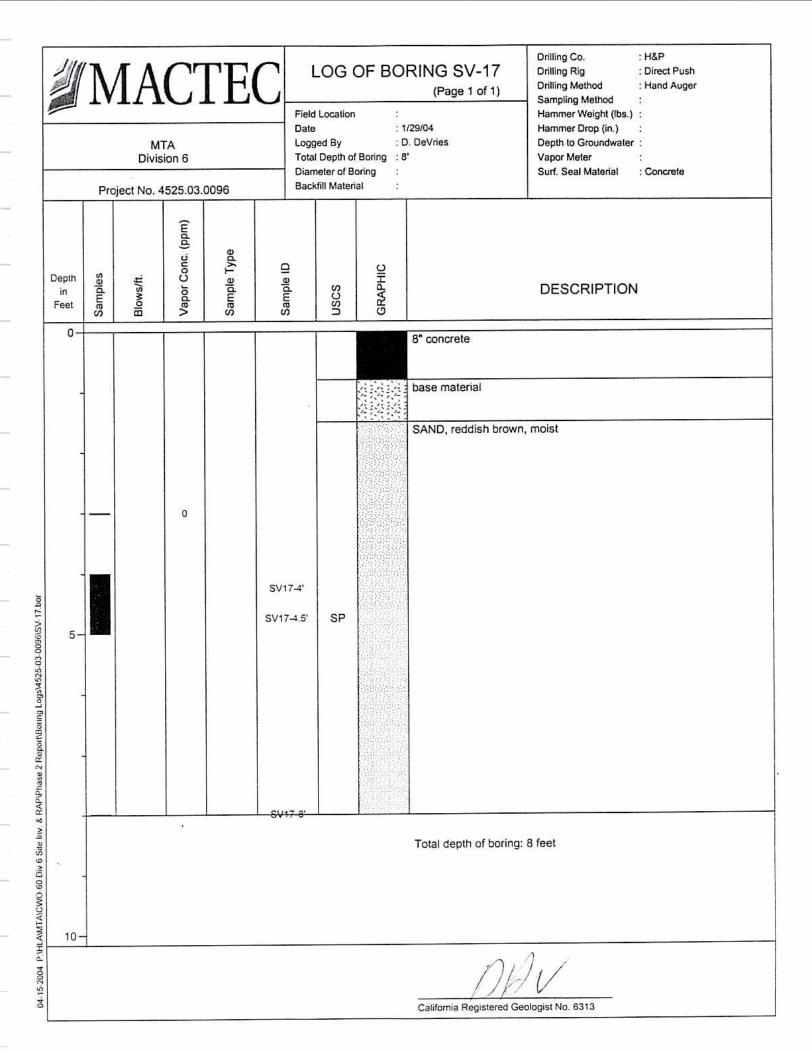


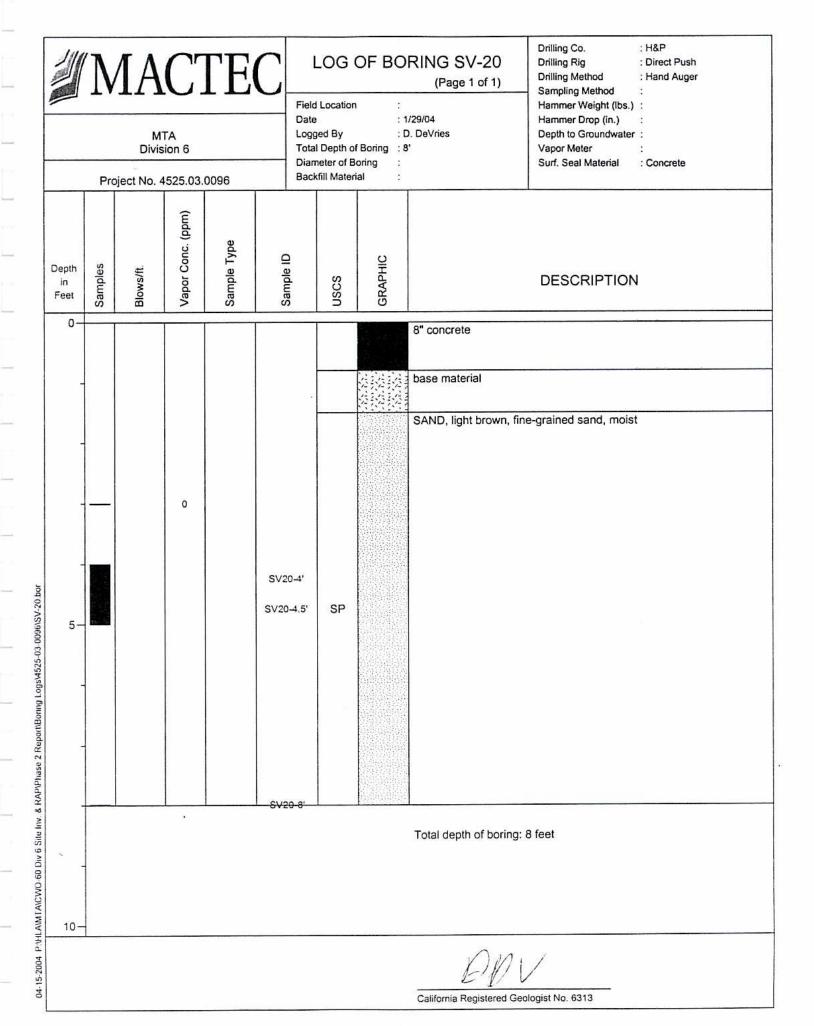


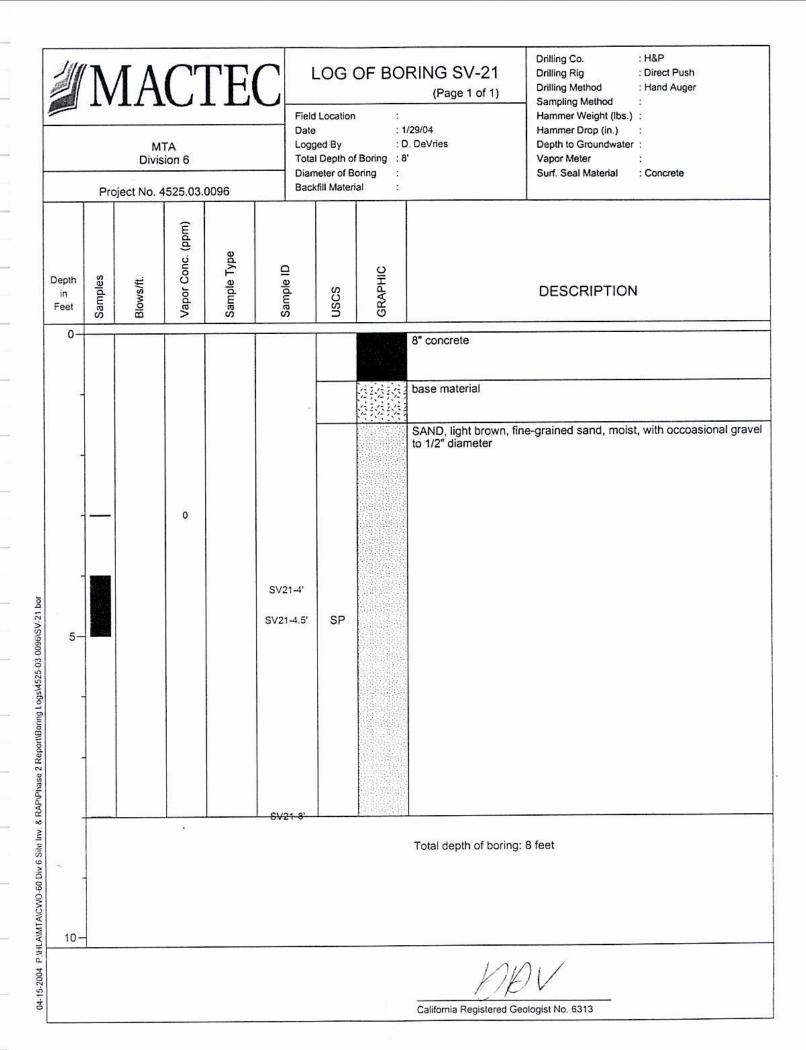



California Registered Geologist No. 6313

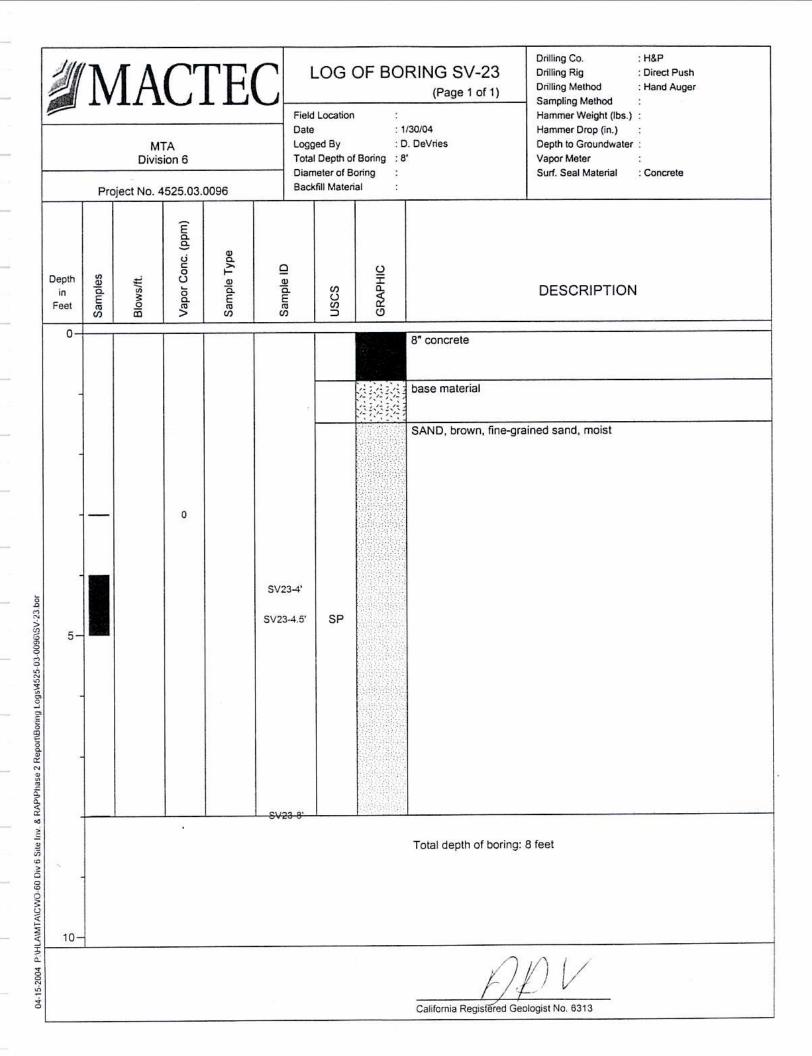

04-15-2004 P.HLAMTAICWO-60 Div 6 Site Inv. & RAPIPhase 2 ReportBoring Logst4525-03-0096tSV-11.bor

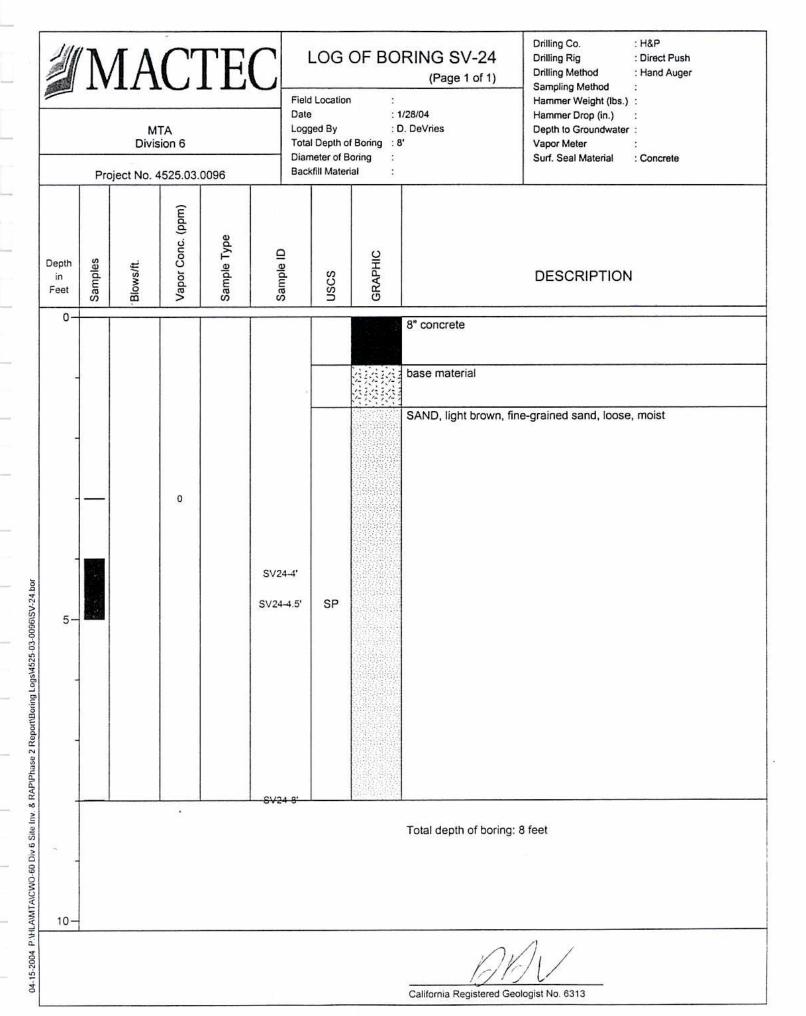


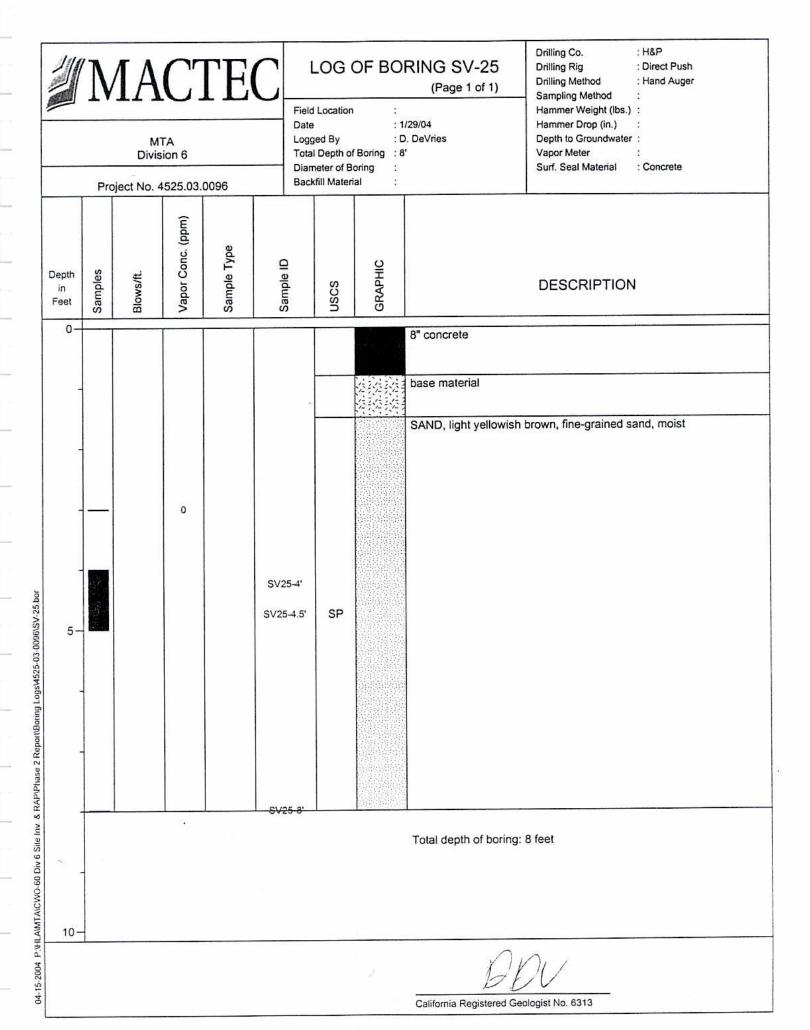


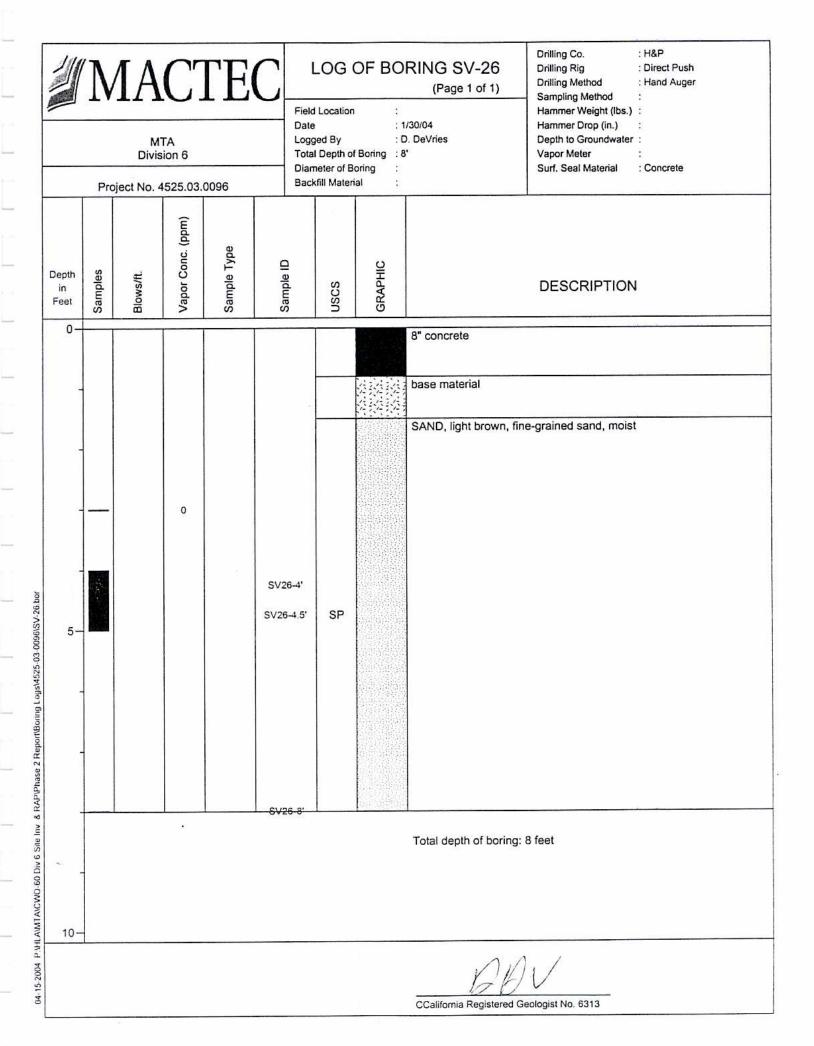


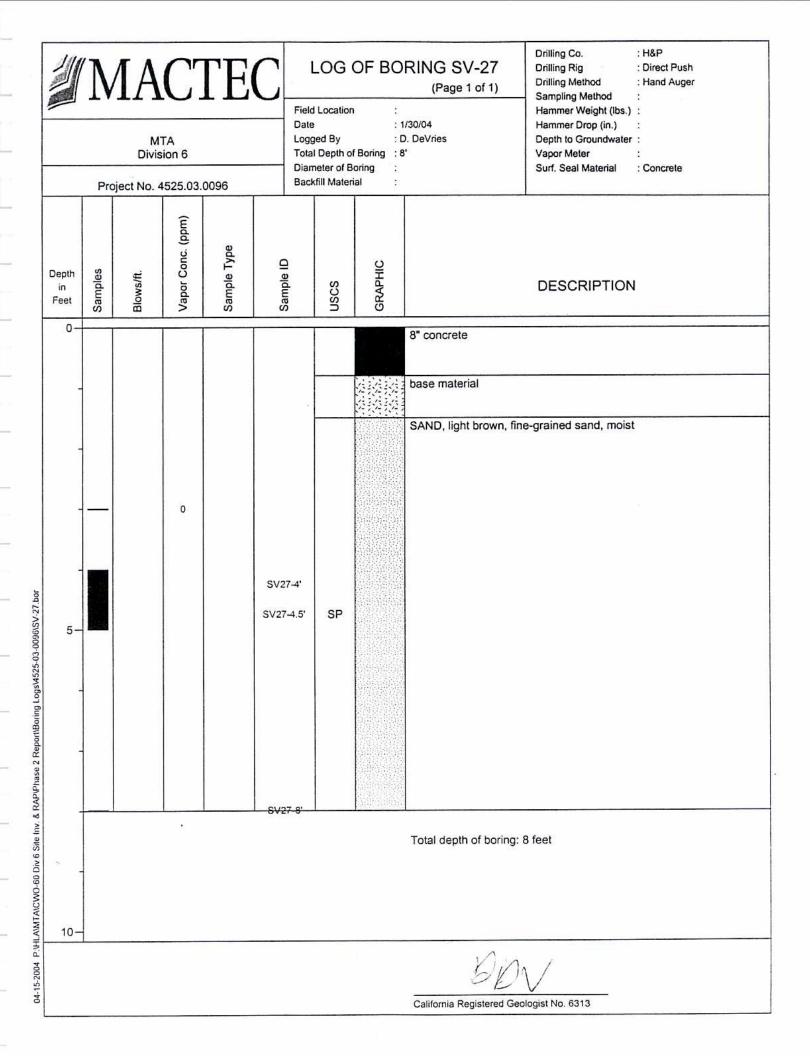


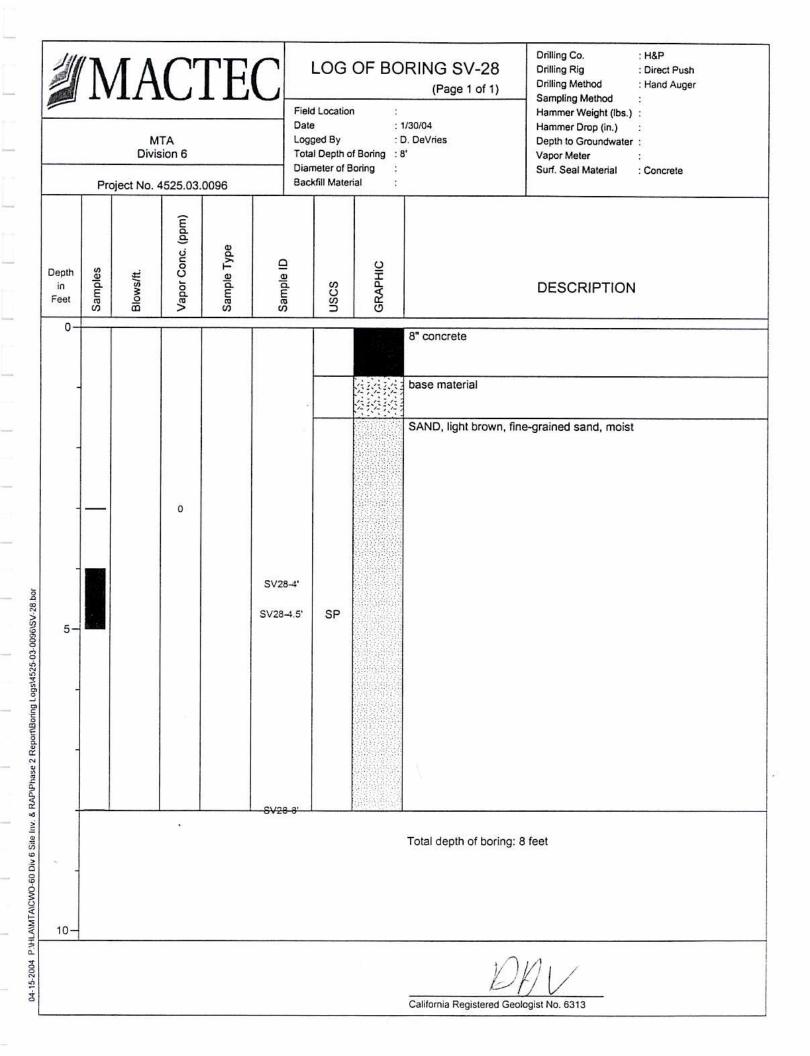

		MA Divis	TA ion 6		Date Logg Tota Dian	Location ged By	1 : 1 : C f Boring : 8	RING SV-18 (Page 1 of 1) /29/04 0. DeVries	Drilling Co. : H&P Drilling Rig : Direct Push Drilling Method : Hand Auger Sampling Method : Hammer Weight (lbs.) : Hammer Drop (in.) : Depth to Groundwater : Vapor Meter : Surf. Seal Material : Concrete	
Depth in Feet	Samples	Blows/ft.	Vapor Conc. (ppm)	Sample Type	Sample ID	uscs	GRAPHIC		DESCRIPTION	
5-			0		SV18-4' SV18-4.5'	SP		base material SAND		
10-								Total depth of boring:	8 feet	
California Registered Geologist No. 6313										

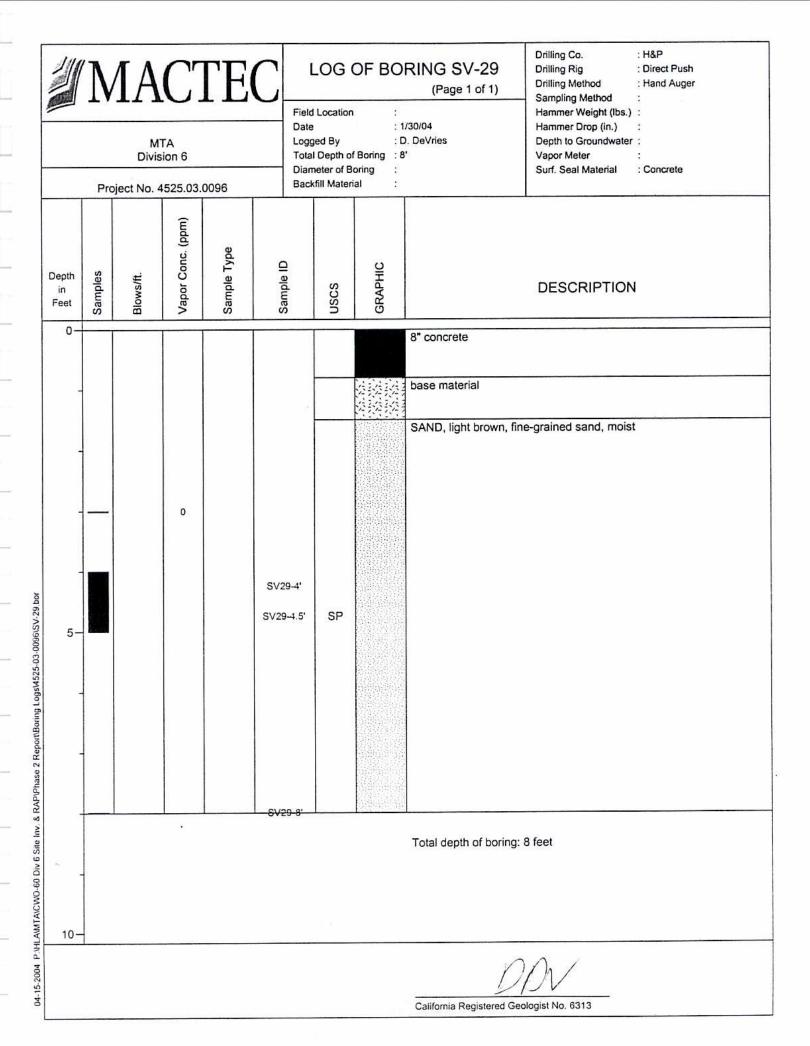

3 44	MTA Division 6 Project No. 4525.03.0096						Field Location Date Logged By	on : : 1 : C of Boring : 8 Boring :	RING SV-19 (Page 1 of 1)	Drilling Rig	:
	Depth in Feet	Samples	Blows/ft.	Vapor Conc. (ppm)	Sample Type	Sample ID	nscs	GRAPHIC		DESCRIPTION	I
	0-								8" concrete		
									base material		
04-15-2004 P:N-HAMMTAICWO-60 Div 6 Slite Inv. & RAP/Phase 2 Report/Boring Legs/4525-03-0096/SV-19.bor	5—			0		SV19-4:5'	.5' SP		SAND, light brown, fir	ne-grained sand, moist	
MTAICWO-60 Div 6 Site Inv.											
04-15-2004 P:NHLAN	10-	1					,		California Registered Ge	nologist No. 6313	

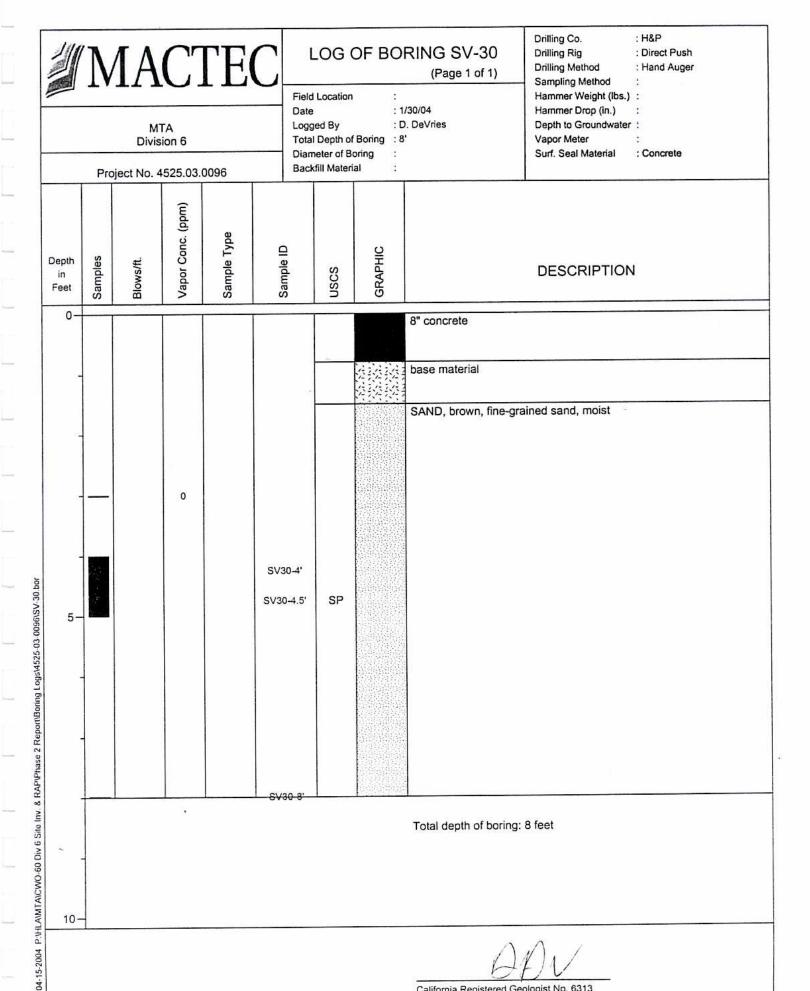


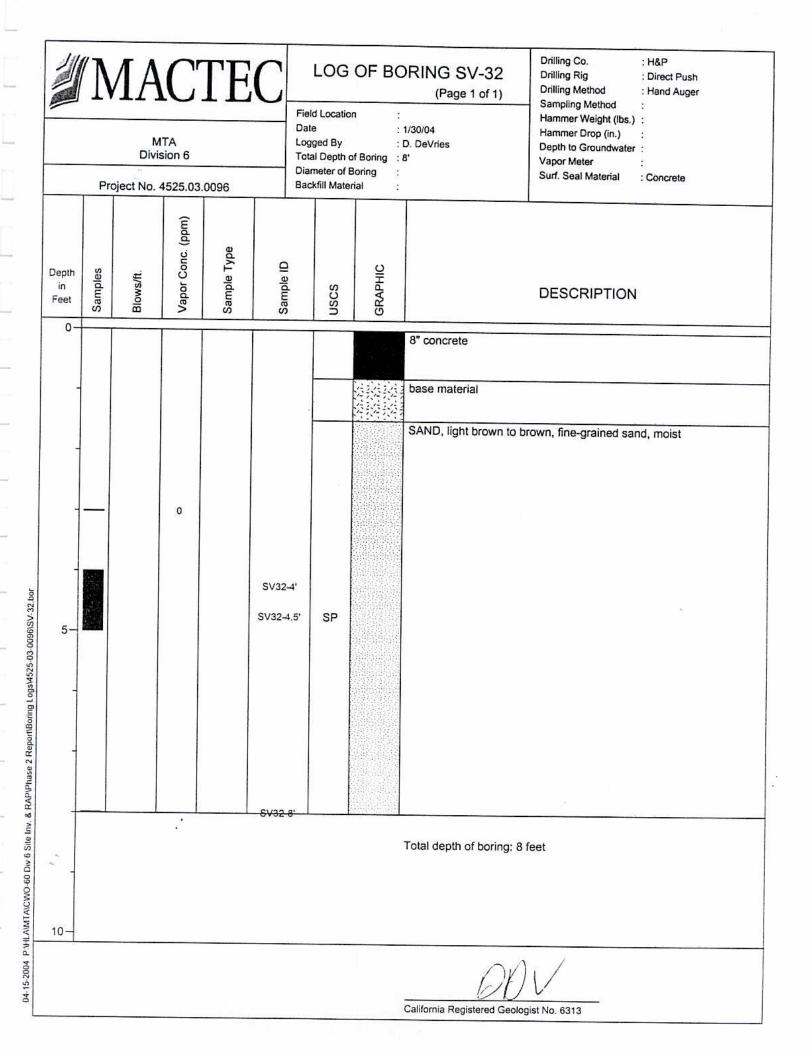


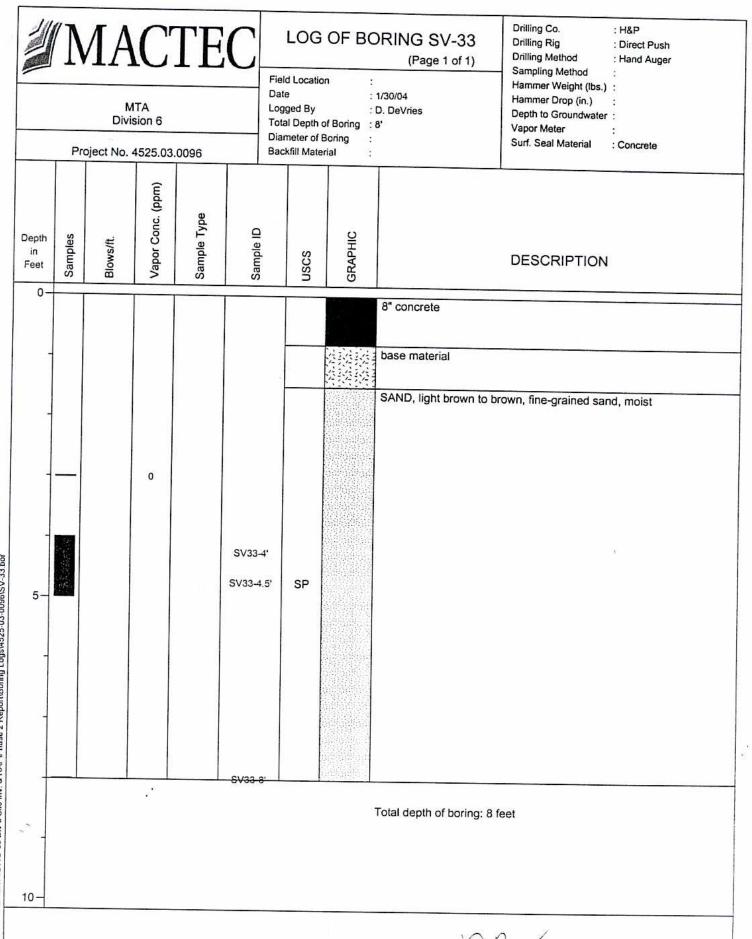




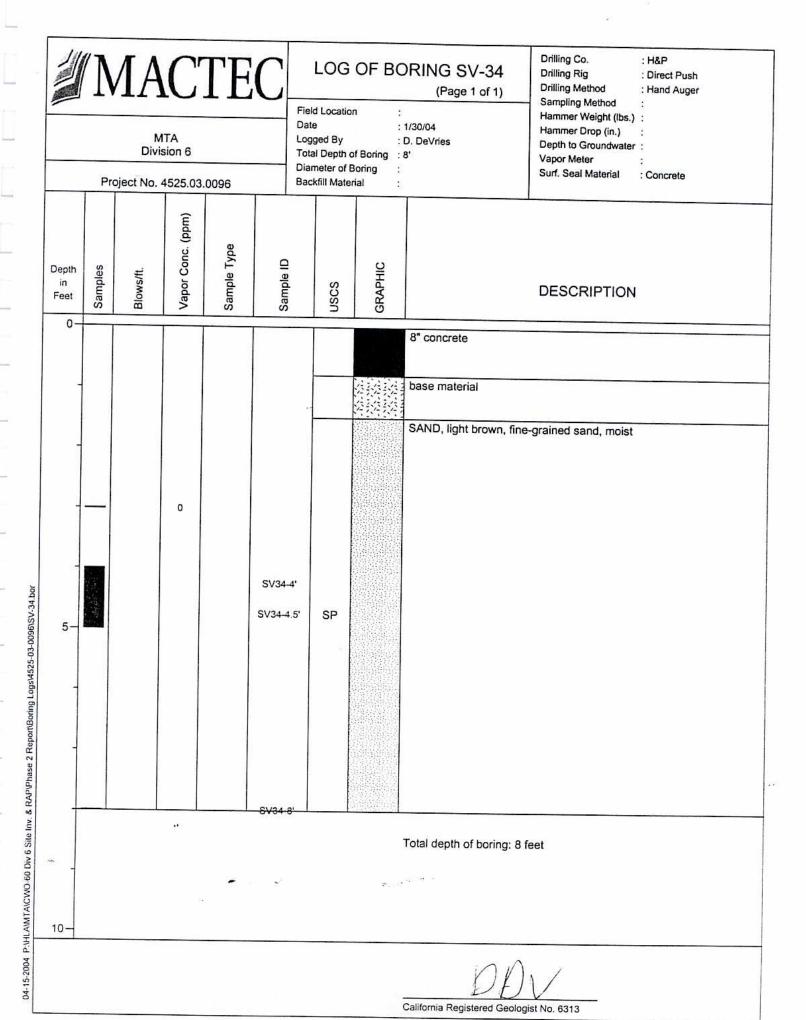








California Registered Geologist No. 6313


	MTA Division 6 Project No. 4525.03.0096				Date Logg Tota Dian	LOG OF BORING SV-31 (Page 1 of 1) Field Location : Date : 1/29/04 Logged By : D. DeVries Total Depth of Boring : 8' Diameter of Boring : Backfill Material :			Drilling Co. : H&P Drilling Rig : Direct Push Drilling Method : Hand Auger Sampling Method : Hammer Weight (lbs.) : Hammer Drop (in.) : Depth to Groundwater : Vapor Meter : Surf. Seal Material : Concrete	
Depth in Feet	Samples	Blows/ft.	Vapor Conc. (ppm)	Sample Type	Sample ID	nscs	GRAPHIC		DESCRIPTION	.W
04-15-2004 PAHLAIMTAICWO-60 Div 6 Site Inv. & RAPVPhase 2 ReportBoring LogsW525-03-0096/SV-31 bor			0		SV31-4' SV31-4.5'	SP		base material SAND, light brown, fin	e-grained sand, moist	
LAIMTAICWO-60 Div 6 Site Inv. 2			•				ı	Total depth of boring:	8 feet	
04-15-2004 P:VH								CCalifornia Registered G	eologist No. 6313	

04-15-2004 P:\HLA\MTA\CWO-60 Div 6 Site Inv. & RAP\Phase 2 Report\Boring Logs\4525-03-0096\SV-33 bor

California Registered Geologist No. 6313

D8 - FINAL REPORT-STREAMLINED RISK ASSESSMENT MACTEC, August 17, 2004

FINAL REPORT

STREAMLINED RISK ASSESSMENT

MTA DIVISION 6 100 SUNSET AVENUE VENICE, CALIFORNIA

Prepared for:

LOS ANGELES COUNTY METROPOLITAN TRANSPORTATION AUTHORITY

One Gateway Plaza Los Angeles, California 90012-1009

August 17, 2004

August 17, 2004

Dr. Emmanuel Liban, Ph.D. Senior Environmental Specialist Metropolitan Transportation Authority One Gateway Plaza, Mail Stop 99-17-2 Los Angeles, California 90012-1009

Subject:

LETTER OF TRANSMITTAL

Final Report, Streamlined Risk Assessment

MTA Division 6 Maintenance Facility and Bus Yard

100 Sunset Avenue Venice, California

MACTEC Project 4525-03-0096

Dear Dr. Liban:

Attached is the final Streamlined Risk Assessment report for the above-referenced site. The basic outline of the Cal/EPA Preliminary Endangerment Assessment has been followed because it is a commonly-accepted format for risk-based property assessment.

MACTEC professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable environmental consultants practicing in this or similar localities at the time of service. This warranty is in lieu of all other warranties, expressed or implied. This report has been prepared for MTA to be used solely in evaluating potential environmental implications at the subject site. The report has not been prepared for use by other parties and may not contain sufficient information for purposes of other parties or other uses.

We appreciate the opportunity to work with you on this project. Please contact us if you have any questions or if we may be of further service.

Respectfully submitted,

MACTEC Engineering and Consulting, Inc.

Larry R. Froebe, Ph.D., R.E.A. Senior Principal Scientist

Risk Assessment & Toxicology

LRF/DJD:lrf

cc: MACTEC Project File No. 4525030096

David J. DeVries, R.G., C.H.G., R.E.A.

Principal Hydrogeologist

Project Manager

FINAL REPORT STREAMLINED RISK ASSESSMENT

MTA DIVISION 6 100 SUNSET AVENUE VENICE, CALIFORNIA

Prepared for:

LOS ANGELES COUNTY METROPOLITAN TRANSPORTATION AUTHORITY

One Gateway Plaza Los Angeles, California 90012-1009

MACTEC Engineering and Consulting, Inc.

Irvine, California

August 17, 2004

Project 4525-03-0096

FOREWORD

This streamlined risk assessment report should be considered a companion document to the Draft Phase II Environmental Site Assessment for the Metropolitan Transportation Authority Division 6 Maintenance Facility and Bus Yard, located at 100 Sunset Avenue in Venice, California dated March 5, 2004, and the Phase I Environmental Site Assessment, dated March 5, 2004, for the same property.

The function of this report is to provide an assessment of the Phase II data with regard to protection of human health and the environment and to support environmental decision- making. The Phase I and Phase II reports along with this report provide a logical progression in the identification of potential environmental impact on and under the property; the identification and selection of chemicals of potential concern (COPCs); the determination of representative concentrations of those COPCs; and the preparation of a risk-based evaluation for residuals of COPCs in environmental media on the property that may require remedial action or a substantiated recommendation for no further action.

ACKNOWLEDGEMENTS

The environmental site assessment (ESA) of the Metropolitan Transportation Authority (MTA) Division 6 property has a unique aspect. A business arrangement for transfer of the property requires that milestones in the ESA be met according to a fixed schedule. Ordinarily, closure of the environmental investigation cannot be tightly timed because of the review time required by the administering agency.

The LARWQCB has agreed to consider closure of the Site under the Underground Storage Tank (UST) program. If the results of the environmental investigation indicate that closure based on the investigation of the USTs and related areas of the Site is not appropriate, closure based on review by the Spills, Leaks, Investigations, and Cleanup (SLIC) unit of LARWQCB will be conducted.

TABLE OF CONTENTS

1.0	INTR	ODUCT	TON	1-1				
	1.1		THE STREAMLINED RISK ASSESSMENT APPROACH	1-2				
	1.2		ORGANIZATION OF THE REPORT	1-3				
2.0	SITE	DESCR	IPTION					
	2.1		SITE HISTORY	2-1				
		2.1.1	Historical Activities.	2-1				
		2.1.2	Current Activities					
	2.2		GEOLOGIC SETTING AND GROUNDWATER DESCRIPTION	2-2				
		2.2.1	Geologic Setting					
		2.2.2	Groundwater Description	2-3				
3.0	BAC	KGROU	ND					
	3.1 3.2		PREVIOUS ENVIRONMENTAL INVESTIGATIONS ON THE SIT GROUNDWATER MONITORING					
		3.2.1	Identification of Need for Groundwater Monitoring					
		3.2.2	e					
4.0	APPA	ARENT I	PROBLEM	4-1				
5.0	ENV	IRONME	ENTAL SETTING	5-1				
	5.1		CONCEPTUAL SITE MODEL (CSM)	5-1				
	5.2		POTENTIAL EXPOSURE PATHWAYS	5-2				
		5.2.1	CSM Environmental Media and Pathways	5-2				
		5.2.2	CSM Summary	5-4				
	5.3		POTENTIAL RECEPTORS	5-4				
		5.3.1	Adult Workers in Commercial-Industrial Land Use	5-5				
		5.3.2	Adults and Children in Residential Land Use	5-5				
		5.3.3	Adult Workers in Construction Activities	5-5				
6.0	SAMPLING ACTIVITIES AND RESULTS							
	6.1		SELECTION OF THE CHEMICALS OF POTENTIAL CONCERN.					
		6.1.1	Volatile Organic Chemicals (VOCs) in Soil	6-1				
		6.1.2	Semi-Volatile Organic Chemicals (SVOCs) in Soil	6-5				
		6.1.3	Metals in Soil	6-9				
		6.1.4	Petroleum Hydrocarbons	6-10				
		6.1.5	All Chemicals in Groundwater	6-11				
7.0	STREAMLINED RISK ASSESSMENT FOR HUMAN HEALTH PROTECTION							
	7.1		EXPOSURE AND RISK					
	7.2		UNCERTAINTIES IN THE RISK ASSESSMENT	7-1				

8.0	ECOLOGICAL	SCREENING EVALUATION	8-1
9.0		PROFILE	
	9.1	LAND USE SURROUNDING THE FACILITY	9-1
	9.2	COMMUNITY RELATIONS	9-1
10.0	CONCLUSION	IS AND LIMITATIONS	
	10.1	CONCLUSIONS	10-1
	10.2	LIMITATIONS	10-2
11.0	REFERENCES		11-1
TABL	<u>ES</u>		
FIGUE	RES		
<u>APPE</u>	NDIX A: STREA	AMLINED RISK ASSESSMENT TECHNIQUES AND METHODOL	.OGY
APPE	NDIX B: TOTAL CONC	L PETROLEUM HYDROCARBON CHEMICALS OF POTEN ERN	JTIAL
<u>APPE</u>		ARISON OF EXPOSURE SCENARIOS IN STREAMLINED SMENT	RISK

LIST OF TABLES

Table	
<u>1</u>	Soil Vapor Analytical Results
<u>2</u>	Soil Analytical Results
<u>3</u>	Title 22 Metals Soil Analytical Results
<u>4</u>	Groundwater Analytical Results
<u>5</u>	Title 22 Metals Groundwater Analytical Results
<u>6</u>	Historical Soil Data
7	Soil Carbon Range Analytical Results

LIST OF FIGURES

Figure

- 1 Site Location Map
- 2 Conceptual Site Model
- 3 Site Plan

EXECUTIVE SUMMARY

The environmental investigation of the underground storage tank installation at the Los Angeles County Metropolitan Transportation Authority (MTA) Division 6 facility (Site) has been complemented with a Phase I and Phase II investigation for the other portions of the Site. The objective is to obtain concurrence of the Los Angeles Regional Water Quality Control Board (LARWQCB) Underground Storage Tank (UST) Program for the remedial action recommendations and approach to be developed based on evaluation of prior investigation and the Phase I and Phase II investigation results. The property is planned for redevelopment as residential multi-unit housing, so various environmental conditions for protection of human health, including a residential land use exposure scenario, were evaluated using a risk-based approach. This report constitutes a streamlined risk assessment of the Phase II results that may be used to support environmental decision-making in developing the remedial action approach.

As a basis for final evaluation of the property, the preliminary conceptual site model (PCSM) from the risk assessment work plan was updated as a final conceptual site model (CSM) based on the results of the Phase II investigation. The results indicated that for both current and future land use, the paving, buildings, and landscaping effectively preclude exposure pathways via surface soil, including inhalation of volatiles and entrained fugitive dust. This conclusion is based on no detections in soil gas and the scattered detections in the surface soil. More specific description is provided below. Soil-related pathways might be important in a construction worker exposure scenario except that the Phase II results indicate that the scattered detections are significantly less than the EPA Region IX residential soil preliminary remediation goals (PRGs). Ground water is not an exposure pathway either now or in the future because there is a municipal source of drinking water. Free-product liquid was not encountered in any of the investigations and is not of concern for the Site. Surface water is not associated with the site, and storm-water runoff is regulated under a storm-water management plan. A biota pathway is not warranted for the Site, because the Site has been developed since before the National Environmental Policy Act and the California Environmental Quality Act were enacted, and threatened, endangered, or special status species of regulatory concern would not be present on the Site.

Data were collected in the Phase II investigation for soil gas, soil, and groundwater to identify and measure concentrations of chemicals of potential concern (COPCs) that might be present and associated with unacceptable human health and environmental exposure on the Site. The data from the investigation were first grouped in tables by environmental media: soil gas, soil, and groundwater. Next, the concentrations were compared to applicable regulatory criteria and existing, chemical-specific RBCs as a means of selecting COPCs for further risk/hazard characterization for increased lifetime cancer risk (ILCR) and health hazard (chemical-specific hazard quotient, HQ; summed HQs for groups of chemicals and groups of pathways is called a hazard index, HI).

The results by environmental media are as follows:

- The results of **soil vapor sampling** from a network of probes covering the entire site were all non-detect;
- Soil sampling in five areas of the Site corresponding to areas of past site use and materials handling was conducted with analysis of the samples for volatile organic chemicals (VOCs); semi-volatile organic chemicals (SVOCs) including polycyclic aromatic

viii

hydrocarbons (PAHs); polychlorinated biphenyls (PCBs); herbicides; total petroleum hydrocarbons (TPH); metals; and cyanide. Detections of analytes were scattered over the approximately 3.5-acre Site and did not indicate uniform occurrence in support of a residential exposure scenario usually envisioned for a 0.5-acre area.

- The VOCs that were detected were each 2-3 orders of magnitude less than their respective PRG.
- Of the SVOC analytes, herbicides and PCBs were not detected on the property. PAHs were detected in scattered locations, and all of the detected concentrations in the surface soil interval (0-10 feet below ground surface, bgs) were three orders of magnitude less than the respective PRGs.

A single sample, CL8, from 14.5 feet bgs, below the surface soil interval, gave PAH concentrations corresponding to risk above the *de minimis* level of 1E-6 incremental lifetime cancer risk (ILCR) but below the *de maximus* level of 1E-4 ILCR. In other words, the depth below the surface soil interval, the absence of any PAHs in the groundwater, and the absence of PAHs in samples MB25, MB26, and MB27 within 10-15 feet of CL8 indicate an isolated occurrence not warranting further concern.

- Cyanides were not detected in any of the samples;
- Metals, normally found in common soils, were also detected among 95 Site soil samples; all of the metals, excepting selenium were below both California background levels and risk-based PRG levels; while the representative concentration of selenium exceeded the California background level, it was over 2 orders of magnitude lower than the PRG level (0.86 vs. 390 mg/kg); these findings indicate that metals in soil need not be evaluated further for risk/hazard;
- TPH is a complex mixture of hydrocarbons, and sample analysis compared to a gasoline standard (results denoted as C7-C12), a diesel fuel standard (denoted as C13-C22), and a motor oil standard (denoted as C23-C44), when totaled, gave results that were all below the risk-based value of 8,000 mg/kg developed by the Total Petroleum Hydrocarbon Working Group (TPHCWG); further evaluation is not necessary;
- Groundwater sampling was conducted associated with the former UST installation;
 - although historical groundwater monitoring indicated detections of benzene, ethylbenzene, toluene, xylenes, and methyl tertiary-butyl ether (MTBE), more recent sampling gave not-detected results for all these chemicals;
 - chloroform was detected in separate Areas (2 and 4), but there is no maximum contaminant level (MCL) for chloroform, and there is no site-history connection to chloroform presence on the Site; chloroform was not found in soil samples in these areas;

- a single detection of 1,4-dioxane out of 6 samples was obtained (3.4 μ g/L) that was above the 3.0 μ g/L Advisory Action Level of the California Department of Health Services, but is below the risk-based PRG concentration of 6.1 μ g/L; and
- metals detected in ground water were determined to be less than MCLs, less than RBCs or part of background concentrations.

Based on all of these results for groundwater, there are no COPCs in groundwater.

On the basis of these results, the Site passes the streamlined risk assessment and is confirmed as a good candidate for closure of the environmental investigation of the property.

1.0 INTRODUCTION

The Los Angeles County Metropolitan Transportation Authority (MTA) engaged MACTEC Engineering and Consulting, Inc. (MACTEC) to perform environmental assessment of the property at 100 Sunset Avenue in Venice, California (Site). The Site is denoted as MTA Division 6 and is now used as a maintenance facility and bus yard. Per usual professional practice, this report has been prepared for the exclusive use of MTA in general accordance with the MACTEC Work Plan and Cost/Schedule Proposal dated December 31, 2003. If other parties wish to rely on this report and have the permission of MTA, they should contact the MACTEC Project Manager, David DeVries (949-224-0050, x234) so that a secondary client agreement can be executed.

The results of the Phase II investigation indicated no detection of volatile organic chemicals (VOCs) from 34 soil vapor samples (Table 1) and only scattered detections of VOCs in the analysis of 110 soil boring samples (Table 2). Scattered detections were also obtained for analysis of soil samples for polycyclic aromatic hydrocarbons (PAHs) (Table 2). Cyanide, herbicides, and polychlorinated biphenyls (PCBs) were not detected in any of the soil samples analyses conducted (Table 2). Petroleum hydrocarbons were detected in soil samples as total recoverable petroleum hydrocarbons (TRPH), and diesel range hydrocarbons were detected in a portion of those samples (Table 2). Results of soil sampling during the installation of monitoring wells MW-1 and MW-4 in the area of the UST, indicated residual concentrations of methyl tertiary-butyl ether (MTBE) (Table 6). Supplemental analysis of the TRPH samples identifying the carbon-fraction ranges present indicated predominantly motor-oil-range hydrocarbons with lesser amounts of diesel-range hydrocarbons and one detection of gasoline-range hydrocarbons (Table 7). Naturally-occurring metals were detected in the soil samples with frequency-of-detection depending on the specific metal (Table 3). Metals were detected much less frequently in the groundwater samples (Table 4). The inconsistent and scattered occurrence of the detections found in the Phase II investigation are not consistent with a uniform impact over the Site or even identifiable areas of concern (AOCs). Therefore, the risk-based evaluation includes a detailed evaluation for selection of COPCs compared to risk-based concentrations that provide a reference for significant exposure.

1.1 THE STREAMLINED RISK ASSESSMENT APPROACH

Risk-based support for environmental closure is part of a complement of promulgated regulatory criteria (concentrations and/or narrative requirements) and risk assessment for human health and the environment for those residuals of chemicals of potential concern (COPCs) in environmental media for which there are no promulgated criteria. The streamlined risk assessment presented herein includes promulgated regulatory criteria, namely maximum contaminant levels (MCLs), for the protection of groundwater. It also includes a risk-based evaluation of COPCs in soil for which there are no promulgated regulatory criteria.

The risk-based evaluation is consistent with the components and techniques of the risk assessment paradigm developed within the National Academy of Science by its National Research Council and published (NRC, 1983, 1994) for use by federal agencies and practitioners across the United States and abroad. The risk assessment paradigm, often called traditional risk assessment, has been an integral part of the Environmental Protection Agency (EPA) Superfund decision making process since the mid-1980's (see for instance, EPA, 1989, 1990). The process is sometimes called a "forward" risk assessment, since the elements of Site-specific **data collection, exposure assessment**, and **toxicity assessment** are used to develop a **risk characterization**, an estimate of increased lifetime cancer risk (ILCR) and health hazard (as a hazard index, HI) and a narrative description that includes an assessment of uncertainties to ensure that the process has been conducted conservatively for the protection of the public health.

In this risk assessment, a variant of the above methodology has been applied by comparing representative Site concentrations (based on Site-specific **data collection**) to risk-based concentrations (RBCs) that have been calculated for a particular type of land use using **exposure assessment** and **toxicity assessment**, coupled with standard **risk characterization** choices of target risk (one-in-a-million ILCR) and hazard index (HI) of 1.0. This type of risk assessment is sometimes referred to as Streamlined Risk Assessment and selected elements of the process are described as risk-based evaluation. EPA Region IX has capitalized on the publication of the equations and descriptions for RBCs, called Preliminary Remediation Goals (PRGs) in the Superfund program (EPA, 1991a), to publish a standard table of PRGs (most recently in EPA, 2002). These RBCs are applicable to the MTA Division 6 Site because the exposure pathways

included in the calculation of the PRG tables are the same as those identified in the conceptual site model for the Site (see Sections 5.1 and 5.2).

Both risk-based evaluation and streamlined risk assessment are used in this risk assessment. In some cases, risk-based evaluation is sufficient to indicate that COPCs need not be evaluated further. In other cases, streamlined risk assessment is used for comparison to residual COPC concentrations to support environmental decision-making for the Site.

1.2 ORGANIZATION OF THE REPORT

The general outline of the California EPA Preliminary Endangerment Assessment (PEA; Cal/EPA, 1999) has been used to provide a structure of the report acceptable to the LARWQCB for this type of site, and, thereby, promote ease of review in support in Site closure.

Section 1 presents an **Introduction** to the report with descriptions of the project setting and the streamlined risk assessment approach utilized to support environmental decision making.

Section 2 provides **Site Description**. The basis of the decisions for the sampling plan is the site history, including records and reliable recollections of the usage of chemical materials on the Site over the years. The site description supports that rationale.

Section 3 provides **Background** on the discovery and response to the environmental release from the USTs and the relation of that case to the overall due diligence investigation described in the Phase II report.

Section 4 is a statement of the **Apparent Problem** and mitigation of it to establish a basis for closure of the environmental investigation of the Site.

Section 5 begins the streamlined risk assessment by providing information on the **Environmental Setting** and the potential exposure pathways and receptors that are part of the risk-based evaluation.

Section 6 describes the evaluation of the Sampling Activities and Results from the Phase II report for inclusion or exclusion as COPCs for risk-based evaluation.

Section 7 presents the Streamlined Risk Assessment for Human Health Protection.

Section 8 addresses the **Ecological Screening Evaluation** component for protection of the environment.

Section 9 presents a brief **Community Profile** in support of the present and future land use choice in the risk-based evaluation.

Section 10 presents the Conclusions and Limitations from the streamlined risk assessment

Section 11 contains the **References** cited in corroboration of the reports, methods, and techniques utilized in the report.

The **Tables** Section presents data and evaluation consistent with the streamlined risk assessment. The tables are not intended to be a re-publishing of the extensive data tables included in the Phase II report (MACTEC, 2004b).

The **Figures** Section presents those from the Phase II report that are germane to the description and rationale for the evaluations presented herein.

Appendix A is a more detailed description than in the main body of the report of Streamlined Risk Assessment Techniques and Methodology for the interested reader.

Appendix B is a description of the methodology by which the Total Petroleum Hydrocarbon Working Group (TPHCWG) developed risk-based concentrations for the complex mixtures that make up various hydrocarbon products, including gasoline, diesel fuel, and motor oil. The methodology also applies to crude oil, as produced in exploration, and to weathered products that might be the result of environmental releases after volatilization and environmental degradation have taken place.

All of these sections constitute the Streamlined Risk Assessment in support of the closure of the environmental investigation of the Site.

2.0 SITE DESCRIPTION

The Site history, geologic setting, and groundwater characterization are important in site description for environmental investigation. Prior environmental investigations have been conducted for the Site.

2.1 SITE HISTORY

The Site consists of an approximately 3.5-acre, irregular-shaped parcel that is bounded by Sunset Avenue to the northwest, Main Street to the northeast, Thornton Place to the southeast, and Pacific Avenue to the southwest (Figure 1). The site generally slopes from south to north and was constructed with a retaining wall along Main Street and Thornton Place. The southeast corner of the site is elevated approximately 9 to 10 feet above Main Street.

2.1.1 Historical Activities

The site was developed in 1901 by Los Angeles Pacific and served as the rail yard for the Venice Short Line, which provided service from Venice to downtown Los Angeles in 1902. The site contained an electrical substation at the northeast corner of the site and a car barn with three sets of rail tracks on the west-central portion of the site. In the 1950s, the site was converted into a bus division.

2.1.2 Current Activities

Currently, the site is used by the MTA Division 6 Maintenance Facility and Bus Yard as the base for a fleet of 78 buses that provide public transportation service generally between downtown Los Angeles and the west side of the city. The main service routes include Santa Monica Boulevard, Pico Boulevard, Olympic Boulevard, and Pacific Coast Highway (Temescal Canyon). Fuel dispensing islands are located on the southeastern portion of the site along Main Street, and until February 1998, the northern portion of the site contained four single-walled steel USTs (two 10,000-gallon diesel fuel, one 8,000-gallon motor oil, and one 6,000-gallon gasoline) used for fueling buses. The USTs were removed and replaced with four dual-wall fiberglass USTs in February 1998 (two 10,000-gallon diesel, one 8,000-gallon gasoline, and one 5,000-gallon waste

fuel). The central portion of the site contains approximately 52 stalls for bus parking. The remainder of the site is open and used for vehicle parking and driveway access.

The bus maintenance area contains four service bays with inspection/repair pits that allow MTA mechanics to perform maintenance work underneath the buses without having to use hydraulic lifts. Daily maintenance activities on the buses involve new tire and wheel (rim) repairs, painting, steam cleaning of parts and equipment, and washing. (A bus wash rack is situated on the west-central portion of the site adjacent to Pacific Avenue.)

2.2 GEOLOGIC SETTING AND GROUNDWATER DESCRIPTION

The surface and subsurface drainage and geology are of interest because they provide an indication of the fate and transport of COPCs, if present.

2.2.1 **Geologic Setting**

The site is located in Venice, California, approximately 1 mile northwest of Ballona Creek. The site slopes gently toward the north and is at an average elevation of approximately 30 feet above mean sea level (msl) (Plate 1, Site Location Map). The shoreline of the Pacific Ocean is approximately 1,200 feet southwest of the site. Regionally, the site is located within the Peninsular Ranges geomorphic province, which is characterized by elongated northwest-trending mountain ridges separated by straight-sided sediment-filled valleys. The northwest trend is further reflected in the direction of the dominant geologic structural features of the province, which are northwest to west-northwest trending folds and faults, such as the Newport-Inglewood fault zone, located northeast of the site.

Materials underlying the site, from the surface down, are as follows:

- Fill materials, extending to depths of up to approximately 10 feet below ground surface (bgs), are present beneath the site (URS Corporation [URS], 2002).
- The site lies within the Ballona Gap Region of the Santa Monica Basin. The Ballona Gap forms and east-west trending trough that is filled by recent alluvial deposits. The alluvium is composed of inter-bedded sand, sandy clay and gravely sand and has a maximum thickness of 50 feet bgs (California Department of Water Resources [CADWR], 1961).
- Below the alluvial deposits are approximately 200 feet of sedimentary bedrock of the early Pleistocene-age San Pedro Formation. The San Pedro Formation consists of sand, gravel, silty sand, and silt.

• The Pliocene-age Pico Formation, a sequence of marine sedimentary deposits, underlies the San Pedro Formation beneath the site.

2.2.2 Groundwater Description

The site is located in Section 17, Township 2 South, Range 15 West in the USGS Venice Quadrangle. It is in the West Coast Groundwater Sub-basin of the Coastal Plain of the Los Angeles Groundwater Basin, also known as the West Coast Basin, which is bounded on the north by the Ballona Escarpment, on the east by the Newport-Inglewood Fault Zone, and on the south and west by the Pacific Ocean and Palos Verdes Hills. The Los Angeles and San Gabriel Rivers cross the West Coast Basin and terminate into the Pacific Ocean through the Dominguez and Alamitos Gaps, respectively (CADWR, 2003). Ground water is commonly withdrawn from Holocene to Pliocene-age marine and non-marine deposits in the West Coast Basin. Notably, the first occurring ground water-bearing unit as defined by Poland et al. (1959) is the "50-foot gravel" located within the Holocene-age alluvial deposits. However, groundwater in areas close to the Pacific Ocean often is of poor quality due to seawater intrusion. According to ground water level measurements conducted in monitoring wells onsite (MACTEC, 2004a), groundwater is approximately 19 to 25 feet bgs and generally flows toward the south, measured at a gradient of 0.015 – 0.025 foot per foot during the last twelve months.

3.0 BACKGROUND

The Site has been investigated previously as part of the investigation of the UST installation for potential environmental release(s).

3.1 PREVIOUS ENVIRONMENTAL INVESTIGATIONS ON THE SITE

Environmental investigations related to a potential release(s) from the USTs have been conducted by Converse Environmental Consultants (1988); Holguin, Fahan & Associates, Inc., as a subcontractor to Bentley Company (1995, 1997); and Tyree Corporation (1998). Locations of the borings and samples identified below are listed on the Site Plan (Figure 3).

A summary of available reports of previous investigations conducted onsite by other environmental consultants is presented in the Phase II report (MACTEC, 2004c). Data from these reports are summarized in Table 4, Groundwater Analytical Results and Table 6, Historical Soil Data. The locations of soil samples retrieved during prior investigations are depicted on Figure 3, Site Plan. Please be aware that the locations of borings by previous consultants are rough approximations based on reports with differing information. Nonetheless, the data in the tables were considered for purposes of streamlined risk assessment.

3.2 GROUNDWATER MONITORING

The historical site characterization conducted by various consultants in the area of the USTs led to the need to monitor the groundwater.

3.2.1 Identification of Need for Groundwater Monitoring

As specified by URS (2002),

"Results of previous investigation work at the site indicated that soil and groundwater in the vicinity of the former fuel USTs was impacted with fuel petroleum hydrocarbons. During subsequent UST removal and replacement activities conducted in February 1998, petroleum hydrocarbon-impacted soil was identified immediately beneath the former USTs. Specific objectives of the investigation included the following:

- Evaluate the groundwater elevation, flow direction, and gradient beneath the UST area at the northern portion of the site.
- Evaluate the lateral and vertical extent of groundwater impacted with petroleum hydrocarbons, volatile organic compounds (VOCs), and total lead.
- Evaluate geochemical parameters that indicate natural attenuation of the petroleum hydrocarbons and related fuel constituents in groundwater."

3.2.2 **UST Case**

In order to track progress with respect to the USTs and potential groundwater impact, the LARWQCB assigned file no. 902910151 to the case. The investigation reported in the Phase II report (MACTEC, 2004) pertains to a due-diligence investigation of the portions of the MTA Division 6 Site other than the USTs. The potential for closure of the environmental investigation centers on the USTs and file no. 902910151 but can include all the due-diligence investigation, especially as it relates to hydrocarbon products from facility operations that might be released to environmental media. In discussions during the March 8, 2004 LARWQCB meeting, the following items were agreed:

- the Site is low priority based on LARWQCB data review;
- LARWQCB wants to close this Site, but upon MTA request would keep the file open;
- LARWQCB is to consider for complete closure the groundwater monitoring data, and the Phase II site assessment data; the risk assessment was not a requirement of the LARWQCB but MTA has provided it to LARWQCB for their records to complete the file; and
- The LARWQCB UST Section can only close the case if the COPCs¹ are related to petroleum hydrocarbons.

The selection process utilized in screening COPCs detected in the Phase II investigation is based on Exhibit 5-1 in EPA's *Risk Assessment Guidance for Superfund* (EPA, 1989). Chemicals such as 1,4-dioxane and chloroform were detected in one and two groundwater samples, respectively, with no source(s) detected in the soil and soil vapor investigation. Chloroform sources cited in the United States Public Health Service Web Page (http://www.eco-usa.net/toxics/chcl3.shtml) indicates that usual sources of chloroform releases are chemical companies, paper mills, and waste water from sewage treatment plants. None of those have been associated with MTA Division 6 property.

This report presents the historical and MACTEC Phase II investigation results in addition to groundwater monitoring data as support for closure.

4.0 APPARENT PROBLEM

The apparent problem on the Site is the residuals in soil and groundwater for the open UST case of the LARWQCB coupled with the possibility of other petroleum hydrocarbon residuals in other areas of the Site. Over-excavation was conducted in the removal of the USTs and the installation of new USTs on the property, and it is shown herein that these residuals of the COPCs in the soil are insignificant. Petroleum hydrocarbons were detected on other portions of the Site, primarily in shallow soil.

Monitoring of groundwater wells on the Site has been underway for several years. There has been significant reduction in the observed concentrations of the COPCs to the point that confirmation sampling during 2004 may be sufficient for closure of the environmental investigation of the USTs. Further, this streamlined risk assessment will be reviewed as potential support for inclusion in the other areas of the Site in the summary section of the no-further-action (NFA) letter for the case. The streamlined risk assessment is conducted in this context.

5.0 ENVIRONMENTAL SETTING

For purposes of risk-based evaluation and streamlined risk assessment, a choice of land use (and the associated exposure scenario) must be made. For MTA Division 6, the current land use is commercial-industrial. For future land use in the redevelopment of the property, the land use is planned to be residential.

A detailed description of the methodology underlying streamlined risk assessment is presented in Appendix A. In this section, the component elements supporting streamlined risk assessment are developed: exposure pathways, receptors and exposure routes, as exemplified in the CSM shown in Figure 2. Because the CSM is a straightforward, pictorial way of designating and communicating exposure pathways and receptors with exposure routes, the description of environmental setting will begin with the CSM.

5.1 CONCEPTUAL SITE MODEL (CSM)

Figure 2 is the CSM for the MTA Division 6 property. Complete exposure pathways may be traced from left to right. Beginning at the left in the CSM, sources, pathways, and receptors are identified as boxes and may be thought of as the concentration of each COPC at each reference point (box) as it disperses and attenuates along its fate & transport pathway. The arrows may be thought of as the equation, algorithm, model, or concentration reduction factor that allows the COPC concentration in any particular box to be estimated based on the concentration in the box to its left. Where environmental sampling data are available, the concentrations in each box are known specifically. Where the data are not known, or are not available, modeling or other estimation techniques are employed, as needed, to permit the quantitative estimation of the exposure intake for the designated receptors. Where a pathway is determined to be incomplete (dashed lines in Figure 2), the receptor boxes are empty and are colored light green. The red receptor boxes indicate those pathways that are considered potentially complete. A black dot is used to indicate current land use. A square block is used to indicate future land use. Complete pathways warrant evaluation for the significance of risk/hazard via the pathway for exposure.

Consistent with standard practice, risk/hazard may be calculated using streamlined risk assessment for a potentially complete exposure pathway to assess its significance (ASTM, 1995, 2000; EPA,

1989). Construction and development has taken place on the property, and the risk-based evaluation considers the property as it currently is, including historical environmental releases, if they occurred, in evaluating the current land use as a commercial-industrial facility. Future land use is also considered in the CSM for the potential future use of the property as residential development.

5.2 POTENTIAL EXPOSURE PATHWAYS

Figure 2 shows the understanding of potential exposure pathways for the MTA Division 6 Site.

5.2.1 CSM Environmental Media and Pathways

The identification of potential exposure pathways tie to the results of investigations taken to characterize the Site in addition to that conducted to characterize the UST area.

Soil

Currently, the Site is completely paved. Were it not for the paving, the soil exposure pathway would include human exposure (adult workers) to soil via incidental ingestion, dermal contact with soil, and volatilization and inhalation (of fugitive dust) by adult workers and construction workers in the current land use. However, this pathway is incomplete for current land use because of the buildings and paving over the entire Site. As shown in Table 1, even if there were potential for volatilization from soil through cracks in the pavement to ambient air or indoor air, the pathway is shown to be incomplete because all the results from samples of the soil vapor survey over the entire Site are not-detected (see later, Section 6.1.1.1).

For residential land use in the future, human exposure to bare soil would include incidental ingestion, dermal contact with soil, and volatilization and inhalation (of fugitive dust) by adult and children residents on the property. The future development plan for the property includes essentially complete paving and landscaping around the constructed residential building. Exposure to bare soil in current or future land use is precluded, so that pathway is incomplete for current and for future land use. This is supported by the finding shown in Table 1 that all the results of soil vapor samples over the entire Site are not-detected (see later, Section 6.1.1.1). Construction workers might be exposed via a soil pathway during construction activities.

The highly developed status of the property over the years precludes the need for biological survey.

Air

The air exposure pathway could be complete in a residential housing scenario for adults and children,² because of inhalation of vapors and fugitive dust entrained in outdoor air from the soil. However, for current or future land use, the pathway is incomplete because of the constructed buildings and paving over the entire Site. Also, the low concentrations and percentage detection of the COPCs indicates that the concentrations are insignificant compared to risk-based concentrations. Table 1 indicates that <u>all</u> of the soil vapor probes yielded not-detected results.

During construction activities, there could be potential for exposure to construction workers.

Groundwater

The groundwater exposure pathway could be impacted by leaching from subsurface soil. However, groundwater has been monitored where potential impact is an issue, and the results are below MCLs. The groundwater is not used on the Site, and municipal water is available to the facility. Also, the groundwater would not be used by construction workers regardless of the land use. The groundwater pathway is considered incomplete.

For protection of groundwater quality, a due-diligence comparison has been conducted for concentrations of the COPCs detected in the groundwater to the maximum concentration limits (MCLs) as promulgated regulatory criteria for selection of potential COPCs for risk-based evaluation of water quality. (As will be shown later, this evaluation substantiates that this pathway is incomplete for this Site.)

_

² It is understood that the surrounding area contains residential housing where adults and children may be residents. The redevelopment of the Site is currently intended for apartment lofts, usually inhabited by adults. However, because there is the possibility that adults and children may be present on the redeveloped property, it is appropriate to consider risk-based evaluation that is protective for both adults and children.

Free-Phase Liquid Plume

The portion of Figure 2 for free-phase liquid plume and mobile free-liquid migration does not apply to the Site. No free-phase liquids have been encountered in any of the investigations of the Site. The free-phase liquid plume pathway is incomplete.

Surface Water and Sediments

Surface water is not found on or associated with the MTA Division 6 Site. Sediments normally associated with surface water are also absent. Stormwater runoff is regulated under a Stormwater Management Plan. Liquids collected in the drain system on-Site are processed through a clarifier before discharge to the sewer system under an Industrial Wastewater Discharge Permit.

5.2.2 CSM Summary

The CSM provides the communication tool for the current understanding of the site characterization and the potential exposure pathways in future land use. Exposure pathways for adult workers do not occur in the current land use because of the complete cover of the Site with paving and the constructed buildings. Adult and child resident exposure pathways could exist in future land use excepting that the redevelopment of the property is planned to result in pavement and building coverage of the soil, thereby precluding soil as a potential exposure pathway. It is understood that exposure of residents to ground water will not occur, because they have a municipal source of drinking water. Groundwater quality has been assessed for protection of the groundwater resource by monitoring and comparison to MCLs. A construction worker could be exposed to the soil dust and vapors during construction, but would not be exposed to the groundwater. There are no pathways for free-phase liquid migration (because there are no free-phase liquids) or surface water and sediments. Rainwater runoff is regulated through a storm-water management plan and liquid discharge off the site is controlled through compliance with an Industrial Wastewater Discharge permit.

5.3 POTENTIAL RECEPTORS

Potential receptors are associated with the land use and exposure pathways. There are no operative exposure pathways in current land use with adult workers because the Site is completely paved and

built over and the soil vapor survey indicated non-detect results over the entire Site. Nonetheless, the traditional potential receptors can be identified.

5.3.1 Adult Workers in Commercial-Industrial Land Use

The current land use is for commercial-industrial purposes. Full-time, on-site workers are present on the property. However, they are protected from exposure, if significant exposure could occur, by the paving and building that completely cover the site. The paving also serves to mitigate potential inhalation pathways for fugitive dust and volatilization from soil.

Workers on the property after property transfer and redevelopment might include gardeners, landscapers, or maintenance workers. Appendix C presents data and discussion substantiating that the COPC selection process utilizing a screening against residential soil PRGs is conservative and also protects for commercial-industrial, gardening, and landscaping exposure scenarios.

5.3.2 Adults and Children in Residential Land Use

Pathways for these receptors are not complete on the CSM, but as a conservative measure for risk-based screening, they are discussed below. Future residential land use is considered assuming that adults and children will both be present. RBCs based on an "age-adjusted individual" receptor are used. These are exactly those RBCs compiled for the EPA Region IX PRG table (EPA, 2002). Exposure parameters for an age-adjusted individual comes from a calculation based on a child for a 6-year exposure, sometimes called 0-6 years, plus a calculation based on an adult exposure for 24 years. Together, these calculated contributions to risk/hazard constitute a 30-year exposure corresponding to the 90th percentile duration for residential tenure at one residence (EPA, 1991a).

5.3.3 Adult Workers in Construction Activities

The construction worker exposure scenario is based on an adult worker. The construction scenario is different from the commercial-industrial exposure scenario because the adult worker in a construction scenario works on the Site for a short time (weeks to months), while the adult worker in a commercial-industrial scenario works at the job for 25 years. Also, the default incidental soil ingestion rate for construction workers is 480 mg/day, while that for the commercial-industrial

scenario is only 50 mg/day. While the construction worker has significantly more incidental dust ingestion, it is for a significantly shorter period of time. These parameters are reflected in Table C-1 and the discussion of Appendix C.

The exposure parameters used for calculating risk/hazard in traditional risk assessment (see for instance, EPA, 1989 and Cal/EPA, 1996), and RBCs for streamlined risk assessment (EPA, 1991a) are well established and are used in the RBCs compiled in the PRG table (EPA, 2002).

The use of residential PRGs for streamlined risk assessment is also protective of the construction worker exposure scenario. As shown in Appendix C, when the default exposure factors for a residential exposure scenario are compared to a construction worker scenario, the residential scenario with an adult is 8 to 86 times more stringent (more protective) than the construction worker scenario. Further, the residential scenario with a child receptor is 16 to 39 times more stringent (more protective) than the construction worker scenario. Clearly, streamlined risk assessment using a comparison in COPC selection for a residential exposure scenario (*i.e.*, using residential PRGs) is also protective for the construction worker scenario.

6.0 SAMPLING ACTIVITIES AND RESULTS

The Phase II investigation was designed to characterize subsurface environmental conditions in five selected areas (Area-1 through Area-5) based on the historical use of the site and information discussed in MACTEC's Phase I Environmental Site Assessment (MACTEC, 2004a). The Phase II assessment included the following activities:

- **Site History**—Prior to implementing the site assessment, MACTEC reviewed available documents from prior environmental investigations conducted onsite. The historical use of the site was used to identify areas of COC use for investigation and to schedule investigative borings in new locations that have not been previously investigated.
- **Field Activities**—Site-wide subsurface investigation was conducted in five predetermined areas of concern. Subsurface conditions were logged by the field geologist.
- **Analytical Results**—Analytical results from the soil vapor, soil, and groundwater samples collected during the investigation were compiled in the Phase II report.
- **Report Discussion**—Opinions were rendered on the significance of the assessment results.

For purposes of risk-based evaluation and streamlined risk assessment, the results of the Phase II investigation are assessed as presented in the following sections.

6.1 SELECTION OF THE CHEMICALS OF POTENTIAL CONCERN

The COPCs tested for in the Phase II investigation were based on the site history and knowledge of chemical materials usage on the Site as elaborated in the Phase I report (MACTEC, 2004b). The Phase II results are especially interesting in that they indicate inconsistent occurrence of the various COPC residuals in environmental media. The detections are predominantly related to petroleum hydrocarbons, and the isolated detections of chlorinated hydrocarbons are insignificant by virtue of their concentration, low frequency of detection, and lack of connection to activities that have occurred on the Site over the years.

6.1.1 Volatile Organic Chemicals (VOCs) in Soil

VOCs were tested for in the soil borings and in the soil vapor sampling and analysis.

6.1.1.1 VOCs in Soil Vapor

The soil vapor survey was conducted using an approximate 55-foot grid pattern over the majority of the site, centered on the bus stalls (see Figure 3, Site Plan). Of 41 samples (34 samples plus 4 duplicates plus 3 various purge volume tests) taken at 34 locations, each sample was reported as not detected for VOCs using EPA method 8260B. This indicates that VOCs are not present above their respective detection limits in the surface soils (0 to 10 feet bgs) over the Site. Soil vapor probes, SV3, SV4, SV5, SV6, SV8, and SV9 (see Figure 3) in the area of the former UST installation are particularly significant in this regard. This is the substantiation that a potential pathway for soil vapor intrusion into a building is incomplete for either current or future land use.

6.1.1.2 VOCs in Soil Borings

The results of the analysis of samples from the soil borings are listed in Table 2, Soil Analytical Results, and Table 6 Historical Soil Data.

Table 2 summarizes the recent MACTEC Phase II results. Sample MB20, collected in Area 2 (see for comparison, Figure 5) on 2/10/2004 at a depth of 1 foot bgs, gave results for both 1,3,5-timethylbenzene and 1,2,4-trimethylbenzenene at 13 µg/kg (parts-per-billion). Compared to residential PRGs of 21 mg/kg and 52 mg/kg (parts-per-million), respectively for 1,3,5-trimethylbenzene and 1,2,4-tirmethylbenzene, the results of 13 ppb is insignificant as a contributor to health hazard for these non-carcinogenic COPCs.

Sample DI1 in Area 3 (see Figure 6 for comparison) gave numerous hydrocarbon chemical detections as follows:

COPC	Detected Concentration in Soil (μg/kg)	Residential Soil PRG (µg/kg)
Ethylbenzene [ca]	13	8,900
m,p-Xylenes [nc]	31	270,000
o-Xylene [nc]	7.7	270,000
Isopropylbenzene (Cumene) [nc]	6.4	570,000
n-Propylbenzene [nc]	24	240,000
1,3,5-Trimethylbenzene [nc]	300	21,000
1,2,4-Tirmethylbenzene [nc]	800	52,000
sec-Butylbenzene [nc]	22	220,000
p-Isopropyltoluene (cymene) [TBD]	28	Not listed
n-Butylbenzene [nc]	84	240,000
Naphthalene [nc]	290	56,000
Tertiary-butyl alcohol (TBA) [TBD]	130	Not listed
ca = carcinogen; nc = non-carcinogen;	TBD = to be determined	

Simple inspection shows that none of the detected concentrations is within 2 orders of magnitude of the respective PRG as the risk-based concentration representing 1E-6 ILCR or 1.0 HQ. Even for the PRGs that are not listed currently, the order of magnitude will likely be the same as the other values in the column of PRGs, indicating by implication that the detections of those COPCs, p-isopropyltoluene (also called cymene) and tertiary-butyl alcohol (TBA) are also probably not significant contributors to risk/hazard. In addition, the next nearest sample, DI1 in Area 3 at 15 feet bgs has MTBE at 71 µg/kg compared to a PRG of 17,000 µg/kg, and TBA of 240 µg/kg compared to a not-listed PRG. The rest of the VOC results in Area 3 and Area 4 are "ND, not detected". A single spot with detections could indicate a hot spot, but the small concentrations compared to their PRGs indicate that the detections are not significant for calculating risk/hazard and are not significant for environmental decision-making. Based on these comparisons, these COPCs would not be carried forward for risk assessment.

In Area 5, soil sample CL1 from 15 feet bgs has an MTBE detection at $5.1 \,\mu\text{g/kg}$. [Surface soil is 0–10 feet bgs.] Compared to the residential PRG of 17,000 $\mu\text{g/kg}$ for the concentration corresponding to 1E-6 ILCR, the detection is insignificant, and MTBE will not be carried forward into risk assessment.

Sample CL2 from 10 feet bgs in Area 5 has a naphthalene detection of 5.2 μ g/kg compared to its residential PRG of 56,000 μ g/kg. Once again, the comparison [HQ = 0.00009] indicates that the detection is insignificant and need not be carried forward into the risk assessment.

Sample CL2 from 15 feet bgs in Area 5 has a number of detections as follows:

COPC	Detected Concentration in Soil (µg/kg)	Residential Soil PRG (µg/kg)
MTBE [ca]	9.5	17,000
Benzene [ca]	15	600
Ethylbenzene [ca]	53	8,900
m,p-xylenes [nc]	11	270,000
o-xylene [nc]	15	270,000
Isopropylbenzene (cumene) [nc]	11	570,000
n-propylbenzene [nc]	14	240,000
1,3,5-trimethylbenzene [nc]	27	21,000
1,2,4-trimethylbenzene [nc]	82	52,000
p-isopropyltoluene (cymene) [TBD]	6	NL
n-butylbenzene [nc]	7.5	240,000
ca = carcinogen; nc = non-carcinogen; T	BD = to be determined; NL =	not listed

Just as with the comparison for sample DI1 above, the detected concentrations are insignificant compared to their respective risk-based concentrations, and they need not be carried forward to risk assessment.

There are detections in soil sample SV5 at 4 feet bgs. Tetrachloroethene at 19 μ g/kg is much less than its residential PRG of 1,500 μ g/kg. 1,2,4-trimethylbenzene at 13 μ g/kg is much less than its residential PRG of 52,000 μ g/kg. Neither of these COPCs need be carried forward into risk assessment.

Samples from boring MB4 soil samples at 1 and 5 feet bgs, indicate methylene chloride at 66 and $54 \mu g/kg$, respectively, and tetrachloroethene (PCE) at $9.6 \mu g/kg$. Compared to the residential soil PRGs of $9,100 \mu g/kg$ for methylene chloride and $1,500 \mu g/kg$ for PCE, these isolated detections are insignificant as contributors to risk/hazard. Further, they are not detected in a recurring frequency or lateral pattern to support their inclusion in evaluating an exposure scenario with recurring exposure over a lifetime.

The detections of VOCs found during the MACTEC Phase II investigation in soil across the Site do not support a residential exposure scenario. The results are scattered and isolated across the Site and are much less than RBCs corresponding to acceptable limits for *de minimis* exposure standards of 1E-6 ILCR and 1.0 HI as defined in EPA's National Contingency Plan (EPA, 1990). Based on the latest data for VOCs in soil, there are no COPCs of significance.

Table 6 lists analysis results of soil samples from past UST investigations. Referring to the results for the EPA 8020 analysis for benzene, toluene, ethylbenzene, xylenes, and MTBE, it is instructive to compare the columns of results to their respective residential PRG. For benzene, the residential PRG is 0.6 mg/kg, and that is exceeded by 3 of the results from 1995 (4.2 mg/kg @ 20 feet bgs, 1.5 mg/kg @ 25 feet bgs, and 1.2 mg/kg @ 20 feet bgs) for Area 1 but is not-detected in the boring for MW-5 in Area 1 in 2002. The residential PRG for toluene of 520 mg/kg is not exceeded by any of the results in Table 6. Four of the ethylbenzene results of Table 6, two from 1995 and two from 1998, exceed the residential PRG of 8.9 mg/kg. Two of the results for xylenes in Table 6 from 1998 exceed the residential PRG of 270 mg/kg. One of the results for MTBE exceeds its residential PRG of 17 mg/kg (46.8 mg/kg @ 15 feet bgs in sample T2-N, Table 6 and Figure 3). The comparison to PRGs is not strictly applicable because in every instance where a sample result exceeded the respective PRG, the sample was collected from greater than 10 feet bgs, the threshold defining surface soil in California for a residential exposure scenario. Further, samples from 10-15 feet away (samples T1-N @ 15 feet bgs and T3-N @ 15 feet bgs) were not-detected for MTBE. These detections will not be accessible to redevelopment on the ground surface; the soil gas testing did not indicate any of these COPCs, and the groundwater sampling has not indicated a significant impact on groundwater. For the information and observations to date, it appears that the historical data for VOCs is exactly that, historical data. The residual VOC soil concentrations indicated in Table 6 have the propensity to degrade over time. Considering the frequency of detection and lack of detection in nearby samples (see above), the potential for significant exposure during excavation and installation of any underground parking is de minimis.

6.1.2 Semi-Volatile Organic Chemicals (SVOCs) in Soil

The SVOC results in Table 2 apply primarily to the polycyclic aromatic hydrocarbons. Other COPCs also addressed in this section are the herbicides and PCBs.

6.1.2.1 Polycyclic Aromatic Hydrocarbons (PAHs)

Among the results of Table 2 for polycyclic aromatic hydrocarbons (PAHs), the following table contains a summary of the only hits obtained by analysis of 95 samples representing Areas 1-5 and the bus stall area. The listing is separated by Area because evaluation for a residential exposure

scenario is based on a residential lot of 0.5 acre (EPA, 1996a,b) compared to the approximately 3.5 acres of the MTA Division 6 property. Detections that are separated by about 148 feet (147.58 feet x 147.58 feet = 0.5 acre) are not likely to be a realistic part of the "home range", the 0.5-acre range of an adult or child receptor on a residential property for a residential exposure scenario.

			Risk-Based Screeni	ng of PAH Resu	lts		
Soil Boring	Area	Sample Depth	PAH Analyte	Concentration	Residential Soil PRG	Pote Contrib Risk/F	ution to
#		(feet bgs)		(mg/kg)	(mg/kg)	Risk (ILCR)	Hazard (HI)
MB4	1	1	Pyrene	0.47	2,300 (nc)	NA	.0002
MB6	1	1	Pyrene	0.44	2,300 (nc)	NA	.0002
MB6	1	1	Fluoranthene	0.43	2,300 (nc)	NA	.0002

Soil Boring	Area	Sample Depth	PAH Analyte	Concentration	Residential Soil PRG	Pote Contrib Risk/F	ution to
#		(feet bgs)		(mg/kg)	(mg/kg)	Risk (ILCR)	Hazard (HI)
MB10	2	1.5	Pyrene	0.47	2,300 (nc)	NA	.0002
MB11	2	1.5	Pyrene	0.46	2,300 (nc)	NA	.0002
MB11	2	1.5	Fluoranthene	0.42	2,300 (nc)	NA	.0002

Soil Boring	Area	Sample Depth	PAH Analyte	Concentration	Residential Soil PRG	Pote Contrib Risk/H	ution to
#		(feet bgs)	,	(mg/kg)	(mg/kg)	Risk (ILCR)	Hazard (HI)
CL8	5	14.5	Pyrene	1.4	2,300 (nc)	NA	.0006
CL8	5	14.5	Benzo(a)anthracene	1.3	0.62 (ca)	2E-6	NA
CL8	5	14.5	Chrysene	1.5	62 (ca)	2E-8	NA
CL8	5	14.5	Benzo(k)fluoranthene	1.3	6.2 (ca)	2E-7	NA
CL8	5	14.5	Benzo(b)fluoranthene	1.4	0.62 (ca)	2E-6	NA
CL8	5	14.5	Benzo(a)pyrene	0.88	0.062 (ca)	1E-5	NA
SV31	West of 2	4.5	Benzo(g,h,i)perylene	350	460*	NA	0.8

ILCR = increased lifetime cancer risk; HQ = chemical-specific hazard quotient; HI = multiple-chemical, or multiple-pathway hazard index

nc = non-cancer basis for risk-based concentration; ca = cancer basis for risk-based concentration NA = not applicable for this data screening

PRGs, Preliminary Remediation Goals, are from EPA Region IX's PRG Table and are used here as RBCs for streamlined risk-based evaluation.

Because there was not a risk-based concentration in EPA, 2002, the risk-based concentration for Benzo(g,h,i)perylene, 460 mg/kg, was taken from the California Regional Water Quality Control Board San Francisco Region document, Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables, 2003 (Cal/EPA, 2003).

NOTE; A samples from greater than 10 feet bgs, the CL8 sample at 14.5 feet bgs, exceeded the *de minimis* exposure criteria of 1E-6 ILCR and 1.0 HI, it is not part of a surface soil (0-10 feet bgs) exposure scenario. Even so, the risk/hazard for sample CL8 at 14.5 feet bgs does not exceed the *de maximus* standards of the National Contingency Plan (EPA, 1990) for acceptable exposure of 1E-4 ICLR and 1.0 HI.

The listing of the results with straight forward evaluation for potential contribution to human health risk as increased lifetime cancer risk (ILCR) or human health hazard (hazard index, HI) for a residential land use scenario provides some ready conclusions with regard to disposition and importance of the results for PAHs.

Overall, the few results are spatially scattered over the approximately 3.5 acre Site. For instance, in Area 1 (Figure 3), detections in samples MB4 and MB6 are separated by about lateral 60 feet. Note that the results are at 1 foot below ground surface, and there were no detections at greater depths (Table 2). Even if it is assumed that the space in between the sampling locations is homogeneous for

pyrene and fluoranthene content in the soil at 1 foot below ground surface (bgs), the potential contribution of pyrene and fluoranthene to health hazard is insignificant, *i.e.*, is much less than 1.0 HI, the upper threshold criterion of acceptable exposure. Sample locations MB10 and MB11 are closer to one another in Area 2, with about 40 feet of separation, but the analytical results are almost exactly the same. Pyrene and fluoranthene in Area 2 have insignificant potential contribution to health hazard. Even if the HI for pyrene and fluoranthene in Areas 1 and 2 were summed, as in a residential scenario for the entire area, the HI would be much less than 1.0 (*i.e.*, 0.0008 HI).

A number of PAHs were detected in sample CL8 in Area 5 at 14.5 feet bgs. The location of sample CL8 is several hundred feet away from the MB sample location and can be considered separately for potential contribution to risk/hazard. In the table, risk estimated for single detections of benzo(a)anthracene, chrysene, benzo(k)fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene is potentially significant at values greater than one-in-a-million ILCR (1E-6 ILCR). This might be important for selection of COPCs except that the detections are located at 14.5 feet bgs. California surface soil is defined as 0 to 10 feet bgs, the soil interval that might be exposed for a typical property improvement such as installing a swimming pool with spreading of the excavated soil on the surface thereafter. The detections at 14.5 feet bgs are not significant for potential direct human exposure to soil. Further, the years of disposition of these detections in the subsurface soil and the absence of them in the groundwater samples is an indicator that they are not moving to the groundwater.

A detection of benzo(g,h,i)perylene in boring SV31, about 40 feet west of MB11, seems to be significant based on the result of 350 mg/kg. However, when compared to a surrogate risk-based concentration of 460 mg/kg for direct exposure (Cal/EPA, 2003), the HI of 0.8 indicates acceptable exposure less than 1.0 HI. Even if all the MB results are summed with SV31, the result is less than 1.0.

The summing of risk-based results is usually helpful as a conservative estimate of cumulative risk/hazard for a residential property or living area. For the current PAH results, this is not appropriate. For instance, over a site of approximately 3.5 acres there is only one detection of benzo(a)pyrene at one single location. That single detection is not representative of the entire property, especially considering that it is located at 14.5 feet bgs. A human receptor could never be thought of as existing at that one spot for direct exposure during the 30-year 90th percentile exposure

duration of a residential land use exposure scenario. The argument is the same for the four other PAHs detected in sample CL8, three of which have a single-detection ILCR of more than 1E-6 ILCR.

Based on the isolated detections and locations, PAHs are not significant contributors to risk/hazard for the MTA Division 6 property.

6.1.2.2 Other SVOC-related COPCs

As indicated in Table 2, herbicides were not detected in any of the samples analyzed. PCBs also were not detected in any of the samples analyzed.

6.1.3 Metals in Soil

The array of analytical results for Title 22 metals in soil of Areas 1 through 5 is presented in Table 3. Areas of the 3.5-acre site where the site history and materials usage indicated the potential for metals release to the environment were sampled. The result is 95 sample results for each of the 17 Title 22 metals. The array of 26 samples per acre provides high statistical confidence that the analytical results are representative of the site.

Table 3 indicates that certain of the metals, notably antimony, beryllium, cadmium, mercury, molybdenum, selenium, silver, and thallium, are predominantly not detected at their respective reporting limits (practical quantification limits). Nonetheless, for purposes of the initial evaluation of the metals results, an ND (not detected) result was assumed to be the reporting limit concentration. Common statistics were determined for the metal-specific data sets on this basis.

The table lists the Environmental Protection Agency (EPA) Region IX PRGs for each of the metals in surface soil for a residential land use exposure scenario. Also listed are the ranges of typical background concentrations for each of the metals in soil across the State of California (Bradford, et al., 1996). In addition, the mean/average, standard deviation, confidence interval above the mean for a 95% upper confidence limit (UCL), and the 95% UCL for each metal were determined from their respective data sets and listed on the table.

Regardless of the toxicity properties for each of the metals as a potential carcinogen or noncarcinogen several conclusions are apparent from inspection of the statistical evaluation:

- The 95% UCL concentration for each of the metals, except selenium, is less than or within the range of background concentrations reported in the Kearney Foundation report (Bradford, et al., 1996);
- Selenium is 72% non-detect results; the frequency of detection is 28%; further the conservatively-calculated 95% UCL of 0.86 mg/kg is 0.2% of the residential soil PRG of 390 mg/kg.
- All of the 95% UCL concentrations of the respective metals are well below their respective PRGs, and there should not be a significant contribution of metals to either increased lifetime cancer risk (ILCR) or health hazard (hazard index, HI) for risk-based evaluation.

The results and evaluation of Table 3 indicate that metals in soil on the MTA Division 6 site need not be included in the chemicals of potential concern for possible later risk-based evaluation.

6.1.4 **Petroleum Hydrocarbons**

The evaluation of the complex mixture of hydrocarbons called petroleum hydrocarbons as COPCs can be facilitated using risk-based concentrations developed by the TPHCWG. A description of the methodology by which the TPHCWG developed risk-based concentrations for TPH and related petroleum products is presented as Appendix B. Also presented in Appendix B is a graph from which the ranges of risk-based concentrations for a number of petroleum products and weathered residuals can be estimated. That is the sources of the risk-based concentrations used in this section.

6.1.4.1 Total Petroleum Hydrocarbons

Table 2 indicates the results for TRPH (Total Recoverable Petroleum Hydrocarbons) 418.1 analysis of soil in various areas of the Site. Table 6 indicates the historical results obtained from past investigations in 1988, 1995, and 1998. Because TRPH refers to an analytical method, correspondence to risk-based concentrations is made to TPH measured against a gasoline standard, against a diesel fuel standard, and against a motor oil standard, denoted TPH-g, TPH-d, and TPH-

mo accordingly. In Table 2, the maximum TPH concentration for TPH-d is 960 mg/kg. If the maximum TRPH concentrations, 960 mg/kg, were taken as a global surrogate for TPH-g, TPH-d, and TPH-mo, it would still not exceed the screening value of 8,000 mg/kg from the TPHCWG report. In Table 7, more recent, detailed data for TPH, as TRPH and for carbon chain fractions, is compiled. The column titled C7-C44 contains the total concentration of all the carbon fractions making up the sample. Note that in column "C7-C44 Total" none of the totals is greater than 6,300 mg/kg, thereby corroborating the simple assessment offered for the TPH data in Table 2. From the TPH data measured to date, including all of the results in Table 7 for carbon range hydrocarbons, no remedial action for TPH is indicated on a risk basis.

Historically, the analytical results were higher for site conditions 15 or 16 years ago compared to recent results. This is consistent with natural biodegradation processes that typically act on petroleum hydrocarbon residuals in the environment. From Table 6, the TRPH result for sample T2-N is 23,600 mg/kg, but none of the individual TPH-g and TPH-d results approach this magnitude. Therefore, even the historical data also fit within the screening concentration of 8,000 mg/kg

6.1.5 All Chemicals in Groundwater

As described in the CSM for the Site (Figure 2), there is no complete exposure pathway between human receptors and the groundwater. However, consideration of the occurrence of COPCs in groundwater is useful for closure of the Site.

6.1.5.1 Current versus Historical Monitoring Data For Organics In Groundwater

Historically, the groundwater under the Site contained TPH-g and BTEX compounds. However, in 2004, analysis of groundwater for TPH-d, TPH-g, PAHs, herbicides, cyanides, and PCBs yielded not-detected results in every case. Further, analysis of the groundwater for the emerging chemical, 1,4-dioxane yielded 1 detection (3.4 μ g/L) out of 6 sample analyses that was slightly above the 3.0 μ g/L Advisory Action Level (AAL) of the California Department of Health Services. However, the 1,4-dioxane concentration is less than the tap water PRG of 6.1 μ g/L. Analysis of 6 samples for VOCs (and MTBE) yielded two detections of chloroform at 1.5 μ g/L and 5 μ g/L which exceed the California-Modified tap water PRG of 0.53 μ g/L. There is no MCL for chloroform. Chloroform is

associated with chemical manufacturing, paper manufacturing, and discharge from wastewater treatment plants. There is no reason to believe that chloroform is related to any previous or current operations on the Site. Based on current groundwater monitoring data and the grab groundwater samples discussed above, there are no COPCs for organics in groundwater.

6.1.5.2 Title 22 Metals Groundwater Analytical Results

Table 5 shows the groundwater monitoring results for Title 22 metals analyses. Consideration of each metal individually substantiates ruling each out as a COPC for risk assessment.

- Antimony is non-carcinogenic with detections in 5 out of 6 monitoring wells across the Site. Filtered and unfiltered groundwater samples were analyzed for each well, and the results were the same within laboratory variation of ±20%. The results from all five wells (MB3, MW05, MB11, MW03, and MB31) compared to one another within ±20% as well. However, the detections of antimony in groundwater did not correspond to the locations of the detections of antimony in the soil. Background concentrations of antimony in California groundwater determined by the Air Force Center for Environmental Excellence (Hunter and Davis, 2004) and by the University of California Division of Agriculture and Natural Resources (Harter, 2003) range from not-detected (detection limit of 0.026 mg/L) to 0.15 mg/L. The uniform detections associated with the Site are considered to be background, and antimony is not considered a COPC.
- **Arsenic** has just one detection out of 12 samples, and it is less than its respective MCL; it is probably part of the natural background and is not a COPC.
- **Barium** is a non-carcinogen with 12 out of 12 detections, all of which are less than the MCL; it is not a COPC.
- **Beryllium** is a carcinogen with only one detection out of 12 samples; the detected concentration is less than the MCL; it is not a COPC.
- **Cadmium** was not detected in the groundwater; it is not a COPC.

- Chromium (Total) has one detection in the groundwater out of 12 samples; the detected concentration is greater than the MCL but is less than the tap water PRG for either chromium III or chromium VI; it is not a COPC.
- Cobalt has two detections out of 12 samples; it has no MCL, but the detected concentrations are significantly less than the tap water PRG; it is not a COPC.
- **Copper** has two detections that are less than the MCL; it is not a COPC.
- Lead has two detections; it does not have an MCL, but the commonly accepted concentration of lead in Southern California drinking water, the federal action level at the tap, 15 μg/L, is significantly larger than the concentrations detected in the groundwater; it is not a COPC.
- Mercury has one detection out of 12 samples that is less than the MCL; it is not a COPC.
- **Molybdenum** has 11 detections out of 12 groundwater samples that are all much less than the tap water PRG; it does not have an MCL; it is not a COPC.
- **Nickel** has three detections in the groundwater out of 12 samples that are less than the MCL; it is not a COPC.
- **Selenium** has three detections in the groundwater that are all less than the MCL; it is not a COPC.
- **Silver** is not detected in the groundwater; it is not a COPC.
- **Thallium** is not detected in the groundwater; it is not a COPC.
- Vanadium has three detections in 12 groundwater samples that are all less than the tap water PRG; it is not a COPC.

• **Zinc** has five detections in 12 groundwater samples that all are all less than the MCL; it is not a COPC.

This analysis indicates that none of the metals are COPCs in groundwater. Overall, the evaluation indicates that there are no COPCs in the groundwater for risk-based consideration.

7.0 STREAMLINED RISK ASSESSMENT FOR HUMAN HEALTH PROTECTION

This risk assessment of the MTA Division 6 Site is unique in that while there are potential exposure pathways by which exposure to future land use residents might have exposure to environmental COPCs, there are no significant COPCs identified in any of the environmental media upon which to prepare a quantitative risk assessment. On this basis, in effect, the Site passes the streamlined risk assessment and is confirmed as a good candidate for closure of the environmental investigation of the property.

7.1 EXPOSURE AND RISK

Description of the environmental setting in Section 5 resulted in the identification of exposure pathways by which exposure to the COPCs could occur to residents and construction workers in future land use. However, the potentially complete exposure pathways were shown to be incomplete during selection of the COPCs because there were no significant concentrations of the COPCs to support an exposure scenario. The common risk assessment adage is "where there is no exposure, there is no risk", and where the COPCs are not significant compared to risk-based concentrations, there is no significant exposure.

7.2 UNCERTAINTIES IN THE RISK ASSESSMENT

The risk assessment process, whether traditional or streamlined, must be conducted in a conservative fashion. The risk assessment paradigm (model) is an estimation process because environmental risks cannot be verified (Milloy, 1995). The population required to show unambiguously a significant risk of one in one million would require a population of over 5 trillion (Milloy, 1995), all exposed under the same uniform conditions. These circumstances cannot be achieved on our earth, so we use a process that errs on the conservative, "safe" sides to ensure protection of the public health at the standard of care demanded by society, one-in-one-million to one-in-ten-thousand. This implies that each of the components that make up risk assessment must also be conducted conservatively. When RBCs are used for streamlined risk assessment, the conservatism is already built in from the conservative parameters that were used in the calculation of the RBCs. This conservatism helps to ensure that Type I errors are favored over Type II errors,

i.e. conservatism favors erring to designate a site as significantly contaminated when it actually may not be, instead of the reverse, designating a site as not contaminated when it actually may be.

8.0 ECOLOGICAL SCREENING EVALUATION

The MTA Division 6 property has been fully developed for over 50 years, and before the passing of the National Environmental Policy Act, 1969, and the California Environmental Quality Act, 1970. The site is almost completely paved, and there is virtually no habitat available for common, threatened, endangered, or special-status species of regulatory interest. Indigenous terrestrial or aquatic species are not present on the Site, and the characterization of ecological risk/hazard is not warranted.

9.0 COMMUNITY PROFILE

This section describes aspects of the community profile.

9.1 LAND USE SURROUNDING THE FACILITY

The community in which the MTA Division 6 facility resides is predominantly residential. Housing varies from small homes to apartments and lofts. Small commercial businesses are located within two blocks of the Site. Main Street is a thoroughfare for Venice, California. It is obvious that adults and children may frequent the surrounding area, but the fencing around the MTA Division 6 facility and complete paving and build-out of the property make entry to the Site unappealing to the casual passer-by. Only authorized personnel are allowed access to MTA Division 6.

9.2 COMMUNITY RELATIONS

The MTA has a community relations function dedicated to listening to and addressing concerns of the community using the transportation system and residing in the area around its facilities. MTA has received complaints from time to time about noise and odors associated with buses at the Division Site. In general, the surrounding community is likely to welcome the departure of the maintenance facility and bus yard in favor of more residential housing.

10.0 CONCLUSIONS AND LIMITATIONS

The conclusions from the streamlined risk assessment are presented here with proper limitations for the work conducted.

10.1 CONCLUSIONS

The Phase II investigation indicates that while there are scattered detections of COPCs in the soil and in the groundwater, there are not high enough concentrations spread over a significant area to constitute an area of concern to be evaluated for risk/hazard. Instead, a methodical evaluation of the detected concentrations in the soil and the groundwater indicates that those concentrations are insignificant when compared with the appropriate residential land use RBCs. The logical conclusion is that there are no viable COPCs requiring completion of risk/hazard calculations to evaluate the significance of the potential threat of exposure posed. To wit,

- Soil vapor testing results from across the Site were all reported as not-detected;
- Detections of PAHs in soil were found to be significantly less than RBCs or detected in samples that were located at greater depth than the surface soil interval of 0-10 feet bgs;
- Detections of TPH as the carbon fractions for C7-C12 (gasoline), C13-C22 (diesel fuel), and C23-C44 (motor oil) yield total concentrations that are less than the risk-based RBC of 8,000 mg/kg developed by the TPHCWG (Vorhees, 1999);
- Representative concentrations for metals in soil are all less than the residential soil PRG without any correction for background;
- Metals concentrations in groundwater samples are less than their MCLs, are less than their respective RBC, or are part of the background.
- Groundwater analytical results for organic chemicals are less than their respective riskbased tap water PRG excepting chloroform which has no MCL or link to historical site activities.

The inconsistent occurrence of the COPCs and the insignificant concentrations compared to their respective RBCs indicates that the COPCs do not qualify as COPCs for evaluation in the risk assessment.

For the MTA Division 6 Site, the COPC concentrations are so trivial that risk/hazard calculations are not needed in order to support a conclusion for environmental decision-making. On the basis of these results, the Site passes the streamlined risk assessment and is confirmed as a good candidate for closure of the environmental investigation of the property.

10.2 LIMITATIONS

The findings and opinions of this report are relevant to the dates of the Site work and should not be relied on to represent conditions at later dates.

MACTEC professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by reputable environmental consultants practicing in this or similar localities. No other warranty, express or implied, is made as to the professional advice included in this report.

The opinions included herein are based on information obtained during the study and on professional experience. If additional information becomes available that might impact the environmental conclusions, we request the opportunity to review the information, reassess the potential concerns, and modify our opinion, if warranted.

11.0 REFERENCES

- American Society for Testing and Materials, 1995, <u>Standard Guide for Risk-Based Corrective</u>

 <u>Action Applied at Petroleum Release Sites</u>, E 1739-95^{ɛ1}, West Conshohocken, PA 19428,
 November 1995, editorial corrections in December 1996.
- American Society for Testing and Materials, 2000, <u>Standard Guide for Risk-Based Corrective Action</u>, E 2081-00, 100 Barr Harbor Drive, West Conshohocken, PA 19428.
- ASTM, see American Society for Testing and Materials.
- Bentley Company, The, 1996. Environmental Assessment Report, Division 6 Underground Storage Tank Replacement Project. January 12.
- Bradford et al., 1996, Background Concentrations of Trace and Major Elements in California Soils, Kearney Foundation Special Report, UC-Riverside and CAL-EPA DTSC, March.
- Burmaster, D.E., and R.H. Harris, 1993, "The Magnitude of Compounding Conservatisms in Superfund Risk Assessments," <u>Risk Analysis</u>, Vol. 13, No. 2, p. 131-134.
- California Department of Water Resources, 1961, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A, Ground Water Geology, Bulletin No. 104, State of California, Department of Water Resources, Southern District, June.
- Cal/EPA, See California Environmental Protection Agency.
- California Environmental Protection Agency, 1994, <u>Preliminary Endangerment Assessment Guidance Manual</u>, State of California Department of Toxic Substances Control, Sacramento, January, Second Printing, June 1999.
- California Environmental Protection Agency, 1996, <u>Supplemental Guidance for Human Health</u>
 <u>Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities</u>,
 Prepared by The Office of Scientific Affairs, Sacramento, CA, August.
- California Environmental Protection Agency San Francisco Region, 2003, Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables, http://www.swrcb.ca.gov/rwqcb2/esl.htm.
- EPA, see United States Environmental Protection Agency.
- Harter, T., 2003, Groundwater Quality and Groundwater Pollution, Publication 8084, FWQP Reference Sheet 11.2, University of California Division of Agriculture and Natural Resources (http://anrcatalog.ucdavis.edu) in partnership with Natural Resources Conservation Service (http://www.nrce.usda.gov) and Farm Water Quality Planning (http://waterquality.ucanr.org).
- Holguin, Fahan & Associates, Inc. (HFA), 1995. Environmental Laboratory Analytical Results for Samples Collected November 17, 1995.

- HFA, 1997a. Workplan for Continued Site Assessment at Los Angeles County Metropolitan Transportation Authority, Division 6 Bus Maintenance and Fueling Facility, 100 Sunset Avenue, Venice, California (CRWQCB-LAR ID# 902910152). July 24.
- HFA, 1997b. Groundwater Assessment at Los Angeles County Metropolitan Transportation Authority, Division 6 Bus Maintenance and Fueling Facility, 100 Sunset Avenue, Venice, California. August 8.
- Hunter, P.M. and B. Davis, 2004, Naturally Occurring Concentrations of Inorganic Chemicals in Ground Water and Soil at California Air Force Installations, Air Force Center for Environmental Excellence, Brooks AFB, Texas, and Department of Toxic Substances Control, Sacramento, California.
- MACTEC, Inc., 2004(a), <u>Groundwater Monitoring Report Fourth Quarter 2003</u>, <u>Los Angeles County Metropolitan Transportation Authority</u>, <u>Division 6</u>, 100 <u>Sunset Avenue</u>, <u>Venice</u>, California, MACTEC Project Number 4525030056, January 13.
- MACTEC, 2004b, Report of Phase I Environmental Site Assessment, Metropolitan Transportation
 Authority Division 6 Maintenance Facility and Bus Yard, 100 Sunset Avenue, Venice,
 California, MACTEC Project Number 4525030096, March 5.
- MACTEC, 2004c, <u>Draft Report of Phase II Environmental Site Assessment, Metropolitan Transportation Authority Division 6 Maintenance Facility and Bus Yard, 100 Sunset Avenue, Venice, California, MACTEC Project Number 4525030096, March 5.</u>
- Milloy, Steven J., 1995, <u>Science-Based Risk Assessment</u>, A <u>Piece of the Superfund Puzzle</u>, National Environmental Policy Institute, ISBN 0-9647463-0-1, Washington, DC; *ibid*, 1994, <u>Choices in Risk Assessment</u>, <u>The Role of Science Policy in the Environmental Risk Management Process</u>, prepared for Sandia National Laboratories, sponsored by the U.S. Department of Energy, Office of Environmental Management and Office of Environment, Safety and Health.
- NRC, see National Research Council.
- National Research Council, 1983, <u>Risk Assessment in the Federal Government: Managing the Process</u>, National Academy Press, Washington, DC.
- National Research Council, 1994, <u>Science and Judgment in Risk Assessment</u>, National Academy Press, Washington, DC.
- OEHHA, see California Environmental Protection Agency Office of Environmental Health Hazard Assessment.
- Poland, J.F., Garrett, A.A., and Sinnott, A., 1959. *Geology, Hydrology, and Chemical Character of Groundwaters in the Torrance–Santa Monica Area, California*, U.S. Geological Survey Water Supply Paper 1461.
- Seiler, Fritz A., and Joseph L. Alvarez, 1994, "Definition of a Minimum Significant Risk," Technology: Journal of the Franklin Institute, Vol. 331A, pp. 83-95.

- Tyree Organization, Ltd., The, 1999. Report of Underground Storage Tank Removal at Los Angeles County Metropolitan Transit Authority, Division 6, 100 Sunset Avenue, Venice, California. May 21.
- United States Environmental Protection Agency, 1988, <u>Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final</u>, EPA/540/G-89/004, OSWER Directive 9355.3-01, Office of Emergency and Remedial Response, Washington, DC 20460, October.
- United States Environmental Protection Agency, 1989, <u>Risk Assessment Guidance for Superfund</u>, <u>Volume I, Human Health Evaluation Manual (Part A)</u>, <u>Interim Final</u>, EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington, DC 20460, December.
- United States Environmental Protection Agency, 1990, National Oil and Hazardous Substances
 Pollution Contingency Plan, 40 CFR Part 300, Environmental Protection Agency,
 Washington, DC.
- United States Environmental Protection Agency, 1991a, Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," OSWER Directive 9285.6-03, Office of Solid Waste and Emergency Response, Washington, DC 20460, March 25.
- United States Environmental Protection Agency, 1991b, <u>Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors," Interim Final, OSWER Directive 9285.6-03, Office of Solid Waste and Emergency Response, Washington, DC 20460, March 25.</u>
- United States Environmental Protection Agency, 1991c, <u>Risk Assessment Guidance for Superfund:</u>
 Volume I -- Human Health Evaluation Manual (Part B: "Development of Risk-based <u>Preliminary Remediation Goals, Interim,</u> OSWER Directive 9285.7-01B, Office of Solid Waste and Emergency Response, Washington, DC 20460, December 13.
- United States Environmental Protection Agency, 1992, <u>Guidance for Data Usability in Risk Assessment (Part A)</u>, <u>Final</u>, Directive 9285.7-09A, Office of Emergency and Remedial Response, Washington, DC 20460, April.
- United States Environmental Protection Agency, 1996a, <u>Soil Screening Guidance: Technical Background Document</u>, EPA/540/R-95/128, Office of Solid Waste and Emergency Response, Washington, DC 20460.
- United States Environmental Protection Agency, 1996b, <u>Soil Screening Guidance: User's Guide</u>, EPA/540/R-96/018, Publication 9355.4-23, Office of Solid Waste and Emergency Response, Washington, DC 20460, July.
- United States Environmental Protection Agency, 1997, <u>Health Effects Assessment Summary</u> Tables FY-1997 Update, NTIS PB97-921199LEU, Washington, DC 20460, July, 420 pp.
- United States Environmental Protection Agency, 2002, "Region 9 Preliminary Remediation Goals (PRGs) 2002," Stanford J. Smucker, Ph.D., Regional Toxicologist, San Francisco, CA 94105-3901, October 1.

- United States Environmental Protection Agency, 2003, Integrated Risk Information System, Internet URL: http://www.epa.gov/ngispm3/iris/index.html.
- URS Corporation, 1999. 4th Quarter 1999 Groundwater Monitoring Report, Metropolitan Transportation Authority, Division 6, 100 Sunset Avenue, Venice, California. December.
- URS Corporation, 2002. Groundwater Monitoring Well Installation Report, Metropolitan Transportation Authority, Division 6, 100 Sunset Avenue, Venice, California. June 12.
- Vorhees, D.J., W.H. Weisman, and J.B. Gustafson, 1999, <u>Total Petroleum Hydrocarbon Criteria</u>
 <u>Working Group, Volume 5, Human Health Risk-Based Evaluation of Petroleum Release</u>
 <u>Sites: Implementing the Working Group Approach</u>, Amherst Scientific Publishers,
 Amherst, Massachusetts, June, http://www.AEHS.com.

TABLES

Table 1. Soil Vapor Analytical Results

Soil Vapor	Depth	Sample	Sample	Analysis for VOCs by EPA method 8260B
Boring #	(ft)	Volume (cc)	Date	(μg/L)
SV1	8	90	1/28/2004	ND
SV2	8	90	1/28/2004	ND
SV3	8	90	1/28/2004	ND
SV4	8	90	1/28/2004	ND
SV5	8	90	1/29/2004	ND
SV6	8	90	1/29/2004	ND
SV7	8	90	1/28/2004	ND
SV8	8	30	1/28/2004	ND
SV8	8	90	1/28/2004	ND
SV8	8	210	1/28/2004	ND
SV8	8	90	1/29/2004	ND
SV8 (Dpl)	8	140	1/29/2004	ND
SV9	8	90	1/28/2004	ND
SV10	8	90	1/28/2004	ND
SV11	8	90	1/28/2004	ND
SV12	8	90	1/29/2004	ND
SV13	8	90	1/30/2004	ND
SV14	8	90	1/29/2004	ND
SV15	8	90	1/29/2004	ND
SV16	8	90	1/29/2004	ND
SV17	8	90	1/28/2004	ND
SV17 (Dpl)	8	140	1/28/2004	ND
SV18	9	93	2/25/2004	ND
SV18 (Dpl)	9	443	2/25/2004	ND
SV19	8	90	1/30/2004	ND
SV20	8	90	1/29/2004	ND
SV21	8	90	1/29/2004	ND
SV22	8	90	1/29/2004	ND
SV23	8	90	1/30/2004	ND
SV24	8	90	1/28/2004	ND
SV25	8	90	1/29/2004	ND
SV26	8	90	1/30/2004	ND
SV27	8	90	1/29/2004	ND
SV28	8	90	1/29/2004	ND
SV29	8	90	1/30/2004	ND
SV30	8	90	1/30/2004	ND
SV31	8	90	1/29/2004	ND
SV32	8	90	1/30/2004	ND
SV33	8	90	1/30/2004	ND
SV34	8	90	1/30/2004	ND
SV34 (Dpl)	8	140	1/30/2004	ND

Notes

VOCs - Volatile organic compounds

ND - Not detected over reporting limit (RL)

cc - cubic centimeters

Dpl - Duplicate sample

 $\mu g/L$ - micrograms per liter

Table 2. Soil Analytical Results

Soil Boring #	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8260B** TPH-g (mg/kg)	EPA 9010B/335.2 Cyanide (mg/kg)	EPA 8270C/8310 PAH (mg/kg)	EPA 8151 Herbicides (μg/kg)	pH (pH units)	EPA 8082 PCBs (μg/kg)	EPA 8260B VOCs (µg/kg)
MB1	Area 1	1	2/12/2004	52	-	=	-	ND		-	ND	-
MB1	Area 1	5	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB1	Area 1	15	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB3	Area 1	1	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB3	Area 1	5	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB3	Area 1	15	2/12/2004	ND	-	-	-	ND	-	-	ND	- Methylene Chloride:66*
MB4	Area 1	1	2/13/2004	6300	-	-	-	Pyrene: 0.47	-	-	ND	PCE: 9.6
MB4	Area 1	5	2/13/2004	5000	-	-	-	ND	-	-	ND	Methylene Chloride:54*
MB4	Area 1	15	2/13/2004	ND	-	-	-	ND	-	-	ND	-
MB5 MB5	Area 1 Area 1	5	2/13/2004 21		-	ND ND	-	-	ND ND	- ND		
MB5	Area 1	15	2/13/2004	26	-	-	-	ND ND	-	-	ND	- ND
MB6	Area 1	1	2/13/2004	5600	-	-	-	Fluoranthene: 0.43	-	-	ND	ND
MB6	Area 1	5	2/13/2004	ND	-	-	_	Pyrene: 0.44 ND	-	-	ND	-
MB6	Area 1	15	2/13/2004	21	-	-	-	ND ND	-		ND ND	-
MB19	Area 1	1.5	2/13/2004	-	-	-	-	-	-	-	-	ND
MB19	Area 1	8.5	2/13/2004	-	-	-	ND	ND	-	-	-	-
MB19	Area 1	26	2/13/2004	-	-	-	ND	ND	-	-	-	-
GS1	Area 2	5	2/11/2004	-	-	-	-	-	-	-	-	ND
GS1	Area 2	5.5	2/11/2004	220	-	-	-	-	-	-	-	-
GS1	Area 2	10	2/11/2004	-	-	-	-	-	-	-	-	ND
GS1	Area 2	10.5	2/11/2004	25	-	-	-	-	-	-	-	
MB7B	Area 2	1	2/13/2004	-	-	-	-	-	-	-	-	ND
MB7A	Area 2	1	2/10/2004	- 1200	-	-	-	- ND	-	-	-	ND
MB7A MB7B	Area 2 Area 2	1.5	2/10/2004 2/13/2004	1200	-		-	ND -	-	-	ND	- ND
MB7B	Area 2	5.5	2/13/2004	22	-	-	-	ND	-	-	- ND	ND -
MB7B	Area 2	15	2/13/2004	370	-			ND	-		ND	ND
MB8	Area 2	1	2/10/2004	-	_	_	-	-	-	-	-	ND
MB8	Area 2	1.5	2/10/2004	4200	-	-	-	ND	-	-	ND	-
MB8	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND
MB8	Area 2	5.5	2/10/2004	27	-	-	-	ND	-	-	ND	-
MB8	Area 2	15	2/10/2004	15	-	-	-	ND	-	-	ND	ND
MB9	Area 2	1	2/10/2004	-	-	-	-	-	-	-	-	ND
MB9	Area 2	1.5	2/10/2004	300	-	-	-	ND	-	-	ND	-
MB9	Area 2	6	2/10/2004	-	-	-	-	-	-	-	-	ND
MB9	Area 2	6.5	2/10/2004 2/10/2004	44	-	-	-	ND	-	-	ND	- ND
MB9 MB9	Area 2 Area 2	15 15.5	2/10/2004	- ND	-	-	-	- ND	-	-	- ND	ND -
MB10	Area 2	13.3	2/10/2004	ND -	-	-	-	ND	-	-	ND -	- ND
MB10	Area 2	1.5	2/10/2004	3300	-	-	-	Pyrene: 0.47	-	-	ND	-
MB10	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND
MB10	Area 2	5.5	2/10/2004	81	-	-	-	ND	-	-	ND	-
MB10	Area 2	15	2/10/2004	-	-	=	-	-	-	-	-	ND
MB10		15.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
MB11	Area 2	1	2/12/2004	-	-	-	-	-	-	-	-	ND
MB11	Area 2	1.5	2/12/2004	2900	-	-	-	Fluoranthene: 0.42 Pyrene: 0.46	-	-	ND	-
MB11	Area 2	5	2/12/2004	-	-	-	-	-	-	-	-	ND
MB11		5.5	2/12/2004	ND	-	-	-	ND	-	-	ND	-
MB11	Area 2	15	2/12/2004	-	-	-	-	-	-	-	-	ND
MB11	Area 2	15.5	2/12/2004	20	-	-	-	ND	-	-	ND	- ND
MB12	Area 2	1 5	2/10/2004 2/10/2004	1600	-	-	-	- ND	-	-	- ND	ND -
MB12 MB12	Area 2 Area 2	1.5	2/10/2004	1600	-	-	-	ND -	-	-	ND -	- ND
MB12 MB12	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND ND
MB12 MB12	Area 2	5.5	2/10/2004	630	-	-	-	ND	-	-	ND	- ND
MB12	Area 2	15	2/10/2004	-	-	-	-	-	-	-	-	ND
MB12	Area 2	15.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
MB13	Area 2	1	2/10/2004	-	-	-	-	-	-	-	-	ND
MB13	Area 2	1.5	2/10/2004	ND	-	=	-	ND	-	-	ND	-
MB13	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND
MB13	Area 2	5.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
MB13	Area 2	15	2/10/2004	-	-	-	-	-	-	-	-	ND

Table 2. Soil Analytical Results

Soil Boring #	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8260B** TPH-g (mg/kg)	EPA 9010B/335.2 Cyanide (mg/kg)	EPA 8270C/8310 PAH (mg/kg)	EPA 8151 Herbicides (μg/kg)	pH (pH units)	EPA 8082 PCBs (μg/kg)	EPA 8260B VOCs (µg/kg)
MB20	Area 2	1	2/10/2004	-	-	-	-	-	-	-	-	1,3,5-TMB: 13 1,2,4-TMB:
MB20	Area 2	1.5	2/10/2004	ND	-	-	-	ND	-	-	ND	-
MB20	Area 2	5	2/10/2004	-	-	-	-	-	-	-	-	ND
MB20 MB20	Area 2	5.5 15	2/10/2004 2/10/2004	ND	-	-	-	ND -	-	-	ND	- ND
MB20 MB20	Area 2 Area 2	15.5	2/10/2004	- ND	-	-	-	ND	-	-	- ND	ND -
MB17	Area 3	3	2/13/2004	-	-	-	-	-	-	-	-	ND
MB17	Area 3	3.5	2/13/2004	-	-	-	ND	ND	ND		-	-
MB17	Area 3	10	2/13/2004	-	-	-	-	-	-	-	-	ND
MB17	Area 3	15	2/13/2004	-	-	-	ND	ND	ND	-	-	- ND
CO1	Area 3 Area 3	5.5	2/11/2004 2/11/2004	290	-	-	-	-	-	-	-	ND -
CO1	Area 3	10	2/11/2004	-	-	-	-	-	-	-	-	ND
CO1	Area 3	10.5	2/11/2004	ND	-	-	-	-	-	-	-	-
DI1	Area 3	5	2/10/2004	-	-	ND	-	-	=	-	-	ND
DI1	Area 3	5.5	2/10/2004	-	480	-	-	-	-	-	-	-
DI1	Area 3	10	2/10/2004	-	-	4.5	-	-	-	-	-	Total VOCs: 1736.1 See note #1
DI1	Area 3	10.5	2/10/2004	-	450	-	-	-	-	-	-	-
DI1	Area 3	15	2/10/2004	-	-	ND	-	-	-	-	-	MTBE: 71 TBA: 240
DI1	Area 3	15.5	2/10/2004	-	ND	-	-	-	-	-	-	-
DI2	Area 3	5	2/11/2004	-	-	ND	-	-	-	-	-	ND
DI2 DI2	Area 3	5.5	2/11/2004 2/11/2004	-	510	- ND	-	-	-	-	-	- ND
DI2	Area 3 Area 3	10.5	2/11/2004	-	410	- ND	-	-	-	-	-	ND -
DI2	Area 3	15	2/11/2004	-	-	ND	-	_	-	-	_	ND
DI2	Area 3	15.5	2/11/2004	-	ND	-	-	-	-	-	ı	-
OP1	Area 3	5	2/11/2004	-	-	-	-	-	-	-	-	ND
OP1	Area 3	5.5	2/11/2004	230	-	-	-	-	-	-	-	
OP1 OP1	Area 3 Area 3	10 10.5	2/11/2004 2/11/2004	220	-	ND	-	-	-	-	-	ND
MB14	Area 4	10.3	2/11/2004	-	-	-	-	-	-	-	-	- ND
MB14	Area 4	1.5	2/13/2004	49	-	-	-	ND	-	-	-	-
MB14	Area 4	5.5	2/13/2004	12	-	-	-	ND	-		-	ND
MB14	Area 4	10.5	2/13/2004	29	-	-	-	ND	-	-	-	ND
MB15	Area 4	1	2/13/2004 2/13/2004	- 10	-	-	-	- ND	-	-	-	ND -
MB15 MB15	Area 4 Area 4	1.5 5.5	2/13/2004	18 22	-	-	-	ND ND	-	-	-	- ND
MB15	Area 4	10.5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB15	Area 4	15.5	2/13/2004	22	-	-	-	-	-	-	-	-
MB16	Area 4	1.5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB16	Area 4	5.5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB16 MB18	Area 4 Area 4	10	2/13/2004 2/13/2004	11 230	-	-	-	ND ND	-	-	-	ND ND
MB18	Area 4	3	2/13/2004	-	-	<u> </u>	-	IAD	-	10.47	-	ND -
MB21	Area 4	1	2/13/2004	46	-	-	-	ND	-	-	-	ND
MB21	Area 4	5	2/13/2004	-	-	-	-	-	-	-	-	ND
MB21	Area 4	5.5	2/13/2004	19	-	-	-	ND	-	-	-	-
MB21 MB22	Area 4 Area 4	10	2/13/2004 2/13/2004	25	-	-	-	ND	-	-	-	ND ND
MB22 MB22	Area 4	1.5	2/13/2004	22	-	-	-	- ND	-	-	-	ND -
MB22	Area 4	5	2/13/2004	-	-	-	-	-	-	-	-	ND
MB22	Area 4	5.5	2/13/2004	16	-	-	-	ND	-	-	-	-
MB22	Area 4	10	2/13/2004	-	-	-	-	-	-	-	-	ND
MB22	Area 4	10.5	2/13/2004	ND	-	-	-	ND ND	-	-	-	- ND
MB23 MB23	Area 4 Area 4	5	2/13/2004 2/13/2004	27 19	-	-	-	ND ND	-	-	-	ND ND
MB23	Area 4	10	2/13/2004	27	-	<u> </u>	-	ND ND	-	-	-	ND ND
MB24	Area 4	1	2/13/2004	95	-	-	-	ND	-	-	-	ND
MB24	Area 4	5	2/13/2004	ND	-	-	-	ND	-	-	-	ND
MB24	Area 4	10	2/13/2004	14	-	-	-	ND	-	-	-	ND
		11	2/11/2004	-	-	-	-	_	-	-	-	ND
MB25 MB25	Area 4 Area 4	1.5	2/11/2004	25	-	-	-	ND	-	-	-	-

Table 2. Soil Analytical Results

Soil Boring #	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8260B** TPH-g (mg/kg)	EPA 9010B/335.2 Cyanide (mg/kg)	EPA 8270C/8310 PAH (mg/kg)	EPA 8151 Herbicides (μg/kg)	pH (pH units)	EPA 8082 PCBs (μg/kg)	EPA 8260B (μg/kg)	VOCs
MB25	Area 4	5.5	2/11/2004	23	-	-	-	ND	-	-	-	-	
MB25	Area 4	10	2/11/2004	-	-	-	-	-	-	-	-	ND	
MB25	Area 4	10.5	2/11/2004	ND	-	-	-	ND	-	-	-	-	
MB26	Area 4	1	2/11/2004	-	-	-		-	-	-	1	ND	
MB26	Area 4	1.5	2/11/2004	ND	-	-		ND	-	-	1	•	
MB26	Area 4	5	2/11/2004	-	-	-		-	-	-	1	ND	
MB26	Area 4	5.5	2/11/2004	16	-	-		ND	-	-	1	•	
MB26	Area 4	10	2/11/2004	-	-	-		-	-	-	1	ND	
MB26	Area 4	10.5	2/11/2004	17	-	-		ND	-	-	1	•	
MB27	Area 4	1	2/12/2004	-	-	-		-	-	-	1	ND	
MB27	Area 4	1.5	2/12/2004	ND	-	-		ND	-	-	1		
MB27	Area 4	5	2/12/2004	-	-	-	-	-	-	-	-	ND	
MB27	Area 4	5.5	2/12/2004	ND	-	-	-	ND	-	-	-	-	
MB27	Area 4	10	2/12/2004	-	-	-	-	-	-	-	-	ND	
MB27	Area 4	10.5	2/12/2004	14	-	-	-	ND	-	-	-	-	
MB28	Area 4	1	2/12/2004	-	-	-	-	-	-	-	-	ND	
MB28	Area 4	1.5	2/12/2004	88	-	-	-	ND	-	-	-	-	
MB28	Area 4	5	2/12/2004	-	-	-	-	-	-	-	-	ND	
MB28	Area 4	5.5	2/12/2004	340	-	-		ND	-	-	1	1	,
MB28	Area 4	10	2/12/2004	-	-	-		-	-	-	1	ND	,
MB28	Area 4	10.5	2/12/2004	42	-	-		ND	-	-	1	1	,
MB29	Area 4	2	2/11/2004	60	-	-		ND	-	-	1	•	,
MB29	Area 4	5	2/11/2004	-	-	-	-	-	-	-	1	ND	
MB29	Area 4	5.5	2/11/2004	51	-	-	-	ND	-	-	1		
MB29	Area 4	10	2/11/2004	-	-	-		-	-	-	1	ND	,
MB29	Area 4	10.5	2/11/2004	45	-	-	-	ND	-	-	-	-	
MB30	Area 4	1	2/11/2004	-	-	-	-	-	-	-	-	ND	
MB30	Area 4	1.5	2/11/2004	230	-	-	-	ND	-	-	-	-	
MB30	Area 4	5	2/11/2004	-	-	-	-	-	-	-	-	ND	
MB30	Area 4	5.5	2/11/2004	100	-	-	-	ND	-	-	-	-	
MB31	Area 4	3	2/12/2004	-	-	-	-	-	-	-	-	ND	
MB31	Area 4	3.5	2/12/2004	51	-	-	-	ND	-	-	ND	-	
MB31	Area 4	15	2/12/2004	-	-	-	-	-	-	-	-	ND	
MB31	Area 4	15.5	2/12/2004	51	-	-	-	ND	-	-	ND	-	
MB32	Area 4	3.5	2/11/2004	130	-	-	-	ND	-	-	ND	ND	
MB32	Area 4	15	2/11/2004	-	-	-	-	-	-	-	-	ND	
MB32	Area 4	15.5	2/11/2004	20	-	-	-	ND	-	-	ND		
MB33	Area 4	5	2/11/2004	-	-	-	-	-	-	-	-	ND	
MB33	Area 4	5.5	2/11/2004	26	-	-	-	ND	-	-	ND		
MB33	Area 4	15	2/11/2004	26	-	-	-	ND	-	-	ND	ND	
CL1	Area 5	10	2/11/2004	-	-	-	-	-	-	-	-	ND	
CL1	Area 5	10.5	2/11/2004	150	-	-	-	-	-	-	-	-	
CL1	Area 5	15	2/11/2004	-	-	-		-	-	-	1	MTBE: 5.1	1
CL1	Area 5	15.5	2/11/2004	21	-	-	-	-	-	-	-	-	
CL2	Area 5	10	2/11/2004	-	-	-	-	-	-	-	-	Naphthalene:	5.2
CL2	Area 5	10.5	2/11/2004	1200	-	-	-	-	-	-	-	-	

Table 2. Soil Analytical Results

Soil Boring #	Area	Sample depth (ft)	Date	EPA 418.1 TRPH (mg/kg)	EPA 8015M TPH-d (mg/kg)	EPA 8260B** TPH-g (mg/kg)	EPA 9010B/335.2 Cyanide (mg/kg)	EPA 8270C/8310 PAH (mg/kg)	EPA 8151 Herbicides (µg/kg)	pH (pH units)	EPA 8082 PCBs (μg/kg)	EPA 8260B VOCs (μg/kg)
CL2	Area 5	15	2/11/2004	-	-	-	-	-	-		-	Total VOCs: 251 See note # 2
CL2	Area 5	15.5	2/11/2004	840	-	-	-	-	-	-	-	
CL3	Area 5	10	2/11/2004	-	-	-	-	-	-	-	-	1,3,5-TMB: 5.4
CL3	Area 5	10.5	2/11/2004	780	-	-		-	-	-	1	-
CL3	Area 5	15	2/11/2004	-	-			-		-	1	ND
CL3	Area 5	15.5	2/11/2004	16	-	-	-	-	-	-	1	•
CL4	Area 5	1	2/10/2004	-	-	-	-	-	-	-	-	m,p-Xylene: 13 o-Xylene: 5.3
CL4	Area 5	1.5	2/10/2004	1000	-	-	-	ND	-	-	ND	-
CL4	Area 5	5	2/10/2004	-	-	-	-	-	-	-	-	ND
CL4	Area 5	5.5	2/10/2004	220	-	-	-	ND	-	-	ND	-
CL4	Area 5	15	2/10/2004	-	-	-	-	-	-	-	-	ND
CL4	Area 5	15.5	2/10/2004	22	-	-	-	ND	-	-	ND	-
CL5	Area 5	1	2/10/2004	-	-	-	-	-	-	-	-	ND
CL5	Area 5	1.5	2/10/2004	470	-	-		ND		-	ND	-
CL5	Area 5	5	2/10/2004	-	-		•	-		1	1	ND
CL5	Area 5	5.5	2/10/2004	ND	-	-		ND	-	-	ND	-
CL5	Area 5	15	2/10/2004	-	-	-	-	-	-	-	-	ND
CL5	Area 5	15.5	2/10/2004	26	-	-	-	ND	-	-	ND	-
CL6	Area 5	10	2/12/2004	-	-	-	-	-	-	-	-	ND
CL6	Area 5	10.5	2/12/2004	ND	-	-	-	-	-	-	-	<u>-</u> -
CL6	Area 5	15	2/12/2004	-	-	-	-	-	-	-	-	ND
CL6		15.5	2/12/2004	11	-	-	-	-	-	-	-	-
CL7	Area 5	10	2/12/2004	-	-	-	-	-	-	-	-	ND
CL7		10.5	2/12/2004	28	-	-	-	-	-	-	-	-
CL7	Area 5	15	2/12/2004	-	-	-	-	-	-	-	-	ND
CL7	Area 5	15.5	2/12/2004	ND	-	-	-	-	-	-	-	-
CL8	Area 5	10	2/12/2004	-	-	-	-	-	-	-	-	ND
CL8	Area 5	10.5	2/12/2004	20	-	-	-	-	-	-	-	- NED
CL8	Area 5	14	2/13/2004	- 110	-	-	-	- "	-	-	-	ND
CL8 CL9	Area 5	14.5 10	2/13/2004	110	-	-	-	See note # 3	-	-	-	- NID
CL9	Area 5 Area 5	10.5	2/13/2004 2/13/2004	35	-	-	-	-	-	-	-	ND -
CL9	Area 5	15.3	2/13/2004		-					-		- ND
CL9	Area 5	15.5	2/13/2004	22	-	-	-	-	-	-	-	- ND
SV1	Arrea 1	13.3	1/28/2004	-	-	-	ND	ND	ND	-	-	-
3 V I	Allea I	4	1/26/2004	-	-	-	ND	ND	ND	-	-	Tetrachloroethene: 19 1,2,4
SV5	Arrea 3	4	1/29/2004	-	960	ND**	-	-	-	-	-	TMB: 13
SV14	Area 5	4.5	1/29/2004	-	-	-	ND	ND	ND	-	-	-
SV31	W of Area 2	4.5	1/29/2004	-	-	-	ND	Benzo (g,h,i)- Perylene: 350	ND	-	-	-
SV33	Area 4	4	1/30/2004	-	-	-		-	-	-	1	ND
SV33	Area 4	4.5	1/30/2004	-	-	-	ND	ND	ND	-	-	-

All tables Created By: JL, 2/26/04 All tables Checked By: SP, 2/27/04

Notes:

VOCs: Volatile organic compounds

ND: Not detected over reporting limit (RL)

TRPH: Total recoverable petroleum hydrocarbons

TPH-d: Total Petroleum Hydrocarbons as Diesel

TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B(benzene) T(toluene) E(ethylbenzene) X(total xylenes)

MTBE: Methyl tert-butyl ether

PAH: Poly aromatic hydrocarbons

PCB: Polychlorinated biphenyls TMB: Trimethyl benzene

PCE: Tetrachloroethene

- * The two methylene chloride detections from boring MB4 are suspected to be from laboratory cross contamination
- ** THP-g analysis was performed using EPA method 8015M on this sample

"-" - Sample not analyzed for that analyte

mg/kg - milligrams per kilogram

μg/kg - micrograms per kilogram

- # 1: Ethylbenzene: 13; m,p-xylene: 31; o-xylene: 7.7; isopropylbenzene: 6.4; n-propylbenzene: 24; 1,3,5-TMB: 300; 1,2,4-TMB: 800; sec-butylbenzene: 22; p-isopropyltoluene: 28; n-Butylbenzene: 84; naphthalene: 290; TBA: 130 # 2: MTBE: 9.5; benzene: 15; ethylbenzene: 53; m,p-xylene: 11; o-xylene: 15; isopropylbenzene: 11; n-propylbenzene: 14; 1,3,5-TMB: 27; 1,2,4-TMB: 82; p-isopropyltoluene: 6; n-Butylbenzene: 7.5
- #3: pyrene: 1.4; benzo (a) anthracene: 1.3; chrysene: 1.5; benzo (k) fluoranthene: 1.3; benzo (b) fluoranthene: 1.4; benzo (a) pyrene: 0.88

Table 3. Title 22 Metals Soil Analytical Results (mg/kg)

											-	_	_								
Sample ID	Area	Depth (ft)	Date Collected	Matrix	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Chromium (Total) mg/kg	Cobalt mg/kg	Copper mg/kg	Lead mg/kg	Mercury mg/kg	Molybdenum mg/kg	Nickel mg/kg	Selenium mg/kg	Silver mg/kg	Thallium mg/kg	Vanadium mg/kg	Zinc mg/kg
MB7	Area 2			Soil	< 0.75	3.56	75.9	< 0.25	1.15	23.6	8.78	102	120	0.111	< 0.25	14.1	0.833	< 0.25	< 0.75	33.8	101
MB7	Area 2			Soil	< 0.75	2.24	14.7	< 0.25	< 0.5	7.56	2.24	6.74	0.989	< 0.0835	4.70	8.32	< 0.75	< 0.25	< 0.75	13.3	7.33
MB7 MB8	Area 2 Area 2			Soil Soil	< 0.75 < 0.75	3.53 4.46	26.7 88.8	< 0.25 < 0.25	< 0.5 0.826	13.1 12.6	3.40 13.8	31.0 25	43.1 15.5	< 0.0835 < 0.0835	0.356 0.562	11.0 10.2	< 0.75 0.898	< 0.25 0.944	< 0.75 < 0.75	22.1 21.4	39.4 42.3
MB8			2/10/2004	Soil	< 0.75	2.87	16.8	< 0.25	0.820	7.07	2.22	7.36	3.22	< 0.0835	< 0.25	8.19	< 0.75	< 0.25	< 0.75	11.7	11.5
MB8	Area 2		2/10/2004	Soil	< 0.75	1.96	27.2	< 0.25	0.532	7.56	2.49	5.27	1.25	< 0.0835	0.342	8.04	< 0.75	< 0.25	< 0.75	9.8	10.9
MB9	Area 2			Soil	< 0.75	2.48	19.6	< 0.25	0.537	10.5	1.92	26.2	10.9	< 0.0835	0.3	6.91	< 0.75	< 0.25	< 0.75	9.12	28.7
MB9	Area 2		2/10/2004	Soil	< 0.75	1.61	9.95	< 0.25	< 0.5	5.35	1.65	10	0.938	< 0.0835	< 0.25	6.01	< 0.75	< 0.25	< 0.75	8.24	9.27
MB9	Area 2		2/10/2004	Soil	< 0.75	< 0.75	89	< 0.69	0.724	18.2	6.47	16	5.3	< 0.0835	< 0.25	15	1.21	< 0.25	< 0.75	30.1	28.5
MB10			2/10/2004	Soil	< 0.75	5.56	87.5	< 0.25	0.811	12.1	5.69	32.8	15.1	< 0.0835	0.406	10.9	< 0.75	< 0.25	< 0.75	21.9	60.8
MB10			2/10/2004	Soil	< 0.75	2.18	12.8	< 0.25	< 0.5	6.71	2.01	25	1.6	< 0.0835	< 0.25	4.91	< 0.75	< 0.25	< 0.75	6.03	15.1
MB10 MB11	Area 2 Area 2		2/10/2004 2/12/2004	Soil Soil	< 0.75 < 0.75	0.972 4.11	50.8 49.8	0.371 < 0.25	0.576 < 0.5	9.89 7.9	3.75 3.28	12.2 7.3	3.28 6.14	< 0.0835 < 0.0835	< 0.25 0.409	8.53 8.08	< 0.75 1.27	< 0.25 < 0.25	< 0.75 < 0.75	17.3 12.9	23.4 29.6
MB11			2/12/2004	Soil	< 0.75	0.946	16.8	< 0.25	< 0.5	4.58	1.41	1.25	< 0.5	< 0.0835	< 0.25	4.4	< 0.75	< 0.25	< 0.75	5.24	2.41
MB11	Area 2			Soil	< 0.75	0.883	16.2	< 0.25	< 0.5	5.69	1.41	1.75	< 0.5	< 0.0835	0.39	6.3	< 0.75	< 0.25	< 0.75	6.54	11.9
MB12	Area 2		2/10/2004	Soil	< 0.75	3.82	39.9	< 0.25	0.524	9.49	4.16	45.7	11.6	< 0.0835	0.335	7.14	< 0.75	< 0.25	< 0.75	11.7	46.3
MB12	Area 2		2/10/2004	Soil	< 0.75	2.62	17.8	< 0.25	< 0.5	6.24	4.16	23.7	2.44	< 0.0835	< 0.25	5.43	< 0.75	< 0.25	< 0.75	6.28	19.3
MB12	Area 2	15.5	2/10/2004	Soil	< 0.75	< 0.75	38.1	< 0.25	< 0.5	6.49	5.19	7.45	2.16	0.1	< 0.25	5.87	< 0.75	< 0.25	< 0.75	10.4	17.2
MB13	Area 2			Soil	< 0.75	1.76	12.8	< 0.25	< 0.5	4.64	1.67	34	1.33	< 0.0835	< 0.25	5.86	< 0.75	< 0.25	< 0.75	7.21	22.6
MB13			2/10/2004	Soil	< 0.75	1.27	8.82	< 0.25	< 0.5	2.55	0.883	8.27	1.65	< 0.0835	< 0.25	2.75	< 0.75	< 0.25	< 0.75	3.58	8.53
MB13				Soil	< 0.75	1.82	118	0.595	0.683	26.2	11.2	15.8	5.43	< 0.0835	< 0.25	14.6	0.962	< 0.25	< 0.75	43.5	37.8
MB20	Area 2			Soil	< 0.75	1.94	17.1	< 0.25	0.579	7.02	2.43	19.7	18.9	< 0.0835	< 0.25	7.19	< 0.75	< 0.25	< 0.75	11.2	58.8
MB20 MB20	Area 2 Area 2		2/10/2004 2/10/2004	Soil Soil	< 0.75 < 0.75	1.58 < 0.75	21.2 99.8	< 0.25 < 0.445	0.686 0.789	7.32 19	2.56 11.5	41.3 21.2	28.2 5.94	< 0.0835 < 0.0835	< 0.25 < 0.25	6.77 13.5	< 0.75 1.2	< 0.25 < 0.25	< 0.75 < 0.75	10.2 33.2	54.8 39.2
MB17				Soil	< 0.75	3.33	44.1	< 0.443	< 0.5	13.0	4.69	63.8	97.1	0.0833	4.79	12.5	< 0.75	< 0.25	< 0.75	24.1	59.9
MB17	Area 3		2/13/2004	Soil	< 0.75	< 0.75	71.1	0.562	< 0.5	17.1	7.27	10.4	4.23	< 0.0835	< 0.25	10.6	0.846	< 0.25	< 0.75	36.0	26.5
MB14				Soil	< 0.75	2.58	16.0	< 0.25	< 0.5	10.6	2.99	6.56	5.35	< 0.0835	< 0.25	9.99	< 0.75	< 0.25	< 0.75	15.3	9.83
MB14				Soil	< 0.75	1.69	12.9	< 0.25	< 0.5	5.12	1.95	2.25	0.71	< 0.0835	0.254	7.48	< 0.75	< 0.25	< 0.75	9.53	7.46
MB14	Area 4	10.5	2/13/2004	Soil	< 0.75	2.07	13.8	< 0.25	< 0.5	6.45	2.00	8.67	2.56	< 0.0835	< 0.25	6.74	< 0.75	< 0.25	< 0.75	9.29	8.04
MB15	Area 4		2/13/2004	Soil	< 0.75	1.28	11.4	< 0.25	< 0.5	3.89	1.73	5.90	1.81	< 0.0835	< 0.25	5.12	< 0.75	< 0.25	< 0.75	6.85	6.68
MB15			2/13/2004	Soil	< 0.75	1.71	14.3	< 0.25	< 0.5	9.35	2.37	2.69	1.32	< 0.0835	< 0.25	7.20	< 0.75	< 0.25	< 0.75	10.3	7.70
MB15			2/13/2004	Soil	< 0.75	2.96	15.4	< 0.25	< 0.5	6.27	2.23	2.25	1.08	< 0.0835	< 0.25	7.83	< 0.75	< 0.25	< 0.75	13.6	7.26
MB16 MB16	Area 4		2/13/2004 2/13/2004	Soil Soil	< 0.75 < 0.75	2.65 2.09	15.9 12.5	< 0.25 < 0.25	< 0.5 < 0.5	6.66 5.20	2.46 2.00	2.30 1.98	0.957 1.02	< 0.0835 < 0.0835	< 0.25 < 0.25	8.60 7.36	< 0.75 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	13.3 9.42	9.38 7.01
MB16	Area 4 Area 4		2/13/2004	Soil	< 0.75	2.09	15.4	< 0.25	< 0.5	6.49	2.00	3.34	0.820	< 0.0835	< 0.25	7.30	0.763	< 0.25	< 0.75	11.9	9.68
MB18	Area 4			Soil	0.882	2.57	56.5	< 0.25	< 0.5	7.04	3.38	79.4	189	0.108	< 0.25	8.11	< 0.75	< 0.25	< 0.75	9.24	63.5
MB18	Area 4		2/13/2004	Soil	- 0.002	-	-	-		-	-	-	< 0.5	-	-	-	-		-	-	-
MB21	Area 4	1	2/13/2004	Soil	< 0.75	3.22	16.3	< 0.25	< 0.5	7.89	2.76	3.81	2.79	< 0.0835	4.48	9.78	< 0.75	< 0.25	< 0.75	15.8	8.95
MB21	Area 4	5.5	2/13/2004	Soil	< 0.75	2.57	15.5	< 0.25	< 0.5	8.20	2.52	3.15	1.01	< 0.0835	0.311	8.82	0.979	< 0.25	< 0.75	14.1	7.74
MB21	Area 4			Soil	< 0.75	2.30	17.3	< 0.25	< 0.5	6.94	2.29	6.23	2.58	< 0.0835	< 0.25	6.57	< 0.75	< 0.25	< 0.75	12.1	9.82
MB22	Area 4			Soil	< 0.75	2.97	15.2	< 0.25	< 0.5	8.96	2.70	4.91	1.18	< 0.0835	< 0.25	9.25	< 0.75	< 0.25	< 0.75	17.2	9.74
MB22	Area 4			Soil	< 0.75	2.26	14.3	< 0.25	< 0.5	8.37	2.28	9.25	1.26	< 0.0835	< 0.25	7.94	< 0.75	< 0.25	< 0.75	14.7	11.1
MB22	Area 4			Soil	< 0.75	1.68	29.2	< 0.25	< 0.5	9.34	3.17	6.18	1.38	< 0.0835	< 0.25	9.94	< 0.75	< 0.25	< 0.75	17.2	14.0
MB23 MB23	Area 4 Area 4		2/13/2004 2/13/2004	Soil Soil	< 0.75 < 0.75	2.99 2.54	17.7 13.4	< 0.25 < 0.25	< 0.5 < 0.5	8.68 6.00	2.74 2.28	4.44 2.22	1.54 0.866	< 0.0835 < 0.0835	< 0.25 4.75	8.91 8.47	0.751 0.866	< 0.25 < 0.25	< 0.75 < 0.75	15.4 12.1	8.16 7.62
MB23	Area 4		2/13/2004	Soil	< 0.75	2.71	26.9	< 0.25	< 0.5	6.85	2.28	3.10	1.21	< 0.0835	4.73	8.47	0.800	< 0.25	< 0.75	11.7	10.8
MB24	Area 4		2/13/2004	Soil	< 0.75	3.11	18.2	< 0.25	< 0.5	9.18	2.71	17.7	26.5	< 0.0835	< 0.25	9.37	< 0.75	< 0.25	< 0.75	14.8	20.5
MB24	Area 4			Soil	< 0.75	1.49	10.5	< 0.25	< 0.5	4.09	1.36	1.75	0.564	< 0.0835	< 0.25	4.59	< 0.75	< 0.25	< 0.75	6.24	6.20
MB24	Area 4	10	2/13/2004	Soil	< 0.75	2.20	14.6	< 0.25	< 0.5	5.80	2.48	7.73	15.0	< 0.0835	< 0.25	7.63	< 0.75	< 0.25	< 0.75	11.1	11.7
MB25	Area 4		2/11/2004	Soil	< 0.75	2.03	14.4	< 0.25	< 0.5	6.18	2.08	2.13	1.75	< 0.0835	< 0.25	7.17	< 0.75	< 0.25	< 0.75	9.56	10.3
MB25	Area 4			Soil	< 0.75	1.08	9.21	< 0.25	< 0.5	3.77	1.02	1.23	0.809	< 0.0835	< 0.25	3.63	< 0.75	< 0.25	< 0.75	4.89	5.19
MB25	Area 4			Soil	< 0.75	2.86	15.5	< 0.25	< 0.5	6.99	2.52	2.14	3.05	< 0.0835	< 0.25	9.64	< 0.75	0.276	< 0.75	12.8	7.94
MB26	Area 4		2/11/2004	Soil	< 0.75	2.16	11.5	< 0.25	< 0.5	4.22	1.37	1.76	< 0.5	< 0.0835	< 0.25	4.83	0.866	< 0.25	< 0.75	5.63	4.27
MB26	Area 4		2/11/2004	Soil	< 0.75	2.77	14.4	< 0.25	< 0.5	5.65	2.06	1.89	1.64	< 0.0835	< 0.25	7.1	< 0.75	< 0.25	< 0.75	10.4	7.88
MB26	Area 4	10.5	2/11/2004	Soil	< 0.75	2.57	16.5	< 0.25	< 0.5	6.52	2.62	6.06	3.23	< 0.0835	< 0.25	9.45	< 0.75	< 0.25	< 0.75	14.5	8.92

Table 3. Title 22 Metals Soil Analytical Results (mg/kg)

Sample ID	Area	Depth (ft)	Date Collected	Matrix	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Chromium (Total) mg/kg	Cobalt mg/kg	Copper mg/kg	Lead mg/kg	Mercury mg/kg	Molybdenum mg/kg	Nickel mg/kg	Selenium mg/kg	Silver mg/kg	Thallium mg/kg	Vanadium mg/kg	Zinc mg/kg
MB27	Area 4		2/12/2004	Soil	< 0.75	1.32	9.08	< 0.25	< 0.5	3.07	1.06	2.02	< 0.5	< 0.0835	< 0.25	3.86	0.941	< 0.25	< 0.75	4.63	< 1
MB27			2/12/2004	Soil	< 0.75	1.71	11.41	< 0.25	< 0.5	6	1.41	2.04	< 0.5	< 0.0835	< 0.25	5.49	0.954	< 0.25	< 0.75	5.73	2.65
MB27	Area 4		2/12/2004	Soil	< 0.75	1.88	12.4	< 0.25	< 0.5	4.36 7.96	1.75	11.2 20.8	2.64	< 0.0835	< 0.25	5.98	1.21	< 0.25	< 0.75	8.85	8.84
MB28 MB28	Area 4 Area 4		2/12/2004 2/12/2004	Soil Soil	< 0.75 < 0.75	2.6 2.67	19 28.2	< 0.25 < 0.25	< 0.5 < 0.5	7.96	2.4 2.45	31.7	42.1 34.3	< 0.0835 < 0.0835	< 0.25 < 0.25	9.2 9.03	< 0.75 1.45	< 0.25 < 0.25	< 0.75 < 0.75	11.5 11.1	23.4 19.9
MB28	Area 4		2/12/2004	Soil	< 0.75	2.65	20.6	< 0.25	< 0.5	5.43	1.91	23.8	25.8	< 0.0835	< 0.25	7.04	1.32	< 0.25	< 0.75	8.82	14.5
MB29	Area 4		2/11/2004	Soil	< 0.75	3.11	17.8	< 0.25	< 0.5	9.59	3.21	9.2	12.5	< 0.0835	0.3	11.1	< 0.75	< 0.25	< 0.75	17	16.2
MB29	Area 4		2/11/2004	Soil	< 0.75	2.18	15.7	< 0.25	< 0.5	7.24	2.01	17.5	27	< 0.0835	< 0.25	7.31	< 0.75	< 0.25	< 0.75	10.3	17.1
MB29			2/11/2004	Soil	< 0.75	2.36	14.9	< 0.25	< 0.5	7.65	2.39	4.82	5.36	< 0.0835	< 0.25	8.43	< 0.75	< 0.25	< 0.75	13.8	12.4
MB30			2/11/2004	Soil	1.38	2.67	23.6	< 0.25	< 0.5	9.94	2.55	31.7	69.2	< 0.0835	< 0.25	9.15	< 0.75	< 0.25	< 0.75	13.9	31.4
MB30 MB31			2/11/2004 2/12/2004	Soil Soil	2.47 < 0.75	3.7 2.32	21.6 23.7	< 0.25 < 0.25	< 0.5 < 0.5	8.05 5.99	2.67 1.78	28.6 24.6	48.1 34.5	< 0.0835 < 0.0835	< 0.25 < 0.25	9.93 6.52	0.947 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	15.9 7.55	26.4 23.5
MB31			2/12/2004	Soil	< 0.75	2.32	58.8	< 0.25	< 0.5	6.97	13.1	22.9	30.1	< 0.0835	< 0.25	6.57	< 0.75	< 0.25	< 0.75	14.4	30.1
MB32	Area 4		2/11/2004	Soil	4.2	4.94	29.8	< 0.25	< 0.5	6.92	2.66	73.5	382	< 0.0835	< 0.25	7.14	< 0.75	< 0.25	< 0.75	11.2	42.7
MB32			2/11/2004	Soil	< 0.75	1.67	13.2	< 0.25	< 0.5	4.34	1.71	2.33	1.23	< 0.0835	< 0.25	6.43	< 0.75	< 0.25	< 0.75	7.9	8.7
MB33	Area 4		2/11/2004	Soil	< 0.75	3.12	16.7	< 0.25	< 0.5	7.61	2.7	2.49	2.06	< 0.0835	< 0.25	10	0.968	< 0.25	< 0.75	15.4	11.7
MB33	Area 4		2/11/2004	Soil	< 0.75	1.7	14.1	< 0.25	< 0.5	5.62	2.01	1.98	1.27	< 0.0835	< 0.25	7.56	< 0.75	< 0.25	< 0.75	9.89	11.3
CL1		10.5	2/11/2004	Soil	< 0.75	3.02	43.3	< 0.25	< 0.5	9.16	3.38	32.8 8.51	58.3	0.0895	< 0.25	9.68 6.74	< 0.75	< 0.25	< 0.75	17.1	87.7
CL1 CL2			2/11/2004 2/11/2004	Soil Soil	< 0.75 < 0.75	< 0.75 2.46	52.1 17.5	0.455 < 0.25	< 0.5 < 0.5	9.02 7.79	4.84 2.69	14.9	3.88 23.6	< 0.0835 < 0.0835	< 0.25 < 0.25	9.54	0.818 < 0.75	< 0.25 < 0.25	< 0.75 < 0.75	21 17.6	21.6
CL2			2/11/2004	Soil	< 0.75	0.811	68.5	0.5	< 0.5	11.5	6.17	8.92	4.62	< 0.0835	< 0.25	8.88	1.67	< 0.25	< 0.75	26.3	24.9
CL3			2/11/2004	Soil	5.29	5.05	68.3	< 0.25	< 0.5	9.74	3.41	96.3	178	0.109	< 0.25	9.14	0.956	< 0.25	< 0.75	16.3	87.1
CL3	Area 5	15.5	2/11/2004	Soil	< 0.75	< 0.75	59.4	0.257	< 0.5	8.04	4.58	6.7	2.71	0.0839	< 0.25	5.48	< 0.75	< 0.25	< 0.75	16.7	20.3
CL4	Area 5		2/10/2004	Soil	< 0.75	5.49	55.5	< 0.25	0.747	10.3	3.91	151	117	0.107	< 0.25	10.2	< 0.75	< 0.25	< 0.75	16.9	58.8
CL4			2/10/2004	Soil	< 0.75	3.45	19.4	< 0.25	0.573	10.8	2.34	32.2	28.4	< 0.0835	0.314	9.19	< 0.75	< 0.25	< 0.75	10.8	23.4
CL4 CL5	Area 5 Area 5		2/10/2004 2/10/2004	Soil Soil	< 0.75 3.99	1.91 7.52	17.8 51.7	< 0.25 < 0.25	< 0.5 < 1.25	6.82	2.23 5.03	4.37 327	1.07 300	< 0.0835 0.164	< 0.25 < 0.25	9.14 14.3	< 0.75 < 0.75	< 0.25 0.86	< 0.75 < 0.75	10.2 19.6	8.89 133
CL5			2/10/2004	Soil	< 0.75	1.57	11	< 0.25	< 0.5	6.45	1.09	5.91	2.81	< 0.0835	< 0.25	4.17	< 0.75	< 0.25	< 0.75	4.77	6.64
CL5	Area 5		2/10/2004	Soil	< 0.75	1.38	17.9	< 0.25	< 0.5	4.89	1.68	4.6	0.91	< 0.0835	< 0.25	5.74	< 0.75	< 0.25	< 0.75	7.75	8.32
CL6	Area 5		2/12/2004	Soil	< 0.75	1.69	13.4	< 0.25	< 0.5	4.82	1.29	1.77	< 0.5	< 0.0835	< 0.25	5.23	0.983	< 0.25	< 0.75	5.65	1.12
CL6	Area 5		2/12/2004	Soil	< 0.75	2.04	20.5	< 0.25	< 0.5	6.99	1.84	1.83	< 0.5	< 0.0835	0.497	7.77	0.765	< 0.25	< 0.75	8	1.91
CL7	Area 5		2/12/2004	Soil	< 0.75	2.67	20	< 0.25	< 0.5	6.93	2.24	17.5	19.6	< 0.0835	< 0.25	8.25	0.954	< 0.25	< 0.75	10.4	12
CL7	Area 5		2/12/2004	Soil	< 0.75	1.84	13.9	< 0.25	< 0.5	3.75	1.25	0.917	< 0.5	< 0.0835	< 0.25	4.54	0.756	< 0.25	< 0.75	5.24	< 1
CL8 CL8			2/12/2004 2/13/2004	Soil Soil	< 0.75 < 0.75	2.64 3.00	16.5 24.1	< 0.25 < 0.25	< 0.5 < 0.5	8.11 9.48	2.82 3.59	12.5 24.0	2.88 23.5	< 0.0835 < 0.0835	< 0.25 0.470	10.2 12.0	< 0.75 0.988	< 0.25 < 0.25	< 0.75 < 0.75	11.9 21.9	11.1 22.7
CL9	Area 5		2/13/2004	Soil	< 0.75	2.99	23.9	< 0.25	< 0.5	10.6	3.51	3.01	2.15	< 0.0835	< 0.25	13.1	< 0.75	< 0.25	< 0.75	24.6	11.4
CL9			2/13/2004	Soil	< 0.75	< 0.75	101	0.376	< 0.5	17.7	8.62	11.3	3.77	< 0.0835	< 0.25	10.7	1.07	< 0.25	< 0.75	29.6	30.6
SV1	Area 1	4	1/28/2004	Soil	< 0.75	1.04	9.03	< 0.25	< 0.5	2.76	0.855	1.63	0.56	< 0.0835	< 0.25	3.49	< 0.75	< 0.25	< 0.75	3.99	6.25
SV14	Area 5	4.5	1/29/2004	Soil	< 0.75	1.79	15.2	< 0.25	< 0.5	10.1	2.17	2.08	1.61	< 0.0835	< 0.25	9.34	< 0.75	< 0.25	< 0.75	14.8	11.7
	Area 4		1/29/2004	Soil	< 0.75	2.32	31	< 0.25	< 0.5	7.87	3.27	8.55	3.27	< 0.0835	< 0.25	9.46	< 0.75	< 0.25	< 0.75	16.3	18.5
SV33	W of Area 2	4.5	1/30/2004	Soil	< 0.75	2	15.06	< 0.25	< 0.5	7.21	2.43	1.72	1.53	< 0.0835	< 0.25	10.1	< 0.75	< 0.25	< 0.75	17.5	12.1
			diation Goals (31	22	5400	150	37	210	900	3100	150.0*	23	390	1600	390	390	5.2	550	2300
		<u> </u>	lifornia Backg	<u> </u>				0.25 2.7	0.05 1.7	23 1579	2.7 46.9	9.1 96.4	12 97.1	0.1 0.9	0.1 9.6		0.015 0.43				88 236
			ON OF ALL RES																		
	count				95	95	95	95	95	95	95	95	96	95	95	95	95	95	95	95	95
	#NDs				89	7	0	87	86	0	0	0	11	86	77	0	68	92	95	0	2
	Range (Min M				0.75 5.29	0.75 7.52	8.82-101	0.25 0.69	0.5 1.25	2.55 26.2	0.855 13.8	0.92 327	0.5 382	0.0835 0.164	0.25 0.562	2.75 15	0.75 1.67	0.25 0.944		3.6 43.5	1 133
	mean/average standard dev.				0.89	2.32 1.31	30 25	0.27	0.54	8.08 4.29	3.28 2.74	23.28 45.66	25.67 63.71	0.09	0.27	7.93 2.69	0.82 0.17	0.26	0.75	12.92 7.57	24.72 25.52
	confidence				0.09	0.26	5	0.07	0.02	0.86	0.55	9.18	12.74	0.00	0.03	0.54	0.03	0.09	NA	1.52	5.13
	95% UCL				1.03	2.59	35	0.28	0.56	8.94	3.83	32.46	38.41	0.09	0.28	8.47	0.86	0.28	0.75	14.44	29.85

Table 4. Groundwater Analytical Results

Groundwater Boring/Well #	Area	GW depth (ft)	Date	EPA 8015M TPH-d (µg/L)	EPA 8015M TPH- g (μg/L)	EPA 8270C PAH (μg/L)	EPA 8151 Herbicides (ug/L)	EPA 335.2 Total Cyanides (mg/L)	EPA 8082 PCBs (µg/L)	EPA GC/MS Isotope Dilution 1,4 Dioxane (μg/L)	EPA 8260B VOCs (ug/L)
MB3-GW	Area 1	26.1	2/12/2004	ND	-	ND	ND	ND	ND	ND	ND
MW5	Area 1	-	2/10/2004	ND	ND	ND	ND	ND	ND	3.4	ND
MB11-GW	Area 2	26.5	2/12/2004	ND	-	ND	ND	ND	ND	ND	Chloroform 1.5
MW3	Area 3	-	2/10/2004	ND	ND	ND	ND	ND	ND	ND	ND
MB31-GW	Area 4	26	2/12/2004	ND	-	ND	ND	ND	ND	ND	Chloroform 5
MB33-GW	Area 4	24	2/11/2004	ND	-	ND	ND	ND	ND	ND	ND

Historical Data

				EPA 8015M TPH-d (μg/L)	EPA 8015M TPH- g (μg/L)						EPA 602 VOCs (ug/L)
HP1	Area 3	24.58	7/28/1997	-	160,000	-	-	-	-	-	B:2900 T:8400 E:5400 X:26000 MTBE:27000
HP2	Area 3	24.73	7/28/1997	-	690	-	-	-	-	-	B:220 T:4 E:10 X:16 MTBE:380
HP3	Area 3	23.43	7/28/1997	-	ND	-	-	-	-	-	B:0.5 T:ND E:ND X:0.7 MTBE:ND
HP4	Area 3	23	7/28/1997	-	2,400	-	-	-	-	-	B:150 T:29 E:120 X:250 MTBE:1200
HP5	Area 3	23.92	7/28/1997	-	1,200	-	-	-	-	-	B:110 T:6.9 E:27 X:120 MTBE:830
CPT-1	Area 3	-	11/6/1995	1,500	1,100	-	-	-	-	-	B:83 T:69 E:24.2 X:101.6
CPT-2	Area 3	-	11/6/1995	ND	ND	-	-	-	-	-	B:7 T:0.5 E:0.7 X:4.0
СРТ-6	Area 3	-	11/6/1995	ND	ND	-	-	-	-	-	B:7.7 T:1.5 E:0.7 X:3.0

Notes:

VOCs: Volatile organic compounds

ND: Not detected over reporting limit (RL)

TRPH: Total recoverable petroleum hydrocarbons

TPH-d: Total Petroleum Hydrocarbons as diesel fuel

TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B(benzene) T(toluene) E(ethylbenzene) X(total xylenes)

MTBE: Methyl tert-butyl ether

PAH: Poly aromatic hydrocarbons

PCB: Polychlorinated biphenyls

"-" - Sample not analyzed for that analyte

mg/L - milligrams per liter

μg/L - micrograms per liter

Historical data were collected by previous consultants

Table 5. Title 22 Metals Groundwater Analytical Results (mg/L)

Sample ID	Area	Date Collected	Matrix	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (Total)	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MB3-GW (Filt)	Area 1	2/12/2004	Water	0.0291	< 0.015	0.127	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB3-GW (Total)	Area 1	2/12/2004	Water	0.0233	< 0.015	0.121	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00808	< 0.005	0.0255	< 0.005	< 0.015	< 0.005	< 0.01
MW05 (Filt)	Area 1	2/10/2004	Water	0.0238	< 0.015	0.0915	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00977	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	0.0316
MW05 (Total)	Area 1	2/10/2004	Water	0.0244	< 0.015	0.093	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00722	< 0.005	< 0.015	< 0.005	< 0.015	0.0069	0.0392
MB11-GW (Filt)	Area 2	2/12/2004	Water	0.0269	< 0.015	0.141	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.012	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB11-GW (Total)	Area 2	2/12/2004	Water	0.0285	< 0.015	0.143	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.0111	< 0.005	0.0278	< 0.005	< 0.015	< 0.005	< 0.01
MW03 (Filt)	Area 3	2/10/2004	Water	0.0228	< 0.015	0.087	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.00746	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	0.0339
MW03 (Total)	Area 3	2/10/2004	Water	0.0247	< 0.015	0.0944	< 0.001	< 0.01	< 0.005	< 0.005	0.0065	0.0219	< 0.0005	0.00762	< 0.005	< 0.015	< 0.005	< 0.015	0.005	0.033
MB31-GW (Filt)	Area 4	2/12/2004	Water	0.0273	< 0.015	0.162	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.0129	< 0.005	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB31-GW (Total)	Area 4	2/12/2004	Water	0.0241	< 0.015	0.2163	< 0.001	< 0.01	< 0.005	< 0.005	< 0.005	< 0.01	< 0.0005	0.0165	0.00527	0.0224	< 0.005	< 0.015	< 0.005	< 0.01
MB33-GW (Filt)	Area 4	2/11/2004	Water	< 0.015	< 0.015	0.153	< 0.001	< 0.01	< 0.005	0.00719	< 0.005	< 0.01	< 0.0005	0.0478	0.0135	< 0.015	< 0.005	< 0.015	< 0.005	< 0.01
MB33-GW (Total)	Area 4	2/11/2004	Water	< 0.015	0.03	0.901	0.00384	< 0.01	0.167	0.0617	0.149	0.0857	0.00081	0.0436	0.0996	< 0.015	< 0.005	< 0.015	0.094	0.423
California I	Maximum (Contaminant L	evels (mg/L)	0.006	0.05	1	0.004	0.01	0.05	NA	1	NA	0.002	NA	0.1	0.05	0.1	0.002	NA	5

Notes:

mg/L - milligrams per liter NA - Not available

Table 6. Historical Soil Data

Soil Boring #	Area	Sample	Date	EPA 418.1 TRPH	EPA 453.2 Oil and	EPA 7421 Lead	EPA 8015M	EPA 8015M			EPA 8020 (mg/kg	3)		Acetone	Tetrachloroethene
Join Borning #	Alea	depth (ft)	Date	(mg/kg)	Grease (ppm)	(mg/kg)	TPH-d (mg/kg)	TPH-g (mg/kg)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	(µg/kg)	(µg/kg)
T1-N	Area 3	15	2/23/1998	-	-	302	-	390	ND	85	46.4	665	ND	-	-
T1-S	Area 3	15	2/23/1998	-	-	45.8	-	16.3	ND	0.374	ND	2.68	0.912	-	-
T2-N	Area 3	15	2/23/1998	23,600	-	56.8	-	-	ND	342	138	978	46.8	-	-
T2-S	Area 3	15	2/23/1998	472	-	52.7	-	-	ND	1.35	0.509	3.67	0.562	-	-
T3-N	Area 3	15	2/23/1998	-	-	73	ND	-	ND	ND	ND	ND	ND	-	-
T3-S	Area 3	15	2/23/1998	-	-	259	1740	-	ND	ND	ND	0.241	0.492	-	-
T4-N	Area 3	15	2/23/1998	-	-	67.4	ND	-	ND	ND	ND	ND	ND	-	-
T4-S	Area 3	15	2/23/1998	-	-	185	5000	-	ND	ND	ND	ND	ND	-	-
D-1	Area 3	9	3/18/1998	-	-	-	ND	-	ND	ND	ND	ND	ND	-	-
WO-1	Area 3	12	3/18/1998	ND	-	-	-	-	ND	ND	ND	ND	ND	-	-
WOTP-1	Area 3	10.5	6/30/1998	145	-	175	ND	ND	-	-	-	-	-	-	-
CPT1	Area 1	15	11/7/1995	ND	-	-	ND	ND	ND	ND	ND	ND	-	-	-
CPT1	Area 1	25	11/7/1995	80	-	-	189	1690	4.2	66	27.6	152.8	-	-	-
CPT2	Area 1	20	11/7/1995	ND	-	-	ND	ND	0.006	0.029	0.016	0.089	-	-	-
CPT2	Area 1	25	11/7/1995	340	-	-	ND	ND	0.006	0.008	ND	0.017	-	-	-
CPT6	Area 1	15	11/7/1995	ND	-	-	25	ND	ND	ND	ND	ND	-	-	-
CPT6	Area 1	20	11/7/1995	ND	-	-	ND	ND	ND	0.006	ND	0.045	-	-	-
CPT6	Area 1	25	11/7/1995	63	-	-	ND	ND	0.076	0.04	0.061	0.296	-	-	-
CPT7	Area 1	15	11/7/1995	ND	-	-	ND	ND	ND	0.007	ND	0.02	-	-	-
CPT7	Area 1	25	11/7/1995	3,500	-	-	4040	864	1.5	2.6	1.5	4.8	-	-	-
CPT9	Area 1	15	11/7/1995	ND	-	-	ND	ND	ND	0.019	0.017	0.082	-	-	-
CPT9	Area 1	25	11/7/1995	ND	-	-	ND	ND	ND	ND	ND	ND	-	-	-
CPT10	Area 1	15	11/8/1995	830	-	-	16	37	0.026	0.514	0.428	2.5	-	-	-
CPT10	Area 1	20	11/8/1995	480	-	-	1330	929	1.2	28.7	13.2	77.8	-	-	-
CPT10	Area 1	25	11/8/1995	ND	-	-	ND	ND	ND	0.009	ND	0.017	-	-	-
CPT11	Area 1	10	11/8/1995	520	-	-	ND	ND	ND	0.01	ND	0.039	-	-	-
CPT16	Area 1	10	11/8/1995	ND	-	-	ND	ND	ND	ND	ND	ND	-	-	-
CPT4	Area 2	10	11/8/1995	ND	-	-	-	-	ND	ND	ND	ND	-	-	-
CPT4	Area 2	20	11/8/1995	ND	-	-	-	-	ND	0.011	ND	0.015	-	-	-
CPT12	Area 2	5	11/8/1995	ND	-	-	-	-	ND	0.037	ND	0.07	-	-	-
CPT12	Area 2	15	11/8/1995	ND	-	-	-	-	ND	0.007	ND	ND	-	-	-
	Area 2	5	11/8/1995	ND	-	-	-	-	ND	ND	ND	ND	-	-	-
CPT13	Area 2	15	11/8/1995	ND	-	-	-	-	ND	0.008	ND	ND	-	-	-
CPT15	Area 2	5	11/8/1995	-	-	-	ND	-	ND	0.005	ND	0.021	-	-	-
CPT15	Area 2	10	11/8/1995	-	-	-	ND	-	ND	0.012	ND	0.045	-	-	-
CPT5	Area 3	5	11/9/1995	ND	-	-	-	-	ND	0.007	ND	ND	-	-	-
CPT5	Area 3	15	11/9/1995	11	-	-	-	-	ND	ND	ND	ND	-	-	-
CPT14	Area 3	5	11/8/1995	ND	-	-	-	-	ND	0.01	ND	0.022	-	-	-
CPT14	Area 3	15	11/8/1995	ND	-	-	1	-	ND	ND	ND	ND	-	-	-

Table 6. Historical Soil Data

Soil Boring #	Area	Sample	Date	EPA 418.1 TRPH	EPA 453.2 Oil and	EPA 7421 Lead	EPA 8015M	EPA 8015M			EPA 8020 (mg/kç	g)		Acetone	Tetrachloroethene
	7 6	depth (ft)	24.0	(mg/kg)	Grease (ppm)	(mg/kg)	TPH-d (mg/kg)	TPH-g (mg/kg)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	(µg/kg)	(μg/kg)
		•		•			TPH (ppm)			EPA 8015M (ppn	n)			
BH1 S(1-5)	Area 3	5-25	3/1/1988	-	-	-		**	<1	<1	- "-	<1	-	-	-
BH2 S(1-5)	Area 3	5-25	3/1/1988	-	-	-	</td <td>)**</td> <td><1</td> <td><1</td> <td>-</td> <td><1</td> <td>-</td> <td>-</td> <td>-</td>)**	<1	<1	-	<1	-	-	-
BH3 S(1-4)	Area 3	5-20	3/2/1988	-	350	-		-	-	-	-	-	-	-	-
BH3 S(5-8)	Area 3	25-40	3/2/1988	-	<10	-		-	-	-	-	-	-	-	-
BH3 S1	Area 3	5	3/2/1988	-	160	-		-	-	-	-	-	-	-	-
BH3 S2	Area 3	10	3/2/1988	-	160	-		-	-	-	-	-	-	-	-
BH3 S3	Area 3	15	3/2/1988	-	2600	-		-	-	-	-	-	-	-	-
BH3 S4	Area 3	20	3/2/1988	-	310	-		-	-	-	-	-	-	-	-
BH4 S(1-3)	Area 3	5-15	3/2/1988	25	_	_			_	-	-	-	_	-	-
BH4 S(4-6)	Area 3	20-30	3/2/1988	960	-	-				-	-	-	-	-	-
BH4 S4	Area 3		3/2/1988	9,000	-	-				-	-	-	-	-	-
BH4 S5	Area 3	25	3/2/1988	12,000	-	-		-	-	-	-	-	-	-	-
BH4 S6	Area 3	30	3/2/1988	<10	-	-		-	-	-	-	-	-	-	-
BH5 S(1-3)	Area 3	5-15	3/1/1988	160	-	-		-	-	-	-	-	-	-	-
BH5 S(4-6)	Area 3	20-30	3/1/1988	<10	-	-		-	-	-	-	-	-	-	-
BH5 S1	Area 3	5	3/1/1988	<10	-	-		-	-	-	-	-	-	-	-
	Area 3	10	3/1/1988	300	-	-		-	-	-	-	-	-	-	-
BH5 S3	Area 3	15	3/1/1988	<10	-	-		-	-	-	-	-	-	-	-
. ,	Area 3		3/1/1988	90	-	-		•	-	-	-	-	-	-	-
\ /	Area 3		3/1/1988	<10	-	-		-	-	-	-	-	-	-	-
\ /	Area 3		2/29/1988	110	-	-		•	-	-	-	-	-	-	-
. ,	Area 3		2/29/1988	<10	-	-		-	-	-	-	-	-	-	-
	Area 3		2/29/1988	270	-	-		-	-	-	-	-	-	-	-
	Area 3		2/29/1988	<10	-	-		-	-	-	-	-	-	-	-
	Area 3		2/29/1988	<10	-	-		-	-	-	-	-	-	-	-
/	Area 3		2/29/1988	-	<10	-		-	-	-	-	-	-	-	-
\ /	Area 3		2/29/1988	-	<10	-		-	-	-	-	-	-	-	-
/	Area 3		3/2/1988	-	38	-		-	-	-	-	-	-	-	-
/	Area 3		3/2/1988	-	<10	-		•	-	-	-	-	-	-	-
			3/1/1988	9,100	9100	-	110		<1	<1	-	2	-	-	-
			3/1/1988	2,700	2700	-		**	<1	<1	-	<1	-	-	-
	Area 3		3/1/1988	3,500	3500	-		0**	<1	<1	-	<1	-	-	-
\ /			3/1/1988	5,400	5500	-	190		<1	<1	-	4	-	-	-
	Area 3		3/1/1988	5,600	5600	-	23		<1	<1	-	<1	-	-	-
BH11 S2	Area 3	10	3/1/1988	130	140	-	10	0**	<1	<1	-	<1	-	-	-
											(ug/kg)				
			2/25/2002	94	-	5.68	200*	ND	ND	ND	ND	ND	ND	47	ND
			2/25/2002	ND	-	2.29	ND ND		ND	ND	ND	ND	ND	ND	ND
			2/25/2002	ND	-	1.88	ND	ND	ND	ND	ND	ND	ND	ND	ND
			2/25/2002	ND	-	1.04	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Off-site N		2/26/2002	ND	-	6.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Off-site N		2/26/2002	38	-	3.02	41*	ND	ND	ND	ND	ND	ND	ND	ND
MW-6	Off-site N	20	2/26/2002	10	-	1.36	ND	ND	ND	ND	ND	ND	ND	ND	1.3

Table 6. Historical Soil Data

Soil Boring #	Area	Sample	Date	EPA 418.1 TRPH	EPA 453.2 Oil and	EPA 7421 Lead	0010111	8015M 8015M			EPA 8020 (mg/kg	j)		Acetone	Tetrachloroethene
Con Boning #	Allou	depth (ft)	Date	(mg/kg)	Grease (ppm)	(mg/kg)	TPH-d (mg/kg)	TPH-g (mg/kg)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	(µg/kg)	(µg/kg)
MW1	Area 3	10	May, 2002	-	-	-	2500	790	-	-	-	-	ND	-	-
MW1	Area 3	15	May, 2002	-	-	-	ND	ND	-	-	-	-	0.027	-	-
MW1	Area 3	20	May, 2002	-	-	-	ND	ND	-	-	-	1	0.032	-	-
MW1	Area 3	22	May, 2002	-	-	-	ND	ND	-	-	-	1	0.017	-	-
MW2	Area 3	10	May, 2002	-	-	-	930	ND	-	-	-	ı	ND	-	-
MW2	Area 3	15	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW2	Area 3	20	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW2	Area 3	22	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW3	Area 5	10	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW3	Area 5	15	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW3	Area 5	20	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW3	Area 5	22	May, 2002	-	-	-	ND	ND	-	-	-	ı	ND	-	-
MW4	Area 3	10	May, 2002	-	-	-	ND	ND	-	-	-	1	0.0095	-	-
MW4	Area 3	15	May, 2002	-	-	-	ND	ND	-	-	-	1	0.0065	-	-
MW4	Area 3	20	May, 2002	-	-	-	ND	ND	-	-	-	1	ND	-	-
MW4	Area 3	22	May, 2002	-	-	-	ND	ND	-	-	-	-	ND	-	-

Notes:

VOCs: Volatile organic compounds

ND: Not detected over reporting limit (RL)

TRPH: Total recoverable petroleum hydrocarbons

TPH-d: Total Petroleum Hydrocarbons as Diesel

TPH-g: Total Petroleum Hydrocarbons as gasoline

BTEX: B(benzene) T(toluene) E(ethylbenzene) X(total xylenes)

MTBE: Methyl tert-butyl ether PAH: Poly aromatic hydrocarbons

PCB: Polychlorinated biphenyls

"-" - Sample Not analyzed for that analyte

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

μg/kg - micrograms per kilogram

μg/L - micrograms per liter

ppm: parts per million

^{*} Lab reported this value with the following comment: "The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard."

^{**} Lab reported these results without specifying them for TPH-g or TPH-d

Table 7: Soil Carbon Range Analytical Results

			I				EPA 3550B, TPH Carbon Range (mg/kg) Carbon Range (C7-C12) Carbon Range (C13-C22) Carbon Range (C23-C44)																
				EPA 418.1		Carbo	n Panga (C7-C12)		Carl	hon Range (C13	L-C22)			3330В, 1111 Са	0 \ 0	0/						
Sample ID	Area	Depth	Date	TRPH (mg/kg)			C9-C10	/	C13-C14	C15-C16	C17-C18	C19-C20	C21-C22	C23-24	C25-C28	C29-C32	C33-C36	C37-C40	C41-C44	C7-C44 Total	C7-C12 Total	C13-C22 Total	C23-C44 Total
MB4	Area 1	1	2/13/2004	6300	ND		ND	ND	ND	ND	0.96	3.9	7.4	15	60	94	91	100	93	470	ND	12	453
MB4	Area 1	5	2/13/2004	5000	ND	ND	ND	ND	ND	0.77	10	19	35	47	150	220	190	170	150	1,000	ND	65	927
MB5	Area 1	5	2/13/2004	390	ND	ND	ND	ND	ND	ND	0.042	0.76	1.7	3.2	13	28	24	29	26	130	ND	3	123
MB6	Area 1	1	2/13/2004	5600	ND	ND	ND	ND	ND	ND	ND	ND	3.3	7.2	40	89	76	83	79	380	ND	3	374
GS1	Area 2	5.5	2/11/2004	220	ND	ND	ND	ND	ND	ND	0.078	0.49	1.1	2.1	8.9	19	19	25	26	100	ND	2	100
MB7	Area 2	1.5	2/10/2004	1200	ND	ND	ND	ND	ND	ND	13	44	78	160	630	1,100	810	750	620	4,200	ND	135	4,070
MB7	Area 2	15	2/13/2004	370	ND	ND	ND	ND	ND	ND	0.75	3.6	6.8	13	48	47	41	35	37	230	ND	11	221
MB8	Area 2	1.5	2/10/2004	4200	ND	ND	ND	ND	ND	ND	8.7	40	69	130	590	1,100	980	1,000	840	4,700	ND	118	4,640
MB9	Area 2	1.5	2/10/2004	300	ND		ND	ND	ND	ND	2.7	9.7	23	33	150	300	270	340	250	1,400	ND	35	1,343
MB10	Area 2	1.5	2/10/2004	3300	ND	ND	ND	ND	ND	ND	ND	19	32	67	280	580	470	590	530	2,600	ND	51	2,517
MB11	Area 2	1.5	2/10/2004	2900	ND	ND	ND	ND	ND	ND	ND	33	46	92	300	570	500	540	580	2,700	ND	79	2,582
MB12	Area 2	1.5	2/10/2004	1600	ND		ND	ND	ND	ND	3.9	44	69	91	290	730	670	730	550	3,200	ND	117	3,061
MB12	Area 2	5.5	2/10/2004	630	ND	ND	ND	ND	ND	ND	ND	4	7.9	13	63	150	160	150	140	690	ND	12	676
CO1	Area 3	5.5	2/11/2004	290	ND		ND	ND	ND	ND	0.56	2.9	6.5	5.1	23	40	42	45	44	210	ND	10	199
OP1	Area 3	5.5	2/11/2004	230	ND		ND	ND	ND	ND	0.37	2.6	7.3	14	47	81	66	64	55	340	ND	10	327
OP1	Area 3	10.5	2/11/2004	220	ND	ND	ND	ND	ND	ND	ND	0.22	0.61	0.97	2.7	5.7	1.9	2.3	3.4	18	ND	1	17
MB18	Area 4	1	2/13/2004	230	ND	ND	ND	ND	ND	ND	0.28	3.4	13	28	100	140	82	58	42	470	ND	17	450
MB18	Area 4	3	2/13/2004	-	-	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-
MB28	Area 4	5.5	2/12/2004	340		ND	ND	ND	ND	ND	1.4	11	27	53	210	320	170	120	77	990	ND	39	950
MB30	Area 4	1.5	2/11/2004	230			ND	ND	ND	ND	0.64	2.6	8.4	15	57	93	67	54	35	330	ND	12	321
MB30	Area 4	5.5	2/11/2004	100	ND		ND	ND	ND	ND	0.31	2.4	7	13	54	91	62	58	36	320	ND	10	314
MB32	Area 4	3.5	2/11/2004	130	ND	ND	ND	ND	ND	ND	0.55	3.2	7.1	13	49	76	60	60	53	320	ND	11	311
cr		10.7	2/11/2001	150	175	110	170) I D) I D	0.55	0.7			0.1	220	100	200	200	450	4.000	3775	0.1	1511
CL1	Area 5	10.5	2/11/2004	150		ND	ND	ND	ND	0.57	8.5	24	61	86	320	480	380	280	170	1,800	ND	94	1,716
CL2	Area 5	10.5	2/11/2004	1200	ND		100	1200	1500	530	100	63	110	210	600	820	500	320	250	6,300	1,300	2,303	2,700
CL2	Area 5	15.5	2/11/2004	840	ND		ND	ND	ND	0.27	2	5.2	8.3	11	32	44	34	35	30	200	ND	16	186
CL3	Area 5	10.5	2/11/2004	780	ND		ND	ND	ND	2.9	28	60	68	58	170	210	170	150	160	1,100	ND	159	918
CL4	Area 5	1.5	2/10/2004	1000	ND		ND	ND	ND	ND	3.9	21	46	95	330	470	360	310	200	1,800	ND	71	1,765
CL4	Area 5	5.5	2/10/2004	220	ND		ND	ND	ND	ND	0.15	1.7	4.8	4.6	15	22	14	11	8.6	81	ND	7	75
CL5	Area 5	1.5	2/10/2004	470	ND		ND	ND	ND	ND	2.4	14	37	90	350	530	390	280	190	1,900	ND	53	1,830
CL8	Area 5	14.5	2/13/2004	110	ND	ND	ND	ND	ND	0.36	2.3	6.7	18	42	110	130	72	37	21	440	ND	27	412

Notes:

VOCs - Volatile organic compounds

ND - Not detected over reporting limit (RL)

"-" - Sample not analyzed for that analyte TPH - Total petroleum hydrocarbons

TRPH - Total recoverable petroleum hydrocarbons

mg/kg - milligrams per kilogram

 $\mu g/kg$ - micrograms per kilogram denotes separation of data from different areas

FIGURES

2171 CAMPUS DRIVE, SUITE 100 IRVINE, CA 92612

REV BY

REVISED

Metropolitan Transportation Authority Division 6 Facility Plan 100 Sunset Avenue Venice, California

PROJECT NO. 4525030096-60.01.01

Figure 2. Conceptual Site Model
MTA Division 6 Site, 100 Sunset Avenue, Venice, California
MACTEC Project No. 4525030096

RECEPTORS: CURRENT AND FUTURE LAND USE **HUMANS CANDIDATE BIOTA PRIMARY** SECONDARY TRANSPORT EXPOSURE Exposure Future Residents **Current Workers Future Workers** Construction Terrestrial Aquatic Route on-Site SOURCES SOURCES MECHANISMS **PATHWAY** Workers Surficial SOIL ngestion Soils Wind Erosion **Dermal Contact** Dermal Contact or Ingestion & Atmospheric roduct Storage The current land use and re-development plans for the property as multi-dwelling residential development involve (tanks, drums, e complete ground cover by the footprint of the building; paved walk-ways, drive-ways, or activity areas; and landscaping latilization & based on clean backfill. On these bases, the pathways for exposure to future residents on-Site; current workers; and future workers, such as maintenance workers, via soil contact are incomplete. Piping/ Atmospheric Subsurface Distribution Particulate or Inhalation Soil Vapor Inhalation pumps, et Enclosed-Space **Operations** The Phase II investigation indicates not-detected for all soil gas samples across the Site. On that basis, the inhalation pathway is incomplete. Fugitive dust is precluded by the complete development of the Site. Groundwater Plume bays, water treatmen Groundwater GROUND WATER **Transport** ngestion Free-Phase Potable Water nhalation Liquid Plume Mobile Dermal Contact Free-Liquid All uses of water on the Site are met by the municipal water supply. The Phase II investigation indicates that all analytes detected have concentrations that are less than the respective maximum contaminant level, lower than the risk-Migration based concentration, or are part of the background.

SURFACE WATER

Recreational Use/

Sensitive Habitat

Workers currently on the property do not use the groundwater and are protected from direct exposure to soil by the extensive paving and building construction over the soil. Residents are only on the property in a future land use (redevelopment) scenario. Future residents and workers associated with the development would be protected by the extensive paving and building construction over the soil. Groundwater is evaluated in the text only for purposes of protecting the groundwater resource. Residents will have a municipal potable water supply. The types of workers, current and future, are included in COPC selection based on comparison to residential soil PRGs (see Appendix C).

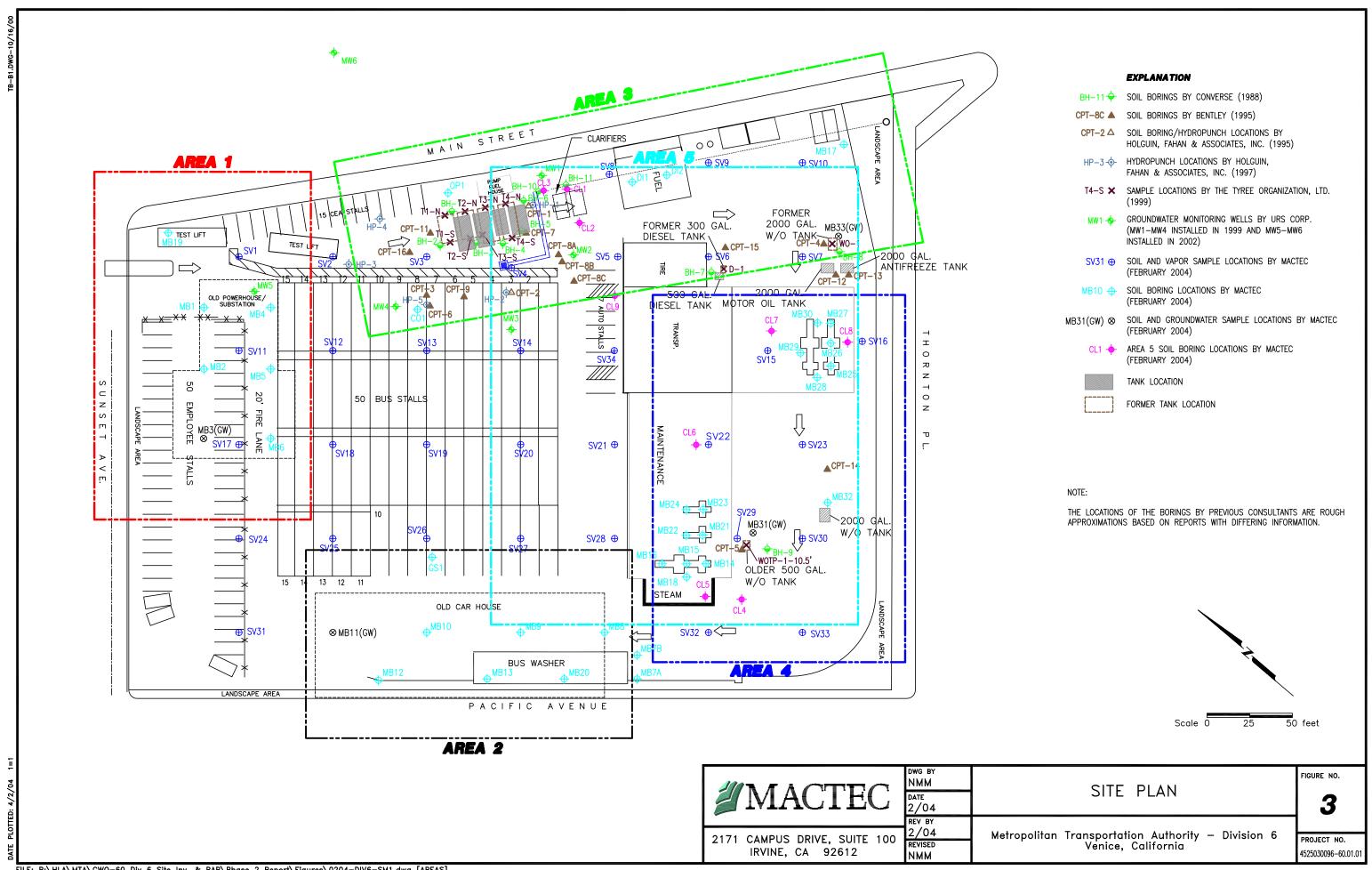
Stormwater/

Surface Water

Transport

Surface Water

Sediments


dotted line indicates incomplete pathway

ngestion

nhalation

Dermal Contact

= absent/insignificant exposure
= complete exposure pathway, current
= complete exposure pathway, future

APPENDIX A

STREAMLINED RISK ASSESSMENT TECHNIQUES AND METHODOLOGY

APPENDIX A STREAMLINED RISK ASSESSMENT TECHNIQUES AND METHODOLOGY

The usual approach for preparing a focused risk assessment is based on ASTM (ASTM, 1995, 2000) and EPA (EPA, 1989a, 1991b, 1996a,b) methodology, invoking a comparison of site-specific, representative COPC concentrations to appropriate risk-based concentrations (RBCs). That is the approach to be used in this case as well, but there are important distinctions to be made to demonstrate health-protective site conditions or the proper basis for remedial action.

The focused risk assessment is based on the human health risk assessment paradigm (model; NRC, 1983, 1994). Health risk assessment incorporates component assessments, including:

- Hazard Identification, including data collection and evaluation;
- Toxicity Assessment;
- Exposure Assessment, including the Conceptual Site Model; and
- Risk Characterization, including description of uncertainty.

The EPA paradigm is sometimes called the "forward" approach to risk assessment where exposure and toxicity are used to calculate estimates of incremental lifetime cancer risk (ILCR) and human health hazard (hazard index, HI) as part of risk characterization, as follows:

Concentration & Intake Factors

EXPOSURE & TOXICITY → <u>RISK / HAZARD</u>

The risk assessment approach of EPA is intended to be conservative and to overestimate risk/hazard via conservative assessments in the exposure assessment (Burmaster and Harris, 1993) and safety margins in the toxicity assessment. This is because a one-in-a-million cancer risk, a criterion chosen through political and administrative means, is an unverifiable risk (Milloy, 1995; Seiler and Alvarez, 1994). Therefore, the methodology for evaluation of incremental risk from environmental exposure is overestimated to protect the general public and sensitive subpopulations, *i.e.*, the old, the infirm, and the young. EPA acknowledges that the "true risk" will not exceed the

risk estimate derived through the use of risk assessment and is likely to be less than that predicted (EPA, 1989, page 8-6, column 2, paragraph 2).

To elaborate, the basis of the risk-based approach is consistent with the conservative approach of an *upper-bound* analysis. In an upper-bound analysis, the *upper-bound* concentrations of the chemicals of potential concern (COPCs) are evaluated for an initial, upper-bound estimate of cancer risk (risk) and health hazard (hazard) for the exposure conditions of a particular site.

The upper-bound concentration may be a maximum concentration when few data are available. When soil investigation data are numerous, a representative concentration, a 95 percent upper confidence limit (UCL), could be used to represent an upper-bound concentration, a reasonable maximum exposure (RME), for an area of exposure. If the upper-bound estimate is protective of human health, then other more refined determinations of risk/hazard (such as average COPC concentrations) will also be protective, and no further analysis is needed. If the upper-bound estimate exceeds human health protection criteria, then more detailed analysis of representative COPC concentrations (average concentrations) and exposure circumstances can serve to reduce uncertainties and necessary conservatism to yield a more realistic (and justifiably lower) evaluation of risk/hazard for decision making. In this way, only that effort necessary to assess healthprotective criteria is expended until the basis for a technically defensible, consistent decision is established. If the most detailed analysis does not meet health-protective criteria, remedial action For purposes of this project, focused risk assessment provides a valuable is warranted. communication tool for showing the systematic evaluation of site-specific data, identifying areas of the site where attention should be focused, and indicating where conditions are protective for unrestricted land use. Where the focused risk assessment indicates question about protective conditions, aggressive remedial action, including removal, can be recommended in the focused risk assessment and addressed in the Remedial Action Plan (RAP).

Data Evaluation

The site characterization data are typically collected using a sampling rationale that is focused on determining the maximum concentrations of the COPCs. This kind of approach is *knowledge-based*, also called *biased*, *authoritative*, *judgmental*, or *purposive*. Then additional borings may be added to determine the extent of COPC occurrence. The borings with detected COPCs will be used

to define an area of concern (AOC; EPA, 1992, page 55, section 3.2.8). Risk-based decision making is developed for each AOC and may be different for each, often presenting economic advantage. Descriptive statistics, maximum concentration or upper confidence limit, using the data from the borings in the AOC, are representative of the AOC.³ Soil gas or groundwater data may be used for the same purpose.

Role of Toxicity and Exposure Assessments in Focused Risk Assessment

In the focused risk assessment approach, acceptable (target) standards for risk/hazard are incorporated with toxicity values and standard default exposure (intake) factors in a "back-calculation" to yield acceptable RBCs of the COPCs in appropriate environmental media. The process may be pictured as follows:

Because of the time-frame required for the project, it is recommended that calculation of site-specific RBCs <u>not</u> be conducted. Rather, it is important to rapid review of the focused risk assessment by the administering agency that the RBCs be well-established and readily acceptable. For this reason, preliminary remediation goals (PRGs; EPA, 1991b, 2002) are used.

Toxicity Assessment

RBCs are based on established toxicity standards compiled by the California EPA Office of Environmental Health Hazard Assessment (OEHHA) in its Toxicity Criterion Database (OEHHA, 2004) and by EPA in its Integrated Risk Information System (IRIS; EPA, 2004) database. The PRGs may also be based on toxicity values from the Health Effects Assessment Summary Tables (HEAST; EPA, 1997) or from the National Center for Environmental Assessment (NCEA, http://www.epa.gov/ncea) provisional values. The PRGs for residential soil were calculated by

⁻

Statistics obtained from an AOC determined from biased/authoritative/judgmental/purposive data, even with step-out borings, are not based on random sampling, so they are not statistically representative of a true mean concentration for each COPC. Rather, statistics obtained in the fashion described above are biased high

EPA using the toxicity values compiled from all the above sources, and nothing further will be done to modify those values that already have conservative safety/uncertainty factors included because it could affect the acceptability of the focused risk assessment and the time required for acceptance.

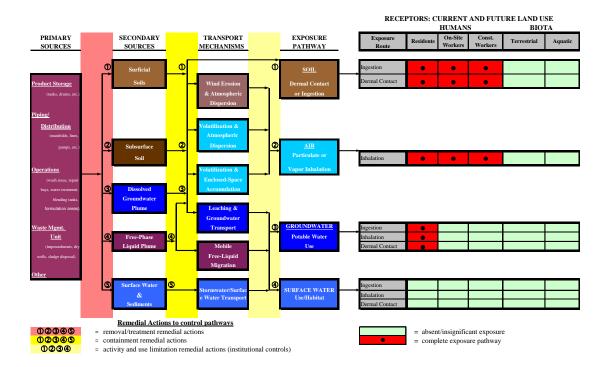
Exposure Assessment

The PRGs are based on two standard exposure scenarios, namely, a residential land use scenario with human activities (adult and child) and a commercial-industrial land use scenario with human activities (adult). The residential scenario applies to future land use of the Division 6 property. The choice of a standard exposure scenario carries with it the use of standard default exposure factors (EPA, 1991a), denoted as "Intake Factors" in the above depiction, in calculating the RBC. Those factors pertain to both adults and children, and a focused risk assessment meeting risk-based criteria would indicate protection of both adults and children on the properties. The specific default exposure factors and the equations used to calculate the RBCs may be found in the PRG table (EPA, 2002). When PRGs are used for purposes of focused risk assessment, the default exposure factors (EPA, 1991a) and appropriate equations (EPA, 1991b) have been involved in the calculation of that RBC. It can be said that the PRG incorporates all the elements of the "forward" risk assessment simply applied in "reverse" fashion for risk-based evaluation.

Conceptual Site Model

Risk-based evaluation is based on a conceptual site model (CSM; EPA, 1988, 1996a; Cal/EPA, 1999) to indicate the exposure pathways to be characterized in the site characterization and evaluated in the exposure assessment and risk characterization. The CSM serves as the "roadmap" for the risk-based evaluation of the site. The risk assessment must include all the complete pathways of the CSM. Complete exposure pathways may be traced from left to right on the figure. Beginning at the left in the CSM, sources, pathways, and receptors are identified as boxes and may be thought of as the concentration of the COPC at each reference point (box) as it disperses and attenuates along its pathway. The arrows may be thought of as the equation, algorithm, model, or concentration reduction factor that estimates the COPC concentration in the box to the right based on the initial concentration in the box to the left. Where environmental sampling data are available, the concentrations in each

compared to the true (population) mean. This technique insures that type I error is favored and risk is overestimated for health protection, as intended in the NRC risk assessment paradigm (NRC, 1983, 1994).


box are known specifically. Where the data are not known or are not available, modeling or other estimation techniques are employed, as needed, to permit the quantitative estimation of the exposure intake for the designated receptors. Where a pathway is assessed as being incomplete or broken, the arrow between the boxes has a dashed line. Consistent with standard practice, risk/hazard is only assessed for complete pathways (ASTM, 1995, 1998; 1999; Cal/EPA, 1999; EPA, 1989, 1996a,b). For purposes of streamlined risk assessment, historical environmental releases are included in the current land use. Current land use for MTA Division 6 is considered commercial-industrial land use, and future land use for the redeveloped property is considered to be as a residential (unlimited land use) exposure scenario. Land use designation, both currently and in the future, leads to the assignment of potential receptors as adults and children for focused risk assessment. Decision making is based on streamlined risk assessment of identified areas of concern (AOCs) corresponding to environmental releases or, at least, contiguous detections of COPCs indicating a potential source of exposure.

For the MTA Division 6 property, there is at least 1 AOC corresponding to residuals of the former UST installation in groundwater. Other areas of soil were investigated for potential AOCs. The soil gas monitoring results for the Site could have indicated additional areas of concern, but the results obtained for 34 samples collected across the Site outside the building footprint were all non-detect. Other detections of COPCs across the Site and in the groundwater were scattered or isolated so that they do not represent COPC concentrations consistent with an exposure scenario extending over a lifetime. If soil-related AOCs had been identified in the Phase II investigation, they could be addressed separately from the groundwater AOC for redevelopment of the property.

Potential exposure pathways for soil are based on a residential exposure scenario. Therefore, evaluation for focused risk assessment will include incidental ingestion, inhalation of fugitive dust and volatilized COPCs, and dermal contact with soil is sufficient to describe pathways for interaction with the soil.

Evaluation of groundwater is based on MCLs (California and federal), as available. Where there are no MCLs, *i.e.*, TBA, risk-based concentrations for groundwater use in a residential exposure scenario have been used. NFA for groundwater depends on evaluation of current groundwater concentrations in a natural attenuation scenario (ASTM, 1998; EPA, 1998) using site-specific data and incorporating modeling to support the assessment of a stable or receding plume and/or insignificant impact on critical receptors, *i.e.*, the nearest down-gradient production well.

An example CSM, not necessarily representing the MTA Division 6 property is shown in the following figure.

Methodology

A phased approach using only that detail of evaluation necessary to support decision making is used in the focused risk assessment. By a phased approach, it is meant that maximum COPC concentrations are used first for a rapid comparison to the risk/hazard standards. If the standards are exceeded, then statistical average and upper-bound concentrations could be used (with more time and effort) to more fully represent the environmental data set and to obtain a justifiably lower risk for comparison to the risk/hazard standards.

This is similar to the approach of the American Society for Testing and Materials (ASTM) Standard Guides E-1739-95, *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites* (ASTM, 1995) and E 2081-00, *Guide for Risk-Based Corrective Action* (for all chemical releases) (ASTM, 2000). It is consistent with applicable regulatory guidance of the EPA (2002) and the Cal/EPA (1994).

The methodology for evaluating the site characterization data for the properties is based on a risk-based corrective action approach using EPA Region IX PRGs (EPA, 2002), RWQCB RBSLs (Cal/EPA, 2004), and perhaps even the coming (January, 2004) OEHHA SB32 concentrations (40 chemicals) as RBCs. The chemical-specific RBCs are compared directly to concentrations from the site characterization data.

It is important that in addition to comparison to RBCs the cumulative risk/hazard be determined and compared to appropriate risk/hazard exposure standards (EPA, 1990; Cal/EPA, 1996). To calculate risk/hazard, just as in a "forward" risk assessment, the ratio of the measured to the risk-based concentration is multiplied by the appropriate target risk or hazard quotient to yield the respective risk or hazard for the evaluation. For incremental lifetime cancer risk, the applicable equation is

Risk =
$$\left[\left(\frac{\text{conc}_a}{\text{RBC(ca)}_a} \right) + \dots + \left(\frac{\text{conc}_z}{\text{RBC(ca)}_z} \right) \right] \times 10^{-6} = \text{ILCR}$$

The target risk in the above equation is 10^{-6} ILCR. If the risk-based concentrations were based on a different target risk, e.g. 10^{-5} ILCR, then that target risk would be used in the equation. The above risk calculation may be carried out chemical by chemical to obtain chemical-specific ILCRs, or it can be carried out for all chemicals concurrently to obtain the cumulative ILCR. Of course, the individual chemical-specific ILCRs could also be summed to obtain the cumulative ILCR when appropriate.

The applicable equation for health hazard (hazard index) is

Hazard Index =
$$\left[\left(\frac{\text{conc}_a}{\text{RBC(nc)}_a} \right) + \dots + \left(\frac{\text{conc}_z}{\text{RBC(nc)}_z} \right) \right] \times 1.0 = \text{HI}$$

The above hazard index calculation may be carried out chemical by chemical to obtain chemical-specific hazard quotients (HQs), or it can be carried out for all chemicals concurrently to obtain the

cumulative hazard, called the hazard index, HI. Of course, the individual chemical-specific HQs could also be summed to obtain an HI when appropriate.⁴

For purposes of this report, the term

$$\left[\left(\frac{\operatorname{conc}_{x}}{\operatorname{RBC} \left(\operatorname{ca} \operatorname{or} \operatorname{nc} \right)_{x}} \right) \right]$$

is called an "RBC index". If the RBC is based on cancer toxicity, then multiplying the index by the target risk⁵ (10⁻⁶) yields the chemical-specific ILCR. If the RBC is based on non-cancer toxicity, then multiplying the index by the target hazard quotient³ (1.0) yields the chemical-specific hazard quotient, HQ. By common practice, the sum of HQs is called the hazard index (HI). The equations shown above support the approach of the focused risk assessment.

The endpoint of the evaluation is that each likely exposure pathway is evaluated for health-protective conditions. An *example* of how this evaluation can be presented is shown in the following table:

_

Different chemicals may not impact the same target organs significantly at the levels of chronic exposure typically associated with an environmental release. EPA specifically admonishes against adding HQs unless there is commonality of organ(s) impacted by exposure (EPA, 1989, Chapter 8). Where there is commonality among some chemicals of exposure, those chemical-specific HQs may be summed to yield a target organ-specific HI. Evaluation of the exposure to petroleum hydrocarbons is problematic because petroleum, such as crude oil, contains over 250 known hydrocarbons, each with potential toxic effects that are likely to be associated with different target organs and different concentrations of significant exposure (together referred to as the critical effect). Table A-2 in the appendix lists the critical effects for the indicator and surrogate chemicals used to designate toxicity values for the various carbon ranges of petroleum. By common practice and for convenience in screening, petroleum hydrocarbons are evaluated using one risk-based concentration for petroleum hydrocarbons.

⁵ The target risk may be other than 10⁻⁶, and the target hazard quotient/index may be other than 1. The appropriate target risk and target hazard quotient/index to use in calculating risk/hazard is that used in the original calculation of the RBC.

Analyte	Max. Conc.	Units	PQL	Risk-Based Conc.	Comment	PRG Index	Toxicity Endpoint	ILCR	HQ
TPH TPH-g	400 31	mg/kg mg/kg		8,000	RBC for "fresh crude oil" via ingestion, inhalation of fugitive dust and surface soil vapor, and dermal contact absorption (Vorhees, 1999, Figure 12a, Page 34.); the carbon-fractions of TPH-g are contained in the carbon fractions constituting TPH, so the	0.05	nc	NA	0.05
Benzene	0.14	mg/kg	0.005	0.65	Residential soil PRG - cancer (EPA, 2000)	0.22	ca	2.E-07	NA
Toluene	0.73	mg/kg	0.005	520	Residential soil PRG - noncancer (EPA, 2000)	0.00	nc	NA	0.001
Ethyl Benzene	0.18	mg/kg	0.005	230	Residential soil PRG - noncancer (EPA, 2000)	0.00	nc	NA	0.0008
Total Xylenes	1.0	mg/kg	0.005	210	Residential soil PRG - noncancer (EPA, 2000)	0.00	nc	NA	0.005
Phenanthrene*	210	μg/kg	200	22,000,000	Surrogate residential soil PRG - noncancer for structurally-similar Anthracene used for evaluation; Phenanthrene has no listed toxicity reference values (EPA, 2001)	0.00001	nc	NA	0.00001
Fluorene*	120	μg/kg	40	2,600,000	Residential soil PRG - noncancer (EPA, 2000)	0.00005	nc	NA	0.00005
								ΣILCR	ΣHQs = H
								2.E-07	0.1
								ILCR Std.	HI Std.

If necessary, this area of the table can be used for breaking out the Hazard Index by target organ.

Note in the table above that Total Petroleum Hydrocarbons (TPH) is addressed by risk-based concentrations for TPH-g and TPH-d as determined by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG; Vorhees, et al., 1999). Risk-based results obtained using the representative concentrations of the COPCs indicate adherence to health standards or an opportunity for remedial action. For remedial action, the risk-based evaluation provides important information about which environmental media and COPCs should be targeted for the most effective results in achieving protection of human health and the environment.

Ecological Assessment

The MTA Division 6 property has been fully developed for over 50 years, before the passing of the National Environmental Policy Act, 1969, and the California Environmental Quality Act, 1970. The site is completely paved, and there is virtually no habitat available for common, threatened, endangered, or special-status species of regulatory interest. Whether there may be COPCs present on the site or not, there are no terrestrial or aquatic biota on the site, and the characterization of ecological risk/hazard is not warranted.

REFERENCES

- American Society for Testing and Materials, 1995, <u>Standard Guide for Risk-Based Corrective Action</u>
 <u>Applied at Petroleum Release Sites, E 1739-95</u>, West Conshohocken, PA 19428, November 1995, with editorial corrections in December 1996 as version 1739-95^{ε1}.
- American Society for Testing and Materials, 2000, <u>Standard Guide for Risk-Based Corrective Action, E 2081-00</u>, 100 Barr Harbor Drive, West Conshohocken, PA 19428.
- ASTM, see American Society for Testing and Materials.
- Burmaster, D.E. and R.H. Harris, 1993, "The Magnitude of Compounding Conservatisms in Superfund Risk Assessments," <u>Risk Analysis</u>, Vol. 13, No. 2, pp. 131-134.
- Cal/EPA, see California Environmental Protection Agency.
- California Environmental Protection Agency, 1996, <u>Interim Site Assessment & Cleanup Guidebook</u>, State of California Environmental Protection Agency, California Regional Water Quality Control Board, Los Angeles and Ventura Counties, Region 4, May.
- California Environmental Protection Agency Department of Toxic Substance Control, 1999, <u>Preliminary Endangerment Assessment Guidance Manual</u>, Sacramento, California, January 1994, Second Printing, June 1999.
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Toxicity Criteria Database, 2004, <a href="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname=&casnum="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp?error=Unknown+Chemical&chemname="http://www.oehha.ca.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp.gov/risk/chemicalDB/index.asp
- Edwards, D.A., M.D. Andriot, M.A. Amoruso, A.C. Tummey, C.J. Bevan, A. Tveit, L.A. Hayes, S.H. Youngren, and D.V. Nakles, 1997, <u>Total Petroleum Hydrocarbon Criteria Working Group Series, Volume 4, Development of Fraction-Specific Reference Doses (RfDs) and Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH), Amherst Scientific Publishers, Amherst, Massachusetts, http://www.aehs.com.</u>
- EPA, see United States Environmental Protection Agency.
- Leadspread, 2003, Internet URL: http://www.dtsc.ca.gov/ScienceTechnology/ledspred.html.
- Milloy, Steven J., 1995, Science-Based Risk Assessment, A Piece of the Superfund Puzzle, National Environmental Policy Institute, ISBN 0-9647463-0-1, Washington D.C.; *ibid*, 1994, Choices in Risk Assessment, The Role of Science Policy in the Environmental Risk Management Process, prepared for Sandia National Laboratories, sponsored by the U.S. Department of Energy, Office of Environmental Management and Office of Environment, Safety and Health.
- RWQCB, see California Environmental Protection Agency.

- Seiler, Fritz A. and Alvarez, Joseph L., 1994, "Definition of a Minimum Significant Risk," <u>Technology:</u> <u>Journal of the Franklin Institute</u>, Vol. 331A, pp. 83-95.
- United States Environmental Protection Agency, 1989, <u>Risk Assessment Guidance for Superfund</u>, <u>Volume 1, Human Health Evaluation Manual (Part A), Interim Final</u>, EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington, DC 20460, December.
- United States Environmental Protection Agency, 1990, <u>National Oil and Hazardous Substances Pollution</u>
 <u>Contingency Plan</u>, 40 CFR Part 300; Federal Register, Volume 55, No. 46, pp. 8666-8865, Washington, DC, Thursday, March 8.
- United States Environmental Protection Agency, 1991a, <u>Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors,"</u> OSWER Directive 9285.6-03, NTIS PB92-963333, Office of Solid Waste and Emergency Response, Washington, DC 20460, March 25.
- United States Environmental Protection Agency, 1991b, <u>Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals)</u>, OSWER Directive 9285.7-01B, NTIS PB92-963333, Office of Emergency and Remedial Response, Washington, DC 20460, December 13.
- United States Environmental Protection Agency, 1991c, Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part C, Risk Evaluation of Remedial Alternatives), Publication 9285.7-01C, Office of Emergency and Remedial Response, Washington, DC 20460, December 13.
- United States Environmental Protection Agency, 1996a, Soil Screening Guidance: Technical Background Document, Second Edition, EPA/540/R-95/128, Office of Solid Waste and Emergency Response; OSWER Directive 9355.4-17A, Office of Emergency and Remedial Response, Washington, DC 20460, May.
- United States Environmental Protection Agency, 1996b, <u>Soil Screening Guidance: User's Guide</u>, EPA/540/R-96/018, OSWER Directive 9355.4-23, Office of Solid Waste and Emergency Response, Washington, DC 20460, July.
- United States Environmental Protection Agency, 1997, <u>Health Effects Assessment Summary Tables, FY-1997 Update</u>, EPA 540/R-97-036, 9200.6-303(97-1), PB97-921199, National Center for Environmental Assessment, Cincinnati, OH; Office of Research and Development; Office of Emergency and Remedial Response; Solid Waste and Emergency Response, Office of Research and Development, Washington, DC 20460, July 31, 420 pp.
- United States Environmental Protection Agency, 2000, <u>Risk Characterization Handbook</u>, EPA 100-B-00-002, Science Policy Council, Washington, DC 20460, December, http://epa.gov/osp/spc/rchandbk.pdf.
- United States Environmental Protection Agency, 2002, "Region 9 Preliminary Remediation Goals (PRGs) 2002," Stanford J. Smucker, Ph.D., Regional Toxicologist, San Francisco, CA 94105-3901, URL: http://www.epa.gov/region09/ waste/sfund/prg/, October 1.
- United States Environmental Protection Agency, 2004, Integrated Risk Information System, IRIS, http://www.epa.gov/iris.

Vorhees, D.J., W.H. Weisman, and J.B. Gustafson, 1999, <u>Total Petroleum Hydrocarbon Criteria Working</u>
<u>Group Series, Volume 5, Human Health Risk-Based Evaluation of Petroleum Release Sites:</u>
<u>Implementing the Working Group Approach</u>, Amherst Scientific Publishers, Amherst, Massachusetts, June, http://www.aehs.com.

APPENDIX B

TOTAL PETROLEUM HYDROCARBON CHEMICALS OF POTENTIAL CONCERN

APPENDIX B TOTAL PETROLEUM HYDROCARBON CHEMICALS OF POTENTIAL CONCERN

The chemicals of potential concern (COPCs) associated with petroleum hydrocarbons for potentially contaminated sites are based on the specific chemicals making up the mixture, often measured analytically as total petroleum hydrocarbons (TPH). The risk assessment of TPH for protection of human health requires identification of specific chemical species, measurement of their respective concentrations, and determination of a chemical-specific toxicity standard. This has been accomplished for TPH through an exhaustive study by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG).¹

Until 1997, there was no consistent strategy across the United States for assessing human health risk at petroleum sites. To address this need, the TPHCWG convened beginning in 1993 to address the large disparity among cleanup requirements used by states at sites contaminated with fuels, lubricating oils, crude oils and other petroleum hydrocarbons. These requirements usually focus on TPH, with numerical standards ranging from tens to thousands of milligrams of TPH per kilogram of soil. Recognizing that these standards are not based on a scientific assessment of human health risk, the TPHCWG developed a sound, flexible approach for establishing soil cleanup levels that are protective of human health at those sites. The TPHCWG's approach, culminating in the derivation of fate-and-transport-fraction-specific toxicity criteria, represents a scientifically sound technical basis for corrective action at petroleum sites. While the approach does not address ecological risk nor aesthetic criteria, the strategy for developing the TPHCWG approach can be modified to deal with ecological concerns.

The TPHCWG has compiled its data collection and evaluation efforts into five volumes, http://www.AEHS.com (ASP Publications; Browse the On-Line Books Catalog; TPH Working Group Series, Volumes 1-5.):

- Volume 1. Petroleum Hydrocarbon Analysis of Soil and Water in the Environment (Weisman, 1998a)
- Volume 2. Composition of Petroleum Mixtures (Potter and Simmons, 1998)

EA Engineering, Science & Technology.

- Volume 3. Selection of Representative Total Petroleum Hydrocarbon (TPH) Fractions Based on Fate and Transport Considerations (Gustafson, Tell, and Orem, 1997)
- Volume 4. Development of Fraction-Specific Reference Doses (RfDs) and Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH) (Edwards et al., 1997)
- Volume 5. Application of the TPHCWG Methodology within the ASTM Risk Based Corrective Action Framework (Vorhees, Weisman, and Gustafson, 1999)

¹ The TPHCWG was guided by a steering committee consisting of representatives from industry, government, and academia. Some of the active participants, among the more than 400 involved, include the Gas Research Institute, the Petroleum Environmental Research Forum; several major petroleum companies including Chevron, Exxon, British Petroleum, and Shell; the American Petroleum Institute; the Association of American Railroads; several state governments (Washington, Texas, Colorado, Hawaii, Louisiana, New Mexico, Massachusetts); the U.S. Environmental Protection Agency; the Department of Defense; the University of Massachusetts; and private consulting firms including

TPH Composition

TPH may consist of hundreds or even thousands of individual constituents, of which about 250 have been identified. The TPHCWG collected and evaluated data regarding the composition of petroleum products, including gasoline, crude oil, jet fuels, kerosene, diesel fuel, home heating oil, and lubricating oils. With these data, the TPHCWG quantified how much of the 250 constituents are found in each product and has summarized this information in Volume 2 (Potter and Simmons, 1998) of the TPHCWG reports. Compilation of this composition data was essential before the TPHCWG could identify which TPH constituents or fractions should be the focus of human health risk-based cleanup goals.

Selection of TPH Fraction and Indicator Compound Approach

It is not practical to analyze soil samples collected from petroleum sites for all TPH constituents. Analytical and computational requirements would be excessive and cost-prohibitive. Even if concentration data were obtained for all TPH constituents, the toxicity data and fate and transport data needed for assessing human health risk are not available for each constituent. The TPHCWG considered whether human health toxicity associated with petroleum contamination should be evaluated on the basis of whole products, by grouping similar compounds into fractions, or by using the toxicity of indicator compounds. With the whole product approach, toxicity criteria for unweathered whole products are applied to the petroleum mixture found at a contaminated site. With the indicator approach, the toxicity of the petroleum mixture is described by the toxicity of one or more of the more potent constituents. This approach is often used to assess the carcinogenic potential of complex mixtures. The fraction approach involves resolving petroleum constituents into fractions based on chemical and physical properties and then assigning representative toxicity criteria to each fraction.

The TPHCWG decided that the whole product approach would be worthwhile in the case of very fresh spills, but that releases of weathered petroleum would be addressed best using a combination of the *fraction approach* and the *indicator approach*. For cancer risk from volatile petroleum hydrocarbons, benzene should be used as the indicator chemical. For cancer risk from heavy petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) should be used as indicator chemicals. To address non-cancer health hazard, the TPHCWG identified 13 TPH fractions.

Identification of TPH Fractions with Similar Fate and Transport Characteristics

Exposure considerations are often the overwhelming factor in determining the risk to health associated with petroleum contamination in the environment. Fate and transport of TPH constituents varies as a function of their individual chemical and physical properties. To choose TPH fractions, the TPHCWG modeled the fate and transport of each carbon congener group, *e.g.*, C5, C6, C7, for leaching to groundwater and volatilization to air. The carbon congener groups were combined based on their modeled results being within one order of magnitude of one another. Once fractions were defined, appropriate fate and transport parameter values were assigned to each fraction based on average values of the individual constituents within each fraction. These values can be used to determine exposure to each fraction. The fate and transport fractions and associated critical parameters are presented in Table B-1. Aliphatic and aromatic components are considered separately because these two groups vary greatly in their environmental behavior.

Table B-1
TPH Fractions Derived from Fate and Transport
Characteristics and Associated Properties
(Based on an Equivalent Carbon Number¹)

	Solubility (mg/L)	Vapor Press. (atm)	Log Koc (c/c)	PF ² (soil/water)	PF ² (soil/vapor)
Aliphatic Fractions					
C5-C6	3.6E+01	3.5E-01	2.9E+00	1E+01	3E-01
>C6-C8	5.4E+00	6.3E-02	3.6E+00	4E+01	9E-01
>C8-C10	4.3E-01	6.3E-03	4.5E+00	3E+02	6E+00
>C10-C12	3.4E-02	6.3E-04	5.4E+00	3E+03	5E+01
>C12-C16	7.6E-04	4.8E-05	6.7E+00	7E+04	1E+03
>C16-C35	1.3E-06	7.6E-06	9.0E+00	1E+07	1E+05
Aromatic Fraction					
C6-C7	1.8E+03	1.3E-01	1.9E+00	9E-01	4E+00
>C7-C8	5.2E+02	3.8E-02	2.4E+00	2E+00	9E+00
>C8-C10	6.5E+01	6.3E-03	3.2E+00	2E+01	5E+01
>C10-C12	2.5E+01	6.3E-04	3.4E+00	2E+01	2E+02
>C12-C16	5.8E+00	4.8E-05	3.7E+00	5E+01	2E+03
>C16-C21	5.1E-01	7.6E-06	4.2E+00	1E+02	4E+04
>C21-C35	6.6E-03	4.4E-09	5.1E+00	1E+03	3E+07

Note: Table extracted in part from Gustafson et al., 1997, Table 7

¹Equivalent carbon number as defined in Gustafson et al., 1997

²PF – partition factors for soil-to-water and soil-to-vapor concentrations at equilibrium

Each of the groups in Table B-1 is further subdivided on the basis of equivalent carbon number index. This index is related to the boiling point of individual constituents and is equivalent to the retention time of the compounds in a boiling point gas chromatography (GC) column, normalized to the n-alkanes. The relationship between equivalent carbon number and boiling point was empirically determined. Therefore, if the boiling point of a chemical is known, its equivalent carbon number can be calculated. The detailed derivation of the fate and transport and the equivalent carbon numbers are found in TPHCWG Volume 3 (Gustafson et al., 1997). Separating TPH constituents into these fate and transport fractions simplifies environmental modeling conducted in support of human health risk assessment for petroleum sites. These fractions can be used in fate and transport models using the physical parameters listed in Table B-1 to estimate partitioning in the soil-water-air system. In this way, the fraction is treated like a single chemical for modeling purposes.

Analytical Methods for Characterizing Petroleum Contaminated Soils and Water

The TPHCWG identified and evaluated available analytical methods for hydrocarbons at petroleum contaminated sites (TPHCWG Volume 1, Weisman, 1998a). Because the chemical composition of residuals at petroleum sites is complex and varies over time and distance from the source, selection of an appropriate analytical method is critical.

The TPHCWG analytical method is called the "DIRECT" method (http://www.AEHS.com). At least one laboratory in Santa Barbara County can run this analysis. The technique is based on SW-846 EPA Method 3611 (Alumina Column Cleanup and Separation of Petroleum Wastes) and SW-846 EPA Method 3630 (Silica Gel Cleanup), which are used to fractionate petroleum-derived mixtures into aliphatic, aromatic, and polar fractions. Gas chromatography equipped with a

_

The DIRECT method involves extraction of a soil or a water sample with n-pentane and analysis of a portion of the extract using gas chromatography with a flame ionization detector (GC-FID). For additional characterization, fractionation of the petroleum hydrocarbon extract is accomplished by solid-phase separation of another portion of the extract using alumina (similar to EPA Method 3611) and eluting with n-pentane to obtain an aliphatic fraction followed by elution with dichloromethane to obtain an aromatic fraction. Alternatively, fractionation may also be done using silica gel (similar to EPA Method 3630). Silica gel may be more suitable for samples with a wide boiling point distribution of hydrocarbons. Silica gel may also be better for the fractionation of the higher molecular weight PAHs. In the silica gel procedure, a 1:1 mixture of acetone:methylene chloride is used to elute the aromatic compounds. Other fractionation procedures, such as automated high-pressure liquid chromatography (HPLC) methods, may also be used. The fractions are also analyzed using GC-FID. The extract as well as the fractions can be further characterized by subdividing the chromatographic data into approximate boiling point/carbon number ranges with respect to n-alkane markers. This method allows choices of standards for calibration. Either mixtures of single hydrocarbon components, petroleum products (such as gasoline or diesel), or mixtures of petroleum products can be used. It is strongly encouraged that petroleum products similar to those present as contaminants in the samples be used if possible.

boiling point column (nonpolar capillary column) is used to analyze whole soil samples as well as to resolve and quantify the aliphatic and aromatic fate and transport fractions. The method is versatile and performance-based and therefore can be modified to accommodate data quality objectives. The method may not be needed to analyze all soil samples collected at a petroleum site, but only enough samples necessary to identify the contaminants present at the site. Once petroleum contamination has been fully characterized and the TPH fingerprint is similar across the site, additional sampling can rely on traditional, less expensive TPH analysis rather than the new, more complex method.

Development of Toxicity Criteria for Fate and Transport Fractions

The TPHCWG had to establish toxicity criteria for the carbon fractions appropriate for quantifying human health risk. By relying on the fate and transport fractions, human health risk can be evaluated using toxicity criteria that approximate the mixtures as they occur in the environment. To assign toxicity criteria to the fate and transport fractions, toxicity data for individual TPH constituents within each fraction were reviewed. From these data, either the toxicity factors for the most stringent member of each fraction or a surrogate chemical representing an upper-bound value of the toxicity for the fraction was used. The values chosen are summarized in Table B-2.

Table B-2. TPHCWG Toxicity Criteria for TPH Fractions¹

Carbon Range ²	Aromatic Oral RfD (mg/kg- day)	Aromatic Inhalation RfC (mg/m³)	Critical Effect	Aliphatic Oral RfD (mg/kg- day)	Aliphatic Inhalation RfC (mg/m³)	Critical Effect
Aliphatic				5.0	18.4	nephrotoxicity
C5-C6						
>C6-C8						
Aromatic	0.2	0.4	Hepatotoxicity			
C5-C7 ³			Nephrotoxicity			
>C7-C8						
>C8-C10	0.04	0.2		0.1	1.0	hepatic and
>C10-C12						hematological
>C12-C16						changes
>C16-C21	0.03	NA	Nephrotoxicity	2.0	NA	hepatic (foreign
>C21-C35						body reaction) granuloma

¹This table is excerpted from TPHCWG Volume 4 (Edwards et al., 1997).

²Carbon range = equivalent carbon number range as defined in TPHCWG Volume 3 (Gustafson et al., 1997).

³Benzene is the only compound in this fraction. (Carcinogenic toxicity is evaluated independently.)

NA = Not available

For different fractions where toxicity findings were similar or there were limitations in the available toxicity data, the same toxicity criterion was assigned to be conservative. (The numerical

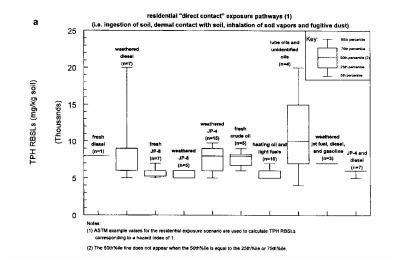
values in Table B-2 also apply to the blank cells immediately below them.) In such case, it is important that the fractions remain differentiated so that the exposure potential can be estimated appropriately. The toxicity criteria developed by the TPHCWG for each fate and transport fraction are based on toxicity data for individual constituents and mixtures, which provide a representative and conservative estimate of each fraction's toxicity.

These toxicity criteria can then be used within a risk-based decision framework to calculate noncancer human health risk-based concentrations for petroleum-contaminated sites. Because carcinogens tend to drive cleanup requirements at most petroleum-contaminated sites when they are present, both the carcinogenic indicator compounds (evaluated using published slope factor values) and the fate and transport fractions need to be taken into consideration when trying to assess the risks to human health associated with hydrocarbon contamination at a site.

Petroleum Chemicals of Concern—Risk-Based Evaluation of TPH Constituents in Soil and Water

The methodology of the TPHCWG, described above, provides the basis for identifying copcs from environmental samples for petroleum-contaminated sites and for conducting a risk-based evaluation that is conservative for the protection of human health.

Choice of a Screening Concentration for TPH in Obstructed Tank Battery and Drilling Sump Sites


The risk-based evaluation for all detected analytes is based on a comparison of residential PRGs to the representative concentrations of the chemicals found in the property assessment. Cancer-based PRGs are used to estimate upper-bound incremental lifetime cancer risk (ILCR) for each carcinogen and for all carcinogens together (cumulative risk). Non-cancer PRGs were used to estimate chemical-specific hazard quotients (HQs) and the hazard index (HI) of all the non-cancer chemical HQs summed together. TPH is included in the non-carcinogens because TPH is evaluated for cancer risk via benzene and benzo(a)pyrene as indicator chemicals. The many other TPH component chemicals are considered to be non-carcinogenic.

Residential Land Use Setting

The evaluation for TPH is additionally conservative because direct exposure is assumed to be occurring. By regulatory "guidance", any sample from 0-10 feet below ground surface (bgs) is in surface soil. On a practical basis, especially when there is grass, concrete, or surface appurtenance,

the opportunity for direct exposure is precluded. Nonetheless, the risk-based evaluation of TPH is conducted for direct exposure to surface soil of 0-10 ft. bgs. This is useful for selected residential properties where there may be no cleanup. It is assumed for the evaluation that the soil from 0-10 feet below ground surface will be excavated to sunlight for the next 30 years, and the family elects to spend a total of 30 years on the property.

The operative pathways for potential residential soil exposure remain as incidental ingestion of soil, inhalation of fugitive dust and vapors from surface soil, and dermal contact with surface soil. TPHCWG, Volume 5 (Vorhees et al, 1999, Figure 12a, page 34) presents the results of calculating risk-based TPH concentrations for a variety of petroleum products, including "fresh crude oil" (type or location, not specified). The average value for fresh crude oil (5 samples) is 8,000 mg/kg (maximum value, 9,000 mg/kg; minimum value, 6,000 mg/kg).

It can be argued that using a risk-based value for "fresh crude oil" is not applicable because the various sumps have been inactive for tens of years dating to the 1930s, and significant weathering of crude oil deposits has surely occurred. However, 8,000 mg/kg for fresh crude oil is a useful and conservative screening concentration pending site-specific TPH carbon-fraction analysis and calculation of a risk-based TPH concentration for a residential setting.

REFERENCES

- Edwards, D.A., M.D. Andriot, M.A. Amoruso, A.C. Tummey, C.J. Bevan, A. Tveit, L.A. Hayes, S.H. Youngren, and D.V. Nakles, 1997, <u>Total Petroleum Hydrocarbon Criteria Working Group Series</u>, Volume 4, Development of Fraction-Specific Reference Doses (RfDs) and <u>Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH)</u>, Amherst Scientific Publishers, Amherst, Massachusetts, http://www.AEHS.com.
- Gustafson, J.B., J.G. Tell, and D. Orem, 1997, <u>Selection of Representative TPH Fractions Based on Fate and Transport Considerations</u>, Total Petroleum Hydrocarbon Criteria Working Group Fate and Transport Technical Action Group, Volume III in a series from the TPH Criteria Working Group, Amherst Scientific Publishers, Amherst, Massachusetts, July, http://www.AEHS.com.
- Potter, T.L., and K.E. Simmons, 1998, <u>Total Petroleum Hydrocarbon Criteria Working Group Series</u>, Volume 2, Composition of Petroleum Mixtures, Amherst Scientific Publishers, Amherst, Massachusetts, May, <u>http://www.AEHS.com</u>.
- Vorhees, D.J., W.H. Weisman, and J.B. Gustafson, 1999, "Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach," Total Petroleum Hydrocarbon Criteria Working Group Series, Volume 5, Amherst Scientific Publishers, Amherst, Massachusetts, June, http://www.AEHS.com.
- Weisman, W., 1998a, <u>Total Petroleum Hydrocarbon Criteria Working Group Series</u>, <u>Volume 1</u>, <u>Analysis of Petroleum Hydrocarbons in Environmental Media</u>, Amherst Scientific Publishers, Amherst, Massachusetts, March, http://www.AEHS.com.
- Weisman, W., 1998b, "Total Petroleum Hydrocarbon Criteria Working Group: A Risk-Based Approach for the Management of Total Petroleum Hydrocarbons in Soil," <u>Journal of Soil Contamination</u>, Vol. 7, No. 1, pp. 1-15.

B-8

COMPARISON OF EXPOSURE SCENARIOS IN STEAMLINED RISK ASSESSMENT

Included herein is Table C-1, Example "SUBSETS" of Environmental Exposure Scenarios, showing the Intake Rate equation used in human health risk assessment, at the top, for calculating incremental cancer risk and non-cancer health hazard. The body of the table is the listing of exposure factors that correspond to the terms of the Intake Rate equation for nine different exposure scenarios. Several of these apply to job functions performed on the MTA Division 6 facility site. These parameters were obtained from the EPA and Cal/EPA documents: Risk Man -Default Factors.doc (DTSC, 1995) and EPA Default Exposure Factors.pdf (EPA, 1991) In the rows below the table of exposure parameters are PEFs, Pathway Exposure Factors, calculated using the Intake Rate equation format and the appropriate exposure parameters. The concentration of the analyte is not included; it is assumed to be 1 as a means to compare the exposure scenarios, not the chemical-specific concentration. For the PEF for groundwater ingestion, PEF-GW ingestion (ILCR), some of the results are "#VALUE!" because the groundwater ingestion rate for that particular exposure scenario was NA, not applicable, i.e., ground water is not used for drinking. As an example, no "IR-GW" (ingestion rate-groundwater) is listed for the Park User exposure scenario because park users either do not drink water there, or the water that they do drink is provided by a municipal delivery system that is regulated under the Safe Drinking Water Act.

Only PEF's for incremental lifetime cancer risk (ILCR), and not non-cancer health hazard PEF's, are listed because cancer risk predominantly drives risk-based decision-making, compared to the non-cancer hazard index (HI), for each scenario and, therefore should be used to compare scenarios.

The PEF's provide a straightforward basis to compare exposure scenarios. The larger the PEF, the greater the risk to be calculated for that scenario compared to the other scenarios. As an example comparison of the two most common exposure scenarios: residential and commercial-industrial land use, the PEF's for the residential exposure scenario and the commercial-industrial scenario were compared by taking a ratio of the residential PEF over the commercial-industrial PEF. In all cases of comparison, the residential PEF was larger than the recreational PEF, and the ratios were all greater than 1. Therefore, a risk-based screening or a screening of Phase II site-specific chemical concentrations in soil that indicates protective conditions based on a residential scenario is also protective for the commercial-industrial scenario.

With regard to a construction worker exposure scenario (Heavy Industrial – Construction Worker (CA) in the table, the ratios of the residential PEFs to the construction scenario PEFs are as follows:

Comp	parison of Pathway Exposure	Factors
	Residential Adult	Residential Child
Construction Worker		
Soil ingestion	5.9E-7/6.7E-8 = 8.8	1.1E-6/6.7E-8 = 16.4
Air inhalation	1.2E-1/2.8E-3 = 42.8	8.2E-2/2.8E-3 = 29.3
Groundwater ingestion	1.2E-2/1.4E-4 = 85.7	5.5E-3/1.4E-4 = 39.3

Note that in every case the ratio of the PEF's is greater than one. This indicates that in every case, the residential scenario would yield a greater risk compared to the construction scenario. Accordingly, a screening that yielded acceptable exposure based on the residential exposure scenario would also yield acceptable exposure by about an order of magnitude compared to the construction worker exposure scenario. Therefore, a screening risk assessment based on residential exposure conditions does protect for the construction worker scenario. Similarly, this exercise can be conducted to compare the residential scenario to each of the other exposure scenarios with similar results. This indicates that when site-specific chemical concentrations are compared to preliminary remediation goals (PRGs) for residential soil (EPA, 2002) as a method of screening chemicals of potential concern (COPCs) for the Divison 6 site, the comparison will be conservative for all the other exposure scenarios. Therefore, screening site-specific chemical concentrations from the Phase II investigation against residential soil PRGs, as specified in EPA guidance (EPA, 1989, Exhibit 5-1), for the selection or exclusion of COPCs for risk assessment is a conservative process for the other exposure scenarios as well.

One additional aspect of this evaluation deserves description. The pathway exposure factor evaluation above is fine as far as it goes. However, it might be criticized that a pathway exposure factor comparison might not be sufficient as a surrogate to comparing actual calculated risks because the basis of the toxicity values that would be applied to the pathway exposure factor and intake in Table C-1 to calculate risk/hazard in risk assessment are different. A residential scenario occurs over 30 years; the toxicity values that apply to that exposure are chronic values. A

construction scenario lasts weeks to months, and maybe as long as a year or two for a large construction job. The toxicity values applicable to such a scenario are based on sub-chronic or even acute toxicity values in some instances. Might this mean that the evaluation of pathway exposure factors described above would be mitigated or even reversed by the inclusion of chronic vs. sub-chronic toxicity factors? Fortunately, sub-chronic toxicity factors are almost always less stringent than those for chronic exposures. So, the relative ranking of pathway exposure factors for residential and other construction worker scenarios are still conservative if the calculation for risk/hazard were carried to completion, and the application of the toxicity factors in the calculations would be likely to even increase the relative comparison of risk/hazard between scenarios because of the additional comparison of chronic and sub-chronic toxicity factors.

REFERENCES

California Environmental Protection Agency, 1995, Risk Management Policy and Procedure, Expedited Remedial Action Program, Department of Toxic Substances Control, File Name: RISKMAN.P&P, Cal/EPA Access, June 30.

DTSC, see California Environmental Protection Agency.

EPA, see United States Environmental Protection Agency.

- United States Environmental Protection Agency, 1989, <u>Risk Assessment Guidance for Superfund</u>, <u>Volume I, Human Health Evaluation Manual (Part A)</u>, <u>Interim Final</u>, EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington, DC 20460, December.
- United States Environmental Protection Agency, 1991, <u>Human Health Evaluation Manual</u>, <u>Supplemental Guidance: "Standard Default Exposure Factors,"</u> OSWER Directive 9285.6-03, NTIS PB92-963333, Office of Solid Waste and Emergency Response, Washington, DC 20460, March 25.
- United States Environmental Protection Agency, 2002, "Region 9 Preliminary Remediation Goals (PRGs) 2002," Stanford J. Smucker, Ph.D., Regional Toxicologist, San Francisco, CA 94105-3901, October 1.

C-3

Table C-1. Example "SUBSETS" of Environmental Exposure Scenarios

Estimates of Sets of Exposure Parameters for Various Scenarios

Intake Rate = [(Cm x CR x CF x FI x EF x ED) / (BW x AT)] ---> Intake Rate = Cm x PEF ---> PEF = [(IR x CF x FI x EF x ED) / (BW x AT)]

	IIIIake Kale = [(OIII X OIV	X O1 X 1 1 X	LI X LD/I	(BII X AT)]	- 1110	anc nate =	OIII X I LI		.i – [(iit x o	F X FI X EF	X 29// (BII	X 7 1 / J		
Exposure Parameter	Units	Residential - Adult US & CA	Residential - Child US & CA	Park User - Adult (CA) [4-hr day]	Park User - Child (CA) [4-hr day]	Agricultural - Adult (US)	Agricultural - Child (US)	Light Commercial (Comm- Industrial, US & CA)	Maintenance Worker/- Groundskeeper (CA)	Office Worker - CA	Visitor/Trespasser (Adult)	Visitor/Trespasser (Child)	Landscaper (CA)	Heavy Industrial - Construction Worker (CA)	
C _M		Chemical-	-Specific/ E	nvironmenta	al Medium-S	pecific S	Same Value	for Each	of Soil (mg/	/kg), Air (µg/	³), GW (µg/L	.) for All Sce	narios		
IR - soil	mg/day	100	200	100	200	100	200	50	480	NA	100	200	480	480	
IR - air	m³/day	20	15	6.4	4.4	20	20		20	8	20	20	20	20	
IR - GW	L/day	2	1	NA	NA	2	2	1	1	1	NA	NA	1	1	
SSA	cm²/day	5800	3200	5800	3200	5800	3200	5800	5800	NA	5800	3200	5800	5800	
SA	mg/cm²	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NA	1.0	1.0	1.0	1.0	
ABS	unitless	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
CF	kg/mg	1E-6	1E-6	1E-6	1E-6	1E-6	1E-6	1E-6	1E-6	NA	1E-6	1E-6	1E-6	1E-6	
FI	unitless	1	1	1	1	1	1	1	1	1	1	1	1	1	
EF	days/year	350	350	250	250	350	350	250	250	250	350	350	250	250	
ED	years	30	6	24	6	24	6	25	25	25	24	6	25	1	
BW	kg	70	15	70	15	70	15	70	70	70	70	70	70	70	
AT _{NC}	days	365 x ED	365 x ED	8760	2190	9125	365 x ED	9125	9125	9125	365 x ED	365xED	365 x ED	365	
AT _C	days	25,550	25,550	25,550	25,550	25,550	25,550	25,550	25,550	25,550	25,550	25,550	25,550	25,550	
PEF - soil ing	jestion (ILCR)	5.9E-7	1.1E-6	3.4E-7	7.8E-7	4.7E-7	1.1E-6	1.7E-7	1.7E-6	#VALUE!	4.7E-7	2.3E-7	1.7E-6	6.7E-8	
PEF - air inha	` '	1.2E-1	8.2E-2	2.1E-2	1.7E-2	9.4E-2	1.1E-1	0.0E+0	7.0E-2	2.8E-2	9.4E-2	2.3E-2	7.0E-2	2.8E-3	
	jestion (ILCR)	1.2E-2	5.5E-3	#VALUE!		9.4E-3	1.1E-2	3.5E-3	3.5E-3	3.5E-3	#VALUE!	#VALUE!	3.5E-3	1.4E-4	
C _M	Concentration in					roundwate	er); mg/m(aii	.)]							
IR - soil	Ingestion Rate f		al ingestion	of soil [mg/	, -			_							
IR - air	Inhalation Rate	. ,.			PEF		Pathway	Exposure	Factor (al	so called, "	Bunch of Fa	actors")			
IR - GW SSA	Ingestion Rate [Skin Surface Ar		<i>,</i> 1		DEE asil/	II CD)	Dethurer		Footor in	aidontal ac	il inggation			for II CD	
SA	Soil Adherence	-			PEF - soil (ilck)									
ABS	Absorption fract			oil	PEF - air (II	CR)	[units: kg(soil)/kg(body weight)-day] Pathway Exposure Factor - inhalation exposure evaluation for ILCR								
CF	Units Conversion				(11	,	[units: m ³ /	•	11		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
FI	Fraction Ingeste			0 0.	PEF - GW (ILCR) Pathway Exposure Factor - groundwater ingestion ex						exposure ev	/aluation fo	or ILCR		
EF	Exposure Frequ				\	[units: liters(groundwater)/kg(body weight)-day]									
ED	Exposure Durat						-	.=		,					
BW	Body Weight [kg	a]													
AT _{NC}	Averaging Time	- noncance	er [days, El	O x 365]		AT _C	Averaging	Time - ca	ncer [days,	70 x 365]					

D9 - CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD-LOS ANGELES REGION, UNDERGROUND STORAGE TANK PROGRAM CASE CLOSURE DIVISION 6, 100 SUNSET AVENUE, VENICE (ID#902910152), AUGUST 10, 2004.

as the firm and the same in the same and the

Secretary for Environmental Protection

California Regional Water Quality Control Board

Los Angeles Region

Over 51 Years Serving Coastal Los Angeles and Ventura Counties Recipicat of the 2001 Environmental Leadership Award from Keep California Beautiful

Arnold Schwarzener Governor

320 W. 4th Street, Suite 200, Los Angeles, California 90013 Phone (213) 576-6600 FAX (213) 576-6640 - Internet Address: http://www.swrcb.ca.gov/rwqcb4

August 10, 2004

Mr. Cris B. Liban, D.Env. Los Angeles County Metropolitan Transportation Authority One Gateway Plaza Los Angeles, CA 90012-2952

UNDERGROUND STORAGE TANK PROGRAM CASE CLOSURE DIVISION 6 100 SUNSET AVENUE, VENICE (ID# 902910152)

Dear Mr. Liban:

This letter confirms the completion of the site investigation and remedial action for the underground storage tank(s) formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the underground storage tanks is greatly appreciated.

Based on the available information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of section 25296.10 of the Heath and Safety Code and with corrective action regulations adopted pursuant to section 25299.3 of the Health and Safety Code and that no further action related to the underground storage tank release is required.

This notice is issued pursuant to subdivision (g) of section 25296.10 of the Heath and Safety

If you have groundwater monitoring wells and/or vapor extraction wells at the subject property, you must comply with the following:

- All wells must be properly located and abandoned. 1
- 2. Well abandonment permits must be obtained from Los Angeles County Department of Health Services (LACDHS), Water Well Permits, and all other necessary permits must be obtained from the appropriate agencies prior to the start of work. Any wells not abandoned must be maintained in accordance with LACDHS requirements.
- 3. You must submit a report on the abandonment of the wells to this office by October 29, 2004. This report must include, at a minimum, a site map, a description of the well abandonment process, and copies of all signed permits. For wells not abandoned, please provide the rationale for keeping the wells in place.

California Environmental Protection Agency

Recycled Paper

Mr. Cris B. Liban, D.Env. -2-Los Angeles County Metropolitan Transportation Authority

August 10, 2004

Please contact Dr. Yue Rong at (213) 576-6710 or Mrs. Mercedes Hsu at (213) 576-6712 if you have any questions regarding this matter.

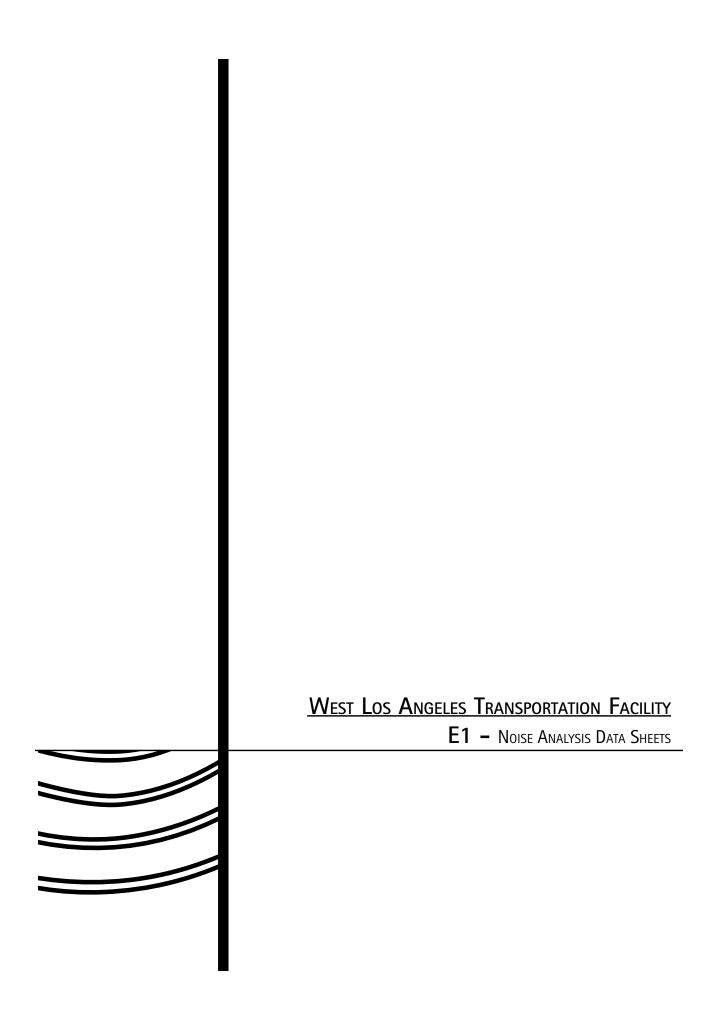
Sincerely,

Jonathan Bishop

Interim Executive Officer

cc: Ms. Yvonne Shanks, State Water Resources Control Board, Underground Storage Tank
Cleanup Fund

Mr. Patrick Nejadian, Water Well Permits, Los Angeles County Department of Health Capt. Frank Comfort, Los Angeles City Fire Department, Underground Tanks Ms. Valerie Toney, Los Angeles City Fire Department, Underground Tanks Mr. Gregory Sena, MACTEC Engineering and Consulting, Inc.


APPENDIX E - Noise:

West Los Angeles Transportation Facility

E1 - Noise Analysis Data Sheets

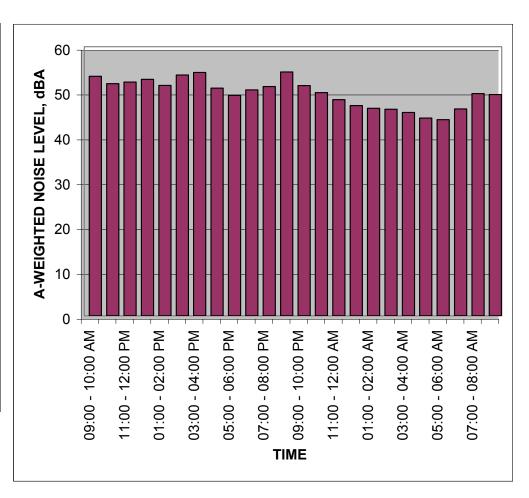
SUNSET AVENUE PROJECT

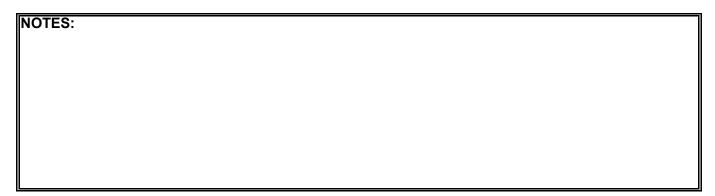
E2 - Noise Analysis Data Sheets

Appendix E-1

West Los Angeles Transportation Facility Printout Sheets

- Existing Noise Levels (CNEL)
- Construction-period Noise Impact Evaluation
- Roadway Noise Impact Evaluation
- Roadway plus LRT Alignment Noise Impact Evaluation


Project: WLATC (Jefferson)


Location: Blair Hills Residential Community

Sources: Distant Traffic Volumes

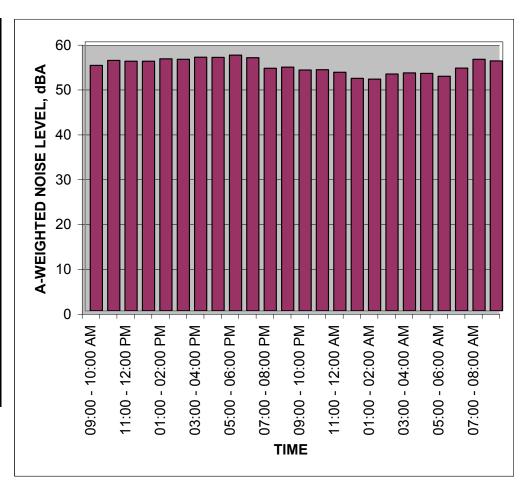
Date: July 25-28, 2003

	HNL,
TIME	dB(A)
09:00 - 10:00 AM	53.41
10:00 - 11:00 AM	51.76
11:00 - 12:00 PM	52.12
12:00 - 01:00 PM	52.73
01:00 - 02:00 PM	51.37
02:00 - 03:00 PM	53.68
03:00 - 04:00 PM	54.27
04:00 - 05:00 PM	50.76
05:00 - 06:00 PM	49.16
06:00 - 07:00 PM	50.37
07:00 - 08:00 PM	51.11
08:00 - 09:00 PM	54.36
09:00 - 10:00 PM	51.32
10:00 - 11:00 PM	49.76
11:00 - 12:00 AM	48.18
12:00 - 01:00 AM	46.87
01:00 - 02:00 AM	46.27
02:00 - 03:00 AM	46.05
03:00 - 04:00 AM	45.34
04:00 - 05:00 AM	44.1
05:00 - 06:00 AM	43.75
06:00 - 07:00 AM	46.13
07:00 - 08:00 AM	49.55
08:00 - 09:00 AM	49.34
CNEL, dB(A):	55.1

WLATC (Jefferson) Noise Data (Residential)

Interval data
Translated: 29-Jul-2003 11:37:03
Translated File: A:\MTA Noise\48hrdata.SLMDL
SLM: 820A1049
Firmware Rev.: 1.500 18Sep1998
Software: SlmUtility v2.01
PCR Services Corporation
233 Wilshire Blvd., Suite 130
(310) 451-4488

(0.0) .0															
Rec#	Date	Time	Duration		_max	Lmin	SEL	Peak		L(1.00)					
2			25:12.9 00:00.0	53.57 52.73	69.14 66.75	46.2 46.19	85.38 88.3	99.59 80.27	97.7 101.13	64.57 61.68	55.16 54.55	52.72 52.56	51.08 51.35	48.44 48.27	47.07 46.99
3			00:00.0	52.24	66.91	45.61	87.82	80.11	99.18	62.69	54.09	51.62	49.3	47.21	46.1
4	25-Jul-03	13:00:00	0.00:00	50.94	65.21	46.37	86.52	87.56	109.05	60.25	52.34	50.28	48.94	47.47	46.51
			0.000.0	51.73	69.27	45.41	87.3	83.45	107.77	61	53.8	51.23	48.99	46.91	46.02
-			0.00:00	51.48	65.13	45.6	87.05	78.27	108.73	60.39	54.13	50.95	49.33	47.52	46.48
7			00:00.0	52.08 50.49	68.12 64.81	45.72 45.44	87.66 86.06	90.85 77.37	106 105.51	60.93 59.91	54.7 52.4	51.13 49.63	49.12 48.38	47.27 46.96	46.17 46.06
(00:00.0	51.05	69.28	45.09	86.63	91.09	103.51	60.77	52.62	49.81	48.25	46.6	46.01
10			00:00.0	51.2	65.81	44.78	86.77	77.91	102.33	61.48	53.84	49.44	47.64	46.12	45.12
11	25-Jul-03	20:00:00	0.00:00	52.62	68.25	43.12	88.2	81.24	97.37	64.22	55.73	50.63	47.5	45.24	44.01
12			0.000.0	57.96	75.5	43	93.54	93.23	98.59	72.13	58.23	49.25	46.39	44.44	43.35
13			0.00:00	49.48	63	41.87	85.05	78.17	94.22	60.63	52.24	47.09	45.44	43.65	42.93
14 15			00:00.0	48.09 49.09	63.37 66.62	42.74 45.59	83.66 84.66	83.73 79.73	87.14 90.66	56.64 56.06	48.98 49.22	48.27 48.33	47.27 47.53	44.65 46.34	43.5 46.01
16		1:00:00	00:00.0	47.04	53.97	45.22	82.62	68.09	84.65	48.98	47.92	47.5	46.86	46.05	45.22
17		2:00:00	0.00:00	49.31	71.72	44.97	84.89	86.71	93.16	52.08	47.41	46.83	46.45	45.49	45.04
18	3 26-Jul-03	3:00:00	00:00.0	46.42	58.34	44.46	81.99	76.58	84.65	49.45	47.13	46.7	46.19	45.21	44.73
19		4:00:00	0.00:00	48.09	68.33	44.95	83.66	81.45	89.09	53.66	47.86	46.87	46.35	45.3	45.02
20		5:00:00	0.00:00	47.08	53.95	45.44	82.66	69.06	999	50.08	48.18	47.5	46.79	46.05	45.44
2° 22			00:00.0	49.66 50.97	64.81 71.85	45.81 45	85.24 86.55	79.57 100.59	95.94 105.51	58.99 58.96	50.41 53.22	48.95 50.62	47.98 48.9	46.54 47.09	46.03 46.05
23			00:00.0	51.5	68.26	44.94	87.08	91.49	90.66	63.76	51.55	49.65	48.2	46.36	45.3
24			0.00:00	53.41	65.61	45.6	88.98	87.85	97.37	62.58	57.82	52.23	49.39	47.06	46.06
25			00:00.0	51.76	64.48	45.72	87.34	77.09	104.61	60.81	55.55	50.52	48.63	46.92	46.07
26			0.00:00	52.12	67.9	45.66	87.7	80.09	104.89	63.52	53.8	50.65	48.67	47.03	46.1
27 28			00:00.0	52.73	70.03	45.89	88.31	85.98	106.94	61.25	55.94	52.39	49.11	47.08 46.87	46.12
29			00:00.0	51.37 53.68	66.19 73.48	45.1 44.98	86.95 89.25	81.87 91.41	109.24 107.36	60.32 63.63	54.14 56.55	51 50.85	48.81 48.02	46.87	45.61 45.12
30			00:00.0	54.27	67.75	44.81	89.84	81.62	105.2	63.2	59.35	53.56	48.67	46.13	45.11
3			0.00:00	50.76	63.87	44.66	86.34	78.55	106	59.74	53.55	49.96	48.21	46.24	45.12
32			0.000.0	49.16	63.84	44.48	84.73	90.61	105.77	57.48	50.67	48.8	47.64	45.84	45
33			0.00:00	50.37	64.76	46.26	85.95	89.21	105.2	58.02	53.32	50.01	48.55	47.2	46.27
34 35			00:00.0	51.11 54.36	70.83 70.81	45.73 45.8	86.69 89.94	82.3 82.53	97.37 95.11	60.65 65.92	52.05 56.96	48.96 51.48	47.91 48.62	46.72 47.03	46.06 46.1
36			00:00.0	51.32	69.29	45.27	86.9	82.52	91.98	62.05	50.97	48.2	47.39	46.19	45.27
37			00:00.0	49.76	63.38	45.39	85.34	75.74	94.22	60.32	50.66	47.94	47.19	46.19	45.48
38	3 26-Jul-03	23:00:00	0.00:00	48.18	59.37	45.25	83.76	73.48	93.16	55.9	48.89	47.98	47.48	46.36	46.01
39			0.00:00	46.87	51.62	45.21	82.45	65.78	91.98	49.52	47.89	47.2	46.64	45.84	45.21
40		1:00:00	0.00:00	46.27	54.45	44.19	81.85	75.56	93.16	52.41	46.91	46.44	45.8	45.09	44.24
4° 42		2:00:00 3:00:00	0.00:00	46.05 45.34	58.67 48.78	43.29 42.65	81.63 80.91	71.3 65.17	84.65 999	50.52 47.83	46.97 46.46	46.27 45.8	45.64 45.27	44.62 44.22	44.02 43.46
43		4:00:00	00:00.0	44.1	58.9	39.15	79.68	71.16	93.16	53.52	44.84	43.94	42.98	41.13	40.05
44		5:00:00	0.00:00	43.75	50.64	41.39	79.32	67.16	94.22	47.72	44.98	44.19	43.46	42.25	41.39
45	5 27-Jul-03	6:00:00	0.00:00	46.13	55.55	42.52	81.71	73.16	90.66	51.18	47.69	46.73	45.76	43.98	43.04
46			0.00:00	49.55	64.31	45.05	85.12	81.19	90.66	57.64	51.66	49.3	47.87	46.27	45.24
47			0.00:00	49.34	63.79	44.16	84.91	84.8	96.69	59.73	50.58	48.41	47.04	45.44	44.41
48 49			0.00:00	51.05 50.61	64.52 67.01	43.45 42.3	86.63 86.18	86.49 82.4	93.16 101.95	61.98 62.57	53.84 51.51	50.02 48.58	47.72 46.91	45.35 44.55	44.1 43.16
50			00:00.0	53.31	70.03	43.62	88.89	86.46	107.77	65.24	55.36	51.07	47.62	45.02	44.09
5			0.00:00	48.99	66.66	43.79	84.57	88.61	103.04	59.61	50.27	47.72	46.32	44.87	44.07
52	27-Jul-03	13:00:00	0.00:00	52.69	70.7	43.79	88.27	86.88	110.49	64.59	54.5	50.42	47.82	45.44	44.2
53			0.00:00	52.11	71.07	44.45	87.69	83.38	115.01	62.09	54.45	50.57	47.96	45.63	45
54			0.00:00	50.48	66.05	44.17	86.05	80.37	108.89	61.11	52.62	49.16	47.4	45.52	44.61
55 56			0.00:00	50.35 50.8	65.19 63.23	44.27 44.8	85.92 86.38	84.57 77.25	111.52 109.05	60.03 57.82	53.09 53.05	49.55 50.66	47.53 49.62	45.44 47.84	44.39 46.02
57				52.98	71.43	47.66	88.56	83.82		63.5	54.07	51.23	49.76	48.39	48.02
58				50.98	64.44	47.55	86.56	77.41	103.04	59.36	52.69	49.92	49.23	48.2	47.55
59				52.57	64.77	47.38	88.15	79.37		61.85	56.03	51.7	49.48	48.2	47.46
60				51.55	67.61	47.09	87.12	80.48	91.98	61.7	53.16	49.97	48.94	47.95	47.09
6′ 6′		22:00:00		50.29 76.94	65.34	47.09	85.87	79.39		58.93	50.95	49.05	48.5	47.4	47.09
62 63				76.84 48.22	107.57 66.19	39.07 45.43	112.41 83.8	136.95 79.31	135.27 91.98	66.86 55.96	51.23 47.78	48.74 46.97	47.55 46.61	43.6 46.03	41.09 45.43
64				45.87	51.05	44.67	81.44	65.56		48.86	46.72	46.04	45.66	45.11	44.67
65				45.27	51.68	44.18	80.84	64.19		46.95	45.91	45.69	45.32	44.35	44.18
66	28-Jul-03			45.2	47.79	44.16	80.78	67.92		46.88	45.92	45.68	45.27	44.3	44.16
67				46.47	53.17	44.05	82.04	78.43		48.76	47.5	46.86	46.4	45.3	44.59
68				48.83	55.84	46.16	84.41	76.04		51.8 50.56	50.05	49.5	48.71	47.2	46.16
69 70				49.99 52.25	64.41 64.08	46.02 47.18	85.57 87.83	78.41 90.8	108.89 125.35	59.56 58.7	50.53 54.52	49.41 52.65	48.6 51.19	47.29 49.23	46.26 48.03
7				51.84	63.66	47.10	87.41	83.95		58.68	53.55	51.94	50.95	49.28	48.12
72		9:00:00		51.7	60.35	48.17	82.66	86.39		58.12	53.41	52.2	50.92	49.25	48.19


Project: WLATC (Jefferson)

Location: Project Site, 320 feet east of Jefferson Boulevard and 780 feet south of National Boulevard

Sources: Traffic along Jefferson Boulevard

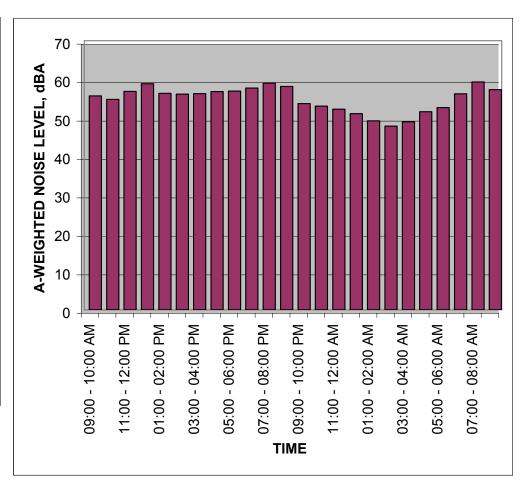
Date: August 5-6, 2003

	HNL,
TIME	,
71ME 09:00 - 10:00 AM	dB(A) 54.71
05100 20100 12112	
10:00 - 11:00 AM	55.84
11:00 - 12:00 PM	55.66
12:00 - 01:00 PM	55.66
01:00 - 02:00 PM	56.2
02:00 - 03:00 PM	56.09
03:00 - 04:00 PM	56.55
04:00 - 05:00 PM	56.52
05:00 - 06:00 PM	57.01
06:00 - 07:00 PM	56.45
07:00 - 08:00 PM	54.08
08:00 - 09:00 PM	54.32
09:00 - 10:00 PM	53.68
10:00 - 11:00 PM	53.75
11:00 - 12:00 AM	53.18
12:00 - 01:00 AM	51.83
01:00 - 02:00 AM	51.66
02:00 - 03:00 AM	52.8
03:00 - 04:00 AM	53.05
04:00 - 05:00 AM	52.95
05:00 - 06:00 AM	52.29
06:00 - 07:00 AM	54.1
07:00 - 08:00 AM	56.09
08:00 - 09:00 AM	55.73
CNEL, dB(A):	60.2

WLATC (Jefferson) Noise Data (Project Site)

Interval data
Translated: 07-Aug-2003 07:22:02
Translated File: C:\Program Files\LARDAV\SLMUTIL\05Aug2003_12-16-12.SLMDL
SLM: 820A1049
Firmware Rev.: 1.500 18Sep1998
Software: SImUtility v2.01
PCR Services Corporation
233 Wilshire Blvd., Suite 130
(310) 451-4488
MTA SITE

Rec#	D	ate	Time	Duration	Leq	Lmax	Lmin	SEL	Peak	UwPeak	L(1.00)	L(10.00)	L(25.00)	L(50.00)	L(90.00)	L(99.00)
1100 11	1	5-Aug-03				79.14		94.23					, ,	, ,	` '	` ,
	2	5-Aug-03	13:00:00	00:00.0		68.01	52.38	92.27								53.29
	3	5-Aug-03	14:00:00	00:00.0		70.66	51.43	92.48		109.24						
	4	5-Aug-03	15:00:00	00:00.0	56.55	66.66	50.16	92.12	89.45	105.2	62.28	58.59	57.25	55.95	53.45	51.52
	5	5-Aug-03	16:00:00	00:00.0	56.52	63.05	50.98	92.1	81.33	108.35	60.9	58.63	57.49	56.08	53.52	
	6	5-Aug-03	17:00:00	00:00.0	57.01	70.72	50.33	92.59	89.27	109.24	62.98	58.95	57.83	56.19	53.16	51.27
	7	5-Aug-03	18:00:00	00:00.0	56.45	66.77	50.3	92.03	86.45	106	61.82	58.77	57.4	55.83	53.03	51.34
	8	5-Aug-03	19:00:00	00:00.0	54.08	61.87	48.2	89.66	80.61	108.54	59.06	56.25	54.82	53.41	51.11	49.3
	9	5-Aug-03	20:00:00	00:00.0	54.32	66.12	49.84	89.9	84.77	93.16	59.04	55.97	54.89	53.85	52.09	50.87
	10	5-Aug-03	21:00:00	00:00.0	53.68	60.69	49.3	89.25	79.47	89.09	57.41	55.33	54.35	53.35	51.56	50.24
	11	5-Aug-03	22:00:00	00:00.0	53.75	61.05	48.8	89.32	74.33	93.16	58.66	55.71	54.48	53.23	51.15	49.67
	12	5-Aug-03	23:00:00	00:00.0	53.18	68.66	47.78	88.76	87.95	90.66	57.95	55.2	53.94	52.59	50.3	48.78
	13	6-Aug-03	0:00:00	00:00.0	51.83	58.91	47.05	87.41	77.46	91.98	55.98	53.8	52.65	51.41	49.11	47.7
	14	6-Aug-03	1:00:00	00:00.0		61.8	46.3	87.24		93.16						
	15	6-Aug-03	2:00:00	00:00.0		60.66	47.17	88.37		93.16						
	16	6-Aug-03	3:00:00	00:00.0		58.88	48.01	88.63		95.94		54.84	53.96	52.95	50.26	
	17	6-Aug-03	4:00:00	00:00.0		62.37	48.23	88.52		97.37						
	18	6-Aug-03	5:00:00	00:00.0		66.23	48.6	87.87		93.16						49.15
	19	6-Aug-03	6:00:00	00:00.0		66.36	48.73	89.68	84.93	93.16						
	20	6-Aug-03	7:00:00	00:00.0		68.15	51.02	91.66		94.22						
	21	6-Aug-03	8:00:00	00:00.0		72.33	51.67	91.3		95.94						52.22
	22	6-Aug-03	9:00:00	00:00.0		69.44	49.79	90.41	83.73	94.22						
	23	6-Aug-03	10:00:00	00:00.0		63.8	50.6	90.29								
	24	6-Aug-03	11:00:00	00:00.0		64.82	51.44	91.41	85.6							52.05
	25	6-Aug-03	12:00:00	00:00.0		64.55	50.65	91.24		104.02						
	26	6-Aug-03	13:00:00	00:00.0		73.29	52.27	91.78								
	27	6-Aug-03	14:00:00			63.42	51.36	91.66		105.77						
	28	6-Aug-03	15:00:00	00:00.0		66.93		92.12								
;	29	6-Aug-03	16:00:00	09:49.1	58.25	78.44	49.68	85.96	104.47	107.15	70.17	57.62	56.02	54.8	52.23	50.02


Project: WLATC (Jefferson)

Location: Syd Kronenthal Park, 200 feet north of National Boulevard along Ballona Creek

Sources: Traffic along National Boulevard and Park Activities

Date: August 5-6, 2003

	HNL,
TIME	dB(A)
09:00 - 10:00 AM	55.64
10:00 - 11:00 AM	54.72
11:00 - 12:00 PM	56.8
12:00 - 01:00 PM	58.82
01:00 - 02:00 PM	56.3
02:00 - 03:00 PM	56.08
03:00 - 04:00 PM	56.23
04:00 - 05:00 PM	56.77
05:00 - 06:00 PM	56.87
06:00 - 07:00 PM	57.68
07:00 - 08:00 PM	58.97
08:00 - 09:00 PM	58.09
09:00 - 10:00 PM	53.65
10:00 - 11:00 PM	52.96
11:00 - 12:00 AM	52.19
12:00 - 01:00 AM	51.01
01:00 - 02:00 AM	49.15
02:00 - 03:00 AM	47.77
03:00 - 04:00 AM	48.9
04:00 - 05:00 AM	51.51
05:00 - 06:00 AM	52.62
06:00 - 07:00 AM	56.17
07:00 - 08:00 AM	59.26
08:00 - 09:00 AM	57.26
CNEL, dB(A):	60.3

NOTES:			

WLATC (Jefferson) Noise Data (Park)

Interval data
Translated: 07-Aug-2003 07:22:59
Translated File: C:\Program Files\LARDAV\SLMUTIL\05Aug2003_11-15-12.SLMDL
SLM: 820A1065
Firmware Rev.: 1.500 18Sep1998
Software: SImUtility v2.01
PCR Services Corporation
233 Wilshire Blvd., Suite 130
(310) 451-4488
MTA PARK

Rec#	Dat	te	Time	Leg	Lmax	Lmi	in	SEL	Peak	UwPeak	L(1.00)	L(10.00)	L(25.00)	L(50.00)	L(90.00)	L(99.00)
	1	5-Aug-03	11:15:12			.15	46.54	91.63	105.94		66.8		56.79		49.56	47.32
	2	5-Aug-03	12:00:00	58	82 72	.49	49	94.4	97.18	101.51	67.53	61.74	58.88	56.64	52.82	50.65
	3	5-Aug-03	13:00:00	5	3.3 71	.04	49.1	91.87	89.66	110.73	62.65	58.66	57.16	55.27	52.08	50.21
	4	5-Aug-03	14:00:00	56	08 70	.22	48.59	91.65	90.04	104.29	61.5	58.58	56.9	55.14	52	49.57
	5	5-Aug-03	15:00:00	56	23 70	.67	48.52	91.8	87.58	106.45	63.78	58.54	56.72	54.61	51.95	50.25
	6	5-Aug-03	16:00:00	56	77 72	.64	49.62	92.35	87.78	105.72	63.49	59.06	57.19	55.46	53.1	51.48
	7	5-Aug-03	17:00:00	56	87 70	.06	49.94	92.45	92.3	103.98	63.47	59.08	57.29	55.63	53.41	52.01
	8	5-Aug-03	18:00:00	57	68 8	0.4	51.83	93.26	97.77	100.65	63.02	59.37	57.71	56.15	54.06	52.87
	9	5-Aug-03	19:00:00	58	97 74	.37	52.58	94.54	108.59	106.45	65.68	61.47	59.58	57.74	55.12	53.58
	10	5-Aug-03	20:00:00			.31	49.05	93.66	97.94				56.86		51.98	50.2
	11	5-Aug-03	21:00:00			.42	47.41	89.23	88.05				54.21		49.69	48.01
	12	5-Aug-03	22:00:00			.29	48.04	88.54	85.86				53.58		49.93	48.33
	13	5-Aug-03	23:00:00			.04	47.41	87.77	81.17				52.29		49.4	48.41
	14	6-Aug-03	0:00:00			.41	45.04	86.58	85.04			52.4	50.54		47.15	45.7
	15	6-Aug-03	1:00:00			.16	44.03	84.72	80.79						45.76	44.41
	16	6-Aug-03	2:00:00			.01	42.27	83.35	75.34				47.57		44.07	42.47
	17	6-Aug-03	3:00:00			.48	43.61	84.47	78.89				48.97		45.43	44.12
	18	6-Aug-03	4:00:00			.58	43.72	87.08	79.74				52.24		47.34	45.2
	19	6-Aug-03	5:00:00			.82	46.2	88.19	81.87				53.1	50.9	48.29	46.54
	20	6-Aug-03	6:00:00			.83	47.31	91.75	90.22				56.92		50.04	48.51
	21	6-Aug-03	7:00:00			.34	48.48	94.83	100.43				60.01		52.9	50.85
	22	6-Aug-03	8:00:00			.82	46.55	92.84	83.07				58.56		51.62	48.97
	23	6-Aug-03	9:00:00			.59	45.2	91.22	91.59				56.35		49.16	47.06
	24	6-Aug-03	10:00:00			9.6	46.01	90.3	88.91	91.94			55.51	52.83	49.04	47.14
	25	6-Aug-03	11:00:00			.26	46.84	92.38	91.3				56.69		50.19	47.76
	26	6-Aug-03	12:00:00				47.54	105.99	126.24				56.62		50.87	49.13
	27	6-Aug-03	13:00:00			5.9	48.21	91.08	83.77				56.37		50.65	49.17
	28	6-Aug-03	14:00:00			.46	48.31	90.82	86.65				56.23		50.69	49.11
	29	6-Aug-03	15:00:00	5	5.7 69	.59	49.32	89.71	95.49	106.45	62.85	58.12	56.27	54.37	51.58	50.15

R1 - Syd Kronenthal Park R2 - Cameo Woods Condominium Property R3 - Residential East of La Cienega Boulevard R4 - Residential Adjacent to Syd Kronenthal Park R5 - Residential Mortleast of La Cienega/Jefferson R6 - Blair Hills Community R1	Receptor ID								
R2 - Ceamee Woods Condominium Property R3 - Residential East of La Cienega Boulevard R4 - Residential Adjacent to Syd Kronenthal Park R5 - Residential Adjacent to Syd Kronenthal Park R6 - Biair Hills Community									
R3 - Residential East of La Cienega Boulevard R4 - Residential Adjacent to Syd Kronenthal Park R5 - Residential Northeast of La Cienega/Jefferson R6 - Blair Hills Community Noise Level at Receptor Location (Le _Q) R1 R2 R3 R4 R5 R6 R6 O dBA G0 dBA		ertv							
R4 - Residential Adjacent to Syd Kronenthal Park R5 - Residential Northeast of La Cienega/Jefferson R6 - Blair Hills Community Noise Level at Receptor Location (Leq) R7		,							
R6 - Blair Hills Community									
R6 - Blair Hills Community									
Rf									
Rf	,								
Ambient Leq (without construction activity): 60 dBA 60 dBA 60 dBA 60 dBA 60 dBA 52 dBA					,		•		
Distance to Construction Activity Centroid: 750 ft 800 ft 1000 ft 1050 ft 1200 ft 2500 ft							_		
Distance Attenuation Adjustment: a 24 dBA 24 dBA 26 dBA 26 dBA 26 dBA 28 dBA 34 dBA									
Barrier Insertion Loss: b -5 dBA -10 dBA -10 dBA -10 dBA -10 dBA -10 dBA 0 dBA		•							
Reference Noise Level at 50 Feet (Level by Phase S dBA 48 dBA 46 dBA 44 dBA 48 dBA 48 dBA 57 dBA 52 dBA 57 dBA 52 dBA 57 dBA 48 dBA 41 dBA 48 dBA 49 dBA 47 dBA 48 dBA 49 dBA 48 dBA 49 dBA 57 dBA 57 dBA 52 dBA 50 dBA 57 dBA 52 dBA 50 dBA 60 dB			-24 dBA	-24 dBA	-26 dBA	-26 dBA		-34 dBA	
Distance Attenuation and Barrier Insertion Loss Adjusted Construction Noise So Feet (Leq)	Barrier	⁻ Insertion Loss: ^b	-5 dBA	-10 dBA	-10 dBA	-10 dBA	-10 dBA	0 dBA	
Distance Attenuation and Barrier Insertion Loss Adjusted Construction Noise So Feet (Leq)		Reference							
So Feet (Leq.) So Feet (Leq.) So Feet (Leq.) So Grading Grading So Grading Gr	Construction Stage (With Mufflers) C		Distance At	tenuation and		-	usted Constr	uction Noise	
Ground Clearing	Construction Stage (with Mulliers)				Level by	y Phase			
Grading/Excavation	Ground Clearing		53 dBA	48 dBA	46 dBA	46 dBA	44 dBA	48 dBA	
Foundations									
Structural 83 dBA 54 dBA 49 dBA 47 dBA 47 dBA 45 dBA 49 dBA									
Construction Stage (With Mufflers) Composite Noise Level (Construction Noise + Ambient Noise)									
Construction Stage (With Mufflers) ° Composite Noise Level (Construction Noise + Ambient Noise) Ground Clearing 61 dBA 60 dBA 60 dBA 60 dBA 53 dBA Grading/Excavation 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA Foundations 60 dBA 60 dBA 60 dBA 60 dBA 60 dBA 53 dBA Structural 61 dBA 60 dBA 60 dBA 60 dBA 53 dBA Structural 61 dBA 60 dBA 60 dBA 60 dBA 53 dBA Finishing 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA Construction Stage (With Mufflers) ° Noise Level Increase by Phase Ground Clearing 0.9 dBA 0.3 dBA 0.2 dBA 0.1 dBA 1.5 dBA Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.3 dBA 3.0 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Ground Clearing 61 dBA 60 dBA 60 dBA 60 dBA 60 dBA 53 dBA Grading/Excavation 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA Foundations 60 dBA 60 dBA 60 dBA 60 dBA 60 dBA 53 dBA Structural 61 dBA 60 dBA 60 dBA 60 dBA 60 dBA 53 dBA Finishing 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 53 dBA Construction Stage (With Mufflers) of the finishing Noise Level Increase by Phase Ground Clearing Noise Level Increase by Phase Ground Clearing 0.9 dBA 0.3 dBA 0.2 dBA 0.1 dBA 0.1 dBA 1.5 dBA Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.8 dBA		00 02/1							
Grading/Excavation 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA Foundations 60 dBA 60 dBA 60 dBA 60 dBA 60 dBA 53 dBA Structural 61 dBA 60 dBA 60 dBA 60 dBA 54 dBA Finishing 62 dBA 61 dBA 60 dBA 60 dBA 55 dBA Construction Stage (With Mufflers) c Ground Clearing 0.9 dBA 0.3 dBA 0.2 dBA 0.1 dBA 1.5 dBA Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.3 dBA 0.3 dBA 0.3 dBA 0.0 dBA 0.5 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.8 dBA Finishing 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Notes: 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA When applied, assumes t						ruction Noise	+ Ambient No		
Foundations 60 dBA 60 dBA 60 dBA 60 dBA 60 dBA 53 dBA Structural 61 dBA 60 dBA 60 dBA 60 dBA 60 dBA 54 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA 61 dBA									
Structural 61 dBA 60 dBA 60 dBA 60 dBA 60 dBA 54 dBA Finishing 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA Construction Stage (With Mufflers) Construction St									
Finishing 62 dBA 61 dBA 60 dBA 60 dBA 60 dBA 55 dBA Construction Stage (With Mufflers) Roise Level Increase by Phase Ground Clearing 0.9 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.5 dBA Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 0.3 dBA 3.0 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.8 dBA Finishing 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 0.3 dBA 3.0 dBA Whotes: Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). When applied, assumes that barrier fully (10-dB reduction) or partially (5-dB reduction) penetrates the line-of-sight between noise source and receptor location.									
Construction Stage (With Mufflers) c									
Ground Clearing 0.9 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.5 dBA Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 0.1 dBA 0.1 dBA 0.1 dBA 0.1 dBA 0.1 dBA 0.2 dBA 0.1	Finishing		62 dBA	61 dBA	60 dBA	60 dBA	60 dBA	55 dBA	
Ground Clearing 0.9 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.5 dBA Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.2 dBA 0.1 dBA 0.1 dBA 1.8 dBA Finishing 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 0.3 dBA 0.3 dBA 0.4 dBA 0.3 dBA 0.	Construction Stage (With Mufflers) ^c			N	oise Level Inc	rease by Pha	se		
Grading/Excavation 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 0.1 dBA 0.3 dBA 0.1 dBA 0.1 dBA 0.1 dBA 0.1 dBA 0.2 dBA 0.1			0.9 dBA					1.5 dBA	
Foundations 0.3 dBA 0.1 dBA 0.1 dBA 0.0 dBA 0.0 dBA 0.5 dBA Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.8 dBA Finishing 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Notes: Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). When applied, assumes that barrier fully (10-dB reduction) or partially (5-dB reduction) penetrates the line-of-sight between noise source and receptor location.									
Structural 1.1 dBA 0.3 dBA 0.2 dBA 0.2 dBA 0.1 dBA 1.8 dBA Finishing 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.4 dBA 0.3 dBA 0.3 dBA 0.5 dBA 0.5 dBA 0.6 dBA 0.7 dBA 0.8 dBA 0.8 dBA 0.9 dBA									
Finishing 1.9 dBA 0.6 dBA 0.4 dBA 0.4 dBA 0.3 dBA 3.0 dBA Notes: Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). When applied, assumes that barrier fully (10-dB reduction) or partially (5-dB reduction) penetrates the line-of-sight between noise source and receptor location.									
Notes: **Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). **When applied, assumes that barrier fully (10-dB reduction) or partially (5-dB reduction) penetrates the line-of-sight between noise source and receptor location.									
^a Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). ^b When applied, assumes that barrier fully (10-dB reduction) or partially (5-dB reduction) penetrates the line-of-sight between noise source and receptor location.									
When applied, assumes that barrier fully (10-dB reduction) or partially (5-dB reduction) penetrates the line-of-sight between noise source and receptor location.			tion for t				D	- F - U - 4	
EPA, Noise from Construction Equipment and Operations, Building Equipment and Home Appliances, PB 206717, 1971.								source and recep	tor location.
	^c EPA, Noise from Construction Equipmen	t and Operations,	Building Equip	pment and Hor	ne Appliances	, PB 206717, 1	1971.		

Transportation Center Project Sound 2000 Input Data

Phase	Jeffersor	South of	National	Jefferson	west of L	a Cienega	La Cie	nega at Je	fferson
	LDA	MDT	HDT	LDA	MDT	HDT	LDA	MDT	HDT
Existing	1707	40.4	8.78	1707	40.4	8.78	6555	155	33.7
Future No Project	1775	42.0	9.13	1775	42.0	9.13	6818	161	35.1
Future With Project	1858	42.0	51.03	1858	42.0	51.0	6900	161	77.0

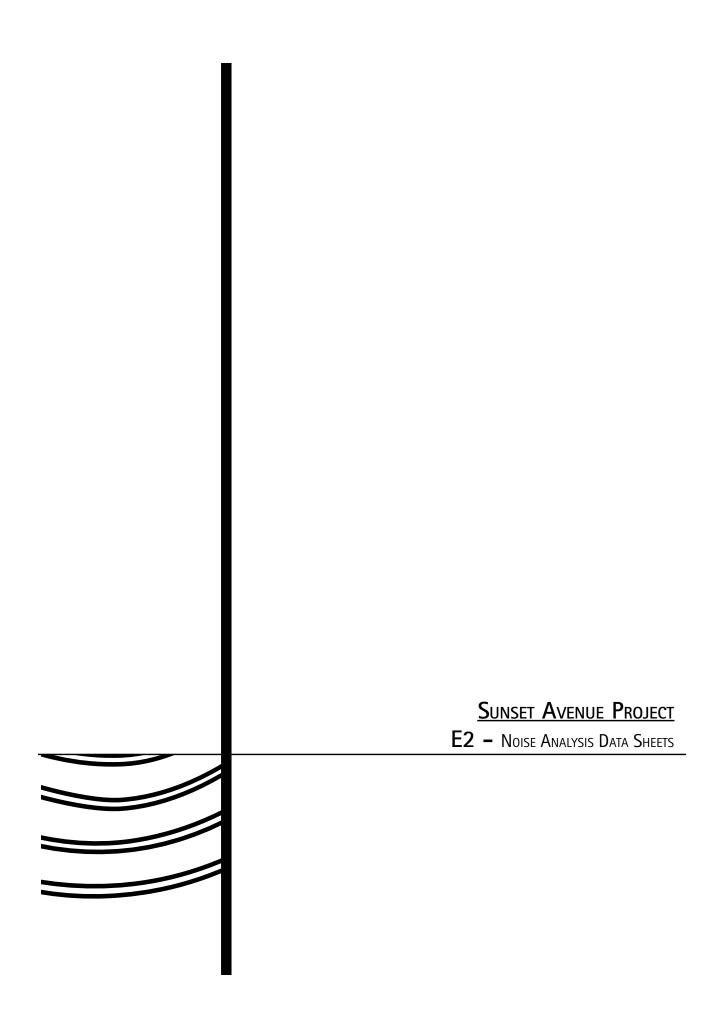
Fleet Mix		
LDA	MDT	HDT
0.972	0.023	0.005

		_				Jef	ferson Boulev		nal Boul	evard						
Hour	Nor		xisting Traffic Volui bound Total	Eq. Veh.	Auto	MDT	Future No HDT	Total	Е	q. Veh. Auto	MDT		th Project Total			Eq. Veh. Ratio
	0:00	31	41	72 36	97	72.8 35.9	1.7	0.4	75 37	101	72.8 35.9	1.7	0.4	75	101	1.00
	1:00 2:00	15 15	21 19	36 34	48 45	35.9	0.8 0.8	0.2 0.2	37	50 47	35.9	0.8 0.8	0.2 0.2	37 35	50 47	1.00 1.00
	3:00	7	19	25	34	25.3	0.6	0.2	26	35	25.3	0.6	0.2	26	35	1.00
	4:00	10	31	41	55	41.4	1.0	0.2	43	57	83.4	1.0	26.2	111	903	15.77
	5:00	64	188	252	338	254.2	6.0	1.3	262	351	331.2	6.0	45.3	383	1788	5.09
	6:00	209	363	572	767	577.7	13.7	3.0	594	798	630.7	13.7	48.0	692	2242	2.81
	7:00	507	810	1317	1768	1330.8	31.5	6.8	1369	1838	1362.8	31.5	20.8	1415	2303	1.25
	8:00 9:00	603 417	786 617	1389 1034	1864 1388	1403.6 1044.7	33.2 24.7	7.2 5.4	1444 1075	1939 1443	1425.6 1095.7	33.2 24.7	29.2 33.4	1488 1154	2641 2359	1.36 1.63
	10:00	364	486	849	1140	858.2	20.3	5.4 4.4	883	1186	909.2	24.7	18.4	948	1669	1.63
	11:00	376	467	843	1131	851.7	20.2	4.4	876	1176	904.7	20.2	16.4	941	1600	1.36
	12:00	426	519	945	1268	954.8	22.6	4.9	982		1024.8	22.6	28.9	1076	2131	1.62
	13:00	444	527	971	1304	981.6	23.2	5.0	1010	1356	1059.6	23.2	27.0	1110	2114	1.56
	14:00	497	593	1090	1463	1101.4	26.1	5.7	1133		1172.4	26.1	34.7	1233	2488	1.64
	15:00	564	618	1182	1586	1194.4	28.3	6.1	1229		1225.4	28.3	19.1	1273	2083	1.26
	16:00	745	670	1415	1899	1429.9	33.8	7.4	1471	1975	1453.9	33.8	13.4	1501	2185	1.11
	17:00 18:00	842 698	806 739	1647 1437	2211 1929	1664.9 1452.1	39.4 34.4	8.6 7.5	1713 1494	2300 2006	1699.9 1483.1	39.4 34.4	23.6 43.5	1763 1561	2798 3149	1.22 1.57
	19:00	412	474	886	1189	895.1	21.2	4.6	921	1237	942.1	21.2	45.6	1009	2550	2.06
	20:00	302	288	589	791	595.4	14.1	3.1	613	822	631.4	14.1	23.1	669	1476	1.80
	21:00	238	219	457	613	461.5	10.9	2.4	475	637	486.5	10.9	10.4	508	910	1.43
	22:00	154	172	326	437	329.0	7.8	1.7	339	455	329.0	7.8	1.7	339	455	1.00
	23:00	68	93	161	216	162.8	3.9	8.0	167	225	162.8	3.9	0.8	167	225	1.00
1	TOTAL	8001	9562	17562	23580				18264	24524				19512	38300	
			Day		18952	0.80		Day		19710	0.80		Day		27520.1	0.72
			Evenin	g	2593 2036	0.11 0.09		Evenii Night	ng	2696 2118	0.11 0.09		Even		4936.6 5843.2	0.13 0.15
		Fyietin	Night ng CNEL Adjustmen	t Factor	-0.39		Project CNEL		actor:	-0.39		Project CNEL	Night Adjustment		0.76	0.15
		LAISTIII	ig OHEL Adjustilleri	it i dotoi.	-0.03	110	TOJECT ONLL	Aujustilieliti	uctor.	-0.00		i ioject oner	Aujustinoni	i dotoi.	0.70	
		E	xisting Traffic Volu	mes				ienga Boulev Proiect	ard at Je	efferson		Future Wi	th Project			Ea. Veh.
Hour	Noi		xisting Traffic Volu bound Total	mes Eq. Veh.	Auto	MDT	La C Future No HDT			efferson q. Veh. Auto	MDT	Future Wi HDT	th Project Total	E		Eq. Veh. Ratio
Hour	0:00	rthbound South 398	bound Total 350	Eq. Veh. 748	1004	756.1	Future No HDT 17.9	Project Total 3.9	778	q. Veh. Auto 1045	756.1	HDT 17.9	Total 3.9	778	q. Veh. 1 1045	Ratio 1.00
Hour	0:00 1:00	rthbound South 398 205	350 163	Eq. Veh. 748 368	1004 494	756.1 372.0	Future No HDT 17.9 8.8	Project Total 3.9 1.9	778 383	q. Veh. Auto 1045 514	756.1 372.0	HDT 17.9 8.8	Total 3.9 1.9	778 383	Eq. Veh. 1045 514	1.00 1.00
Hour	0:00 1:00 2:00	rthbound South 398 205 159	350 163 153	Eq. Veh. 748 368 312	1004 494 419	756.1 372.0 315.4	Future No HDT 17.9 8.8 7.5	Project Total 3.9 1.9 1.6	778 383 324	q. Veh. Auto 1045 514 436	756.1 372.0 315.4	HDT 17.9 8.8 7.5	3.9 1.9 1.6	778 383 324	Eq. Veh. 1045 514 436	1.00 1.00 1.00 1.00
Hour	0:00 1:00 2:00 3:00	rthbound South 398 205 159 126	350 163 153 125	Eq. Veh. 748 368 312 251	1004 494 419 337	756.1 372.0 315.4 253.7	Future No HDT 17.9 8.8 7.5 6.0	Project Total 3.9 1.9 1.6 1.3	778 383 324 261	q. Veh. 1045 514 436 350	756.1 372.0 315.4 253.7	HDT 17.9 8.8 7.5 6.0	Total 3.9 1.9 1.6 1.3	778 383 324 261	Eq. Veh. 1045 514 436 350	1.00 1.00 1.00 1.00 1.00
Hour	0:00 1:00 2:00 3:00 4:00	rthbound South 398 205 159 126 215	bound Total 350 163 153 125 290	Eq. Veh. 748 368 312 251 505	1004 494 419 337 678	756.1 372.0 315.4 253.7 510.5	Future No HDT 17.9 8.8 7.5 6.0 12.1	Project	778 383 324 261 525	q. Veh. Auto 1045 514 436 350 705	756.1 372.0 315.4 253.7 552.5	HDT 17.9 8.8 7.5 6.0 12.1	Total 3.9 1.9 1.6 1.3 28.6	778 383 324 261 593	Eq. Veh. 1045 514 436 350 1551	1.00 1.00 1.00 1.00 1.00 2.20
Hour	0:00 1:00 2:00 3:00	rthbound South 398 205 159 126	350 163 153 125	Eq. Veh. 748 368 312 251	1004 494 419 337	756.1 372.0 315.4 253.7	Future No HDT 17.9 8.8 7.5 6.0	Project Total 3.9 1.9 1.6 1.3	778 383 324 261	q. Veh. Auto 1045 514 436 350 705 1484	756.1 372.0 315.4 253.7	HDT 17.9 8.8 7.5 6.0	Total 3.9 1.9 1.6 1.3	778 383 324 261	Eq. Veh. 1045 514 436 350	1.00 1.00 1.00 1.00 1.00
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00	rthbound 398 205 159 126 215 500 1550 2307	bound Total 350 163 153 125 290 563 1122 2151	Eq. Veh. 748 368 312 251 505 1063 2672 4458	1004 494 419 337 678 1427 3588 5986	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2	778 383 324 261 525 1106 2779 4636	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2	778 383 324 261 593 1227 2877 4682	5q. Veh. 1045 514 436 350 1551 2921 5175 6690	1.00 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00	rthbound 398 205 159 126 215 500 1550 2307 2540	bound 350 163 153 125 290 563 1122 2151 2295	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835	1004 494 419 337 678 1427 3588 5986 6492	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1	778 383 324 261 525 1106 2779 4636 5028	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1	778 383 324 261 593 1227 2877 4682 5072	1045 514 436 350 1551 2921 5175 6690 7453	1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00	398 205 159 126 215 500 1550 2307 2540 2402	bound Total 350 163 153 125 290 563 1122 2151 2295 1813	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215	1004 494 419 337 678 1427 3588 5986 6492 5659	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9	778 383 324 261 525 1106 2779 4636 5028 4384	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9	778 383 324 261 593 1227 2877 4682 5072 4463	1045 514 436 350 1551 2921 5175 6690 7453 6802	1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	198 205 159 126 1550 1550 1550 1550 12540 2402 24121	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215 3643	1004 494 419 337 678 1427 3588 5986 6492 5659 4891	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9 18.9	778 383 324 261 525 1106 2779 4636 5028 4384 3789	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6	17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 32.9	778 383 324 261 593 1227 2877 4682 5072 4463 3854	Eq. Veh. 1045 514 436 350 1551 2921 5175 6690 7453 6802 5571	1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00	198 2015 2015 2015 2015 2017 2017 2017 2017 2017 2017 2017 2017	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215 3643 3514	1004 494 419 337 678 1427 3588 5986 6492 5659 4891 4718	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9 18.9 18.9	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 32.9 30.3	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720	Eq. Veh. 1045 514 436 350 1551 2921 5175 6690 7453 6802 5571 5331	1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	198 205 159 126 1550 1550 1550 1550 12540 2402 24121	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215 3643	1004 494 419 337 678 1427 3588 5986 6492 5659 4891	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9 18.9	778 383 324 261 525 1106 2779 4636 5028 4384 3789	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6	17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 32.9	778 383 324 261 593 1227 2877 4682 5072 4463 3854	Eq. Veh. 1045 514 436 350 1551 2921 5175 6690 7453 6802 5571	1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00	198 2014 398 2025 159 126 215 500 1550 2307 2540 2402 2421 1936 2037 1878 1987	bound 500 Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215 3643 3514 3605 3614 3931	1004 494 419 337 678 1427 3588 5986 6492 5699 4891 4718 4840 4853 5278	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9 18.9 18.3 18.7 18.8 20.4	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 42.7 40.8 49.4	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188	Eq. Veh. 1045 514 436 350 1551 2921 5175 6690 7453 6802 5571 5331 5846 5804	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.09 1.16 1.15 1.18
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 14:00 15:00	198 2005 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4235 4215 3643 3514 3605 3614 3931	1004 494 419 337 678 1427 3588 5986 6492 5659 4891 4718 4840 4853 5278 5791	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9 18.9 18.3 18.7 18.8 20.4 4 22.4	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088 4486	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9	HDT 17.9 8.8 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0	3.9 3.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 32.9 30.3 42.7 40.8 49.4 35.4	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530	Eq. Veh. 1045 514 436 350 1551 2921 5175 6690 7453 6802 5571 5331 5846 5804 6456 6456	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.09 1.18 1.18 1.07
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 9:00 10:00 12:00 13:00 14:00 16:00	xthbound 398 205 159 126 215 500 1550 2307 2540 2402 2121 1936 2037 1878 1987 2015 2058	bound 350 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414	Eq. Veh. 748 368 312 251 505 1063 2672 4488 4836 4215 3643 3514 3605 3614 3931 4313 4472	1004 494 419 337 678 1427 3588 5986 6492 5659 4891 4718 4840 4853 5278 5791 6005	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9 4520.7	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 13.9 23.2 25.1 21.9 18.3 18.7 18.8 20.4 22.4 22.3	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 3759 4088 4486 4651	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 42.7 40.8 49.4 35.4 29.3	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681	Eq. Veh. 1045 514 436 350 1551 2921 5175 6690 7453 6802 5571 5331 5846 5804 6455 6455	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.09 1.16 1.15 1.18 1.07 1.03
Hour	0:00 1:00 2:00 3:00 4:00 5:00 7:00 8:00 9:00 10:00 11:00 12:00 14:00 15:00 16:00 17:00	198 2005 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015 2058	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4235 4215 3643 3514 3605 3614 3393 4313 4472 4516	1004 494 419 337 678 1427 3588 5986 6492 5659 4891 4718 4840 4853 5278 5791 6005 6064	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3582.2 3644.2 3653.3 3973.8 4359.9 4520.7	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 5.5 13.9 23.2 25.1 21.9 18.3 18.7 18.8 18.7 20.4 22.4 23.3	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088 4486 4651 4697	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7	HDT 17.9 8.8 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 42.7 40.8 49.4 35.4 29.3 38.5	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747	Eq. Veh. 1045 5144 436 350 1551 1551 1551 6960 7453 6802 5571 5331 5846 5804 6456 6454 6805 6454 6805	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.19 1.15 1.18 1.07 1.03 1.03
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 11:00 12:00 13:00 15:00 16:00 17:00 18:00	rthbound 398 205 159 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015 2058 2167	bound Total 350 163 153 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337	Eq. Veh. 748 368 312 251 505 1063 2672 4485 4285 4215 3643 3514 3605 3614 3931 4472 4516 4508	1004 494 419 337 678 1427 3588 5986 6492 5659 4891 4718 4840 4853 5278 5791 6005 6005	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9 4520.7 4565.1	Future No HDT 17.9 8.8 7.5 6.0 12.1 106.6 115.7 100.8 87.1 84.1 86.4 94.0 103.2 107.0 108.0 107.0	Project Total 3.9 1.9 1.6 1.6 5.5 13.9 2.6 23.2 25.1 21.9 18.9 18.3 18.7 18.8 20.4 23.3 23.5 23.4	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 3759 4088 4486 4651 4697	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7 4600.1	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8	Total 3.9 1.9 1.6 1.3 28.6 49.5 85.9 37.2 47.1 49.9 32.9 30.3 42.7 40.8 49.4 42.7 40.8 49.4 29.3 38.5 49.4	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755	Eq. Veh. 1045	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.09 1.16 1.15 1.18 1.07 1.03 1.08 1.18
Hour	0:00 1:00 2:00 3:00 4:00 5:00 7:00 8:00 9:00 10:00 11:00 12:00 14:00 15:00 16:00 17:00	198 2005 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015 2058	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4235 4215 3643 3514 3605 3614 3393 4313 4472 4516	1004 494 419 337 678 1427 3588 5986 6492 5659 4891 4718 4840 4853 5278 5791 6005 6064	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3582.2 3644.2 3653.3 3973.8 4359.9 4520.7	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0	Project Total 3.9 1.9 1.6 1.3 2.6 5.5 5.5 13.9 23.2 25.1 21.9 18.3 18.7 18.8 18.7 20.4 22.4 23.3	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088 4486 4651 4697	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295 5204	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7	HDT 17.9 8.8 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 42.7 40.8 49.4 35.4 29.3 38.5	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747	Eq. Veh. 1045 5144 436 350 1551 1551 1551 6960 7453 6802 5571 5331 5846 5804 6456 6454 6805 6454 6805	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.19 1.15 1.18 1.07 1.03 1.03
Hour	0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 10:00 11:00 13:00 14:00 15:00 16:00 17:00 18:00	159 South 398 205 159 126 215 500 1550 2307 2540 2402 2121 1936 2037 1878 1987 2015 2058 2167 2171 1836	bound 350 163 153 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215 3643 3514 3605 3614 3605 3931 4313 4472 4516 4508	1004 494 419 337 678 11427 3588 5986 6492 5669 4891 4718 4840 4863 5278 5791 6005 6005 6064 6053 5004	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9 4520.7 4565.1 4557.0 3767.5	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 100.8 96.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1	Project Total 3.9 1.9 1.9 1.6 5.5 13.9 2.6 5.5 13.9 2.1 2.1 2.1 2.1 18.9 18.9 18.7 18.8 20.4 22.4 22.4 22.3 23.5 23.5 23.4	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 3759 4088 4486 4651 4697 4688 3876	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295 5204 3883	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4809.6 4311.9 3733.6 3605.2 3714.2 3734.2 4544.7 4600.1 4588.0	HDT 17.9 8.8 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 86.2 86.4 94.0 103.2 107.0 108.0 107.0 89.1	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 32.9 30.3 42.7 40.8 49.4 35.4 35.4 38.5 59.4 60.4	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964	Eq. Veh. 1045 514 436 3500 1551 2921 5175 6690 7453 6802 5571 5331 5846 6455 6454 6805 7438 6618	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.19 1.16 1.110 1.19 1.16 1.110 1.19 1.18 1.07 1.08 1.18 1.07 1.08
Hour	0:00 1:00 2:00 3:00 4:00 6:00 7:00 6:00 7:00 10:00 11:00 12:00 14:00 15:00 16:00 17:00 18:00 18:00 19:00 20:00 21:00 22:00	### Action of the content of the con	bound Total 350 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337 1891 1326 1066 799	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4235 4215 3643 3514 3605 3614 3931 4472 4516 4508 3727 2781 2300 1869	1004 494 419 337 678 1427 35986 5986 6492 5669 4891 4718 4840 4853 55278 5791 6005 6004 6053 5004 3734 3088	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3654.2 3653.3 3973.8 4359.9 4520.7 4565.1 4557.0 3767.5 2811.3 2325.0	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 88.1 66.5 55.0	Project Total 3.9 1.9 1.6 1.6 1.3 2.6 5.5 13.9 18.9 18.9 18.9 18.9 18.7 18.8 20.4 22.4 23.3 23.5 23.4 19.4 14.5 19.9 7	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088 4486 4651 4697 4688 3876 2892 2392	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 6047 5489 6023 6245 6306 6295 5204 3883 3212 2610	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4809.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7 3250.0 3814.5 2847.3 2350.0 3814.5 2847.3 2350.0 3	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1 66.5 55.0 44.7	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 32.9 30.3 42.7 40.8 49.4 35.4 29.3 38.5 59.4 60.4 34.5 20.0 9.7	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964 2948 2425	Eq. Veh. 1045 1045 1045 1045 1045 1045 1045 1045	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.19 1.15 1.18 1.07 1.03 1.08 1.18 1.25 1.17 1.08 1.108
	0:00 1:00 2:00 3:00 4:00 5:00 6:00 8:00 9:00 11:00 12:00 13:00 14:00 16:00 17:00 18:00 18:00 19:00 21:00 21:00 22:00 22:00	rthbound 398 205 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015 2058 2167 2171 1836 1455 1234 1070 657	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337 1891 1326 1066 739 565	Eq. Veh. 748 368 312 251 505 1063 2672 4488 4835 4215 3643 3614 3605 3614 3931 4472 4516 4508 3727 2781 2300 1869	1004 494 419 337 678 1427 3588 5986 6492 5669 4891 4718 4840 4853 5278 5005 6005 6005 6005 3004 3038 3038 8038 804 804 805 805 805 805 805 805 805 805 805 805	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9 4520.7 4566.1 4557.0 3767.5 2811.3 2325.0	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.0 108.0 107.0 108.0 107.6 55.0 55.0 55.0	Project Total 3.9 1.9 1.6 1.6 1.3 2.6 5.5 13.9 2.3.2 25.1 18.9 18.9 18.7 18.8 20.4 22.4 22.4 19.4 19.4 14.5	778 383 324 261 525 1106 2779 4636 5028 4384 33655 3749 3759 4088 4486 4651 4687 4688 3876 2892 2392	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295 5204 3883 3212 2610 1706	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4909.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7 4600.1 4588.0 3814.5 2847.3 3814.5 2250.0	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1 66.5 55.0	Total 3.9 1.9 1.6 1.3 2.8 6 49.5 5.8 9 37.2 47.1 49.9 32.9 30.3 42.7 44.8 49.4 35.4 49.4 35.4 60.4 34.5 29.3 38.5 59.4 60.4 34.5	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964 2948 2425	Eq. Veh. 1045	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.09 1.16 1.15 1.18 1.07 1.03 1.08 1.18 1.07 1.03 1.08 1.18 1.07 1.03 1.08 1.18 1.25 1.17 1.08
	0:00 1:00 2:00 3:00 4:00 6:00 7:00 6:00 7:00 10:00 11:00 12:00 14:00 15:00 16:00 17:00 18:00 18:00 19:00 20:00 21:00 22:00	### Action of the content of the con	bound Total 350 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337 1891 1326 1066 799	Eq. Veh. 748 368 312 251 505 1063 2672 4488 4835 4215 3643 3614 3605 3614 3931 4472 4516 4508 3727 2781 2300 1869	1004 494 419 337 678 1427 35986 5986 6492 5669 4891 4718 4840 4853 55278 5791 6005 6004 6053 5004 3734 3088	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3654.2 3653.3 3973.8 4359.9 4520.7 4565.1 4557.0 3767.5 2811.3 2325.0	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 88.1 66.5 55.0	Project Total 3.9 1.9 1.6 1.6 1.3 2.6 5.5 13.9 18.9 18.9 18.9 18.9 18.7 18.8 20.4 22.4 23.3 23.5 23.4 19.4 14.5 19.9 7	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088 4486 4651 4697 4688 3876 2892 2392	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 6047 5489 6023 6245 6306 6295 5204 3883 3212 2610	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4809.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7 3250.0 3814.5 2847.3 2350.0 3814.5 2847.3 2350.0 3	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1 66.5 55.0 44.7	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 32.9 30.3 42.7 40.8 49.4 35.4 29.3 38.5 59.4 60.4 34.5 20.0 9.7	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964 2948 2425	Eq. Veh. 1045 1045 1045 1045 1045 1045 1045 1045	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.19 1.15 1.18 1.07 1.03 1.08 1.18 1.25 1.17 1.08 1.108
	0:00 1:00 2:00 3:00 4:00 5:00 6:00 8:00 9:00 11:00 12:00 13:00 14:00 16:00 17:00 18:00 18:00 19:00 21:00 21:00 22:00 22:00	rthbound 398 205 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015 2058 2167 2171 1836 1455 1234 1070 657	bound Total 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337 1891 1326 1066 739 565	Eq. Veh. 748 368 312 251 505 1063 2672 4488 4835 4215 3643 3514 3601 3614 3931 4472 4516 4508 3727 2781 2300 1869 1222 67442	1004 494 419 337 678 1427 3588 5986 6492 5669 4891 4718 4840 4853 5278 5005 6005 6005 6005 3004 3038 3038 8038 804 804 805 805 805 805 805 805 805 805 805 805	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3654.2 3653.3 3973.8 4359.9 4520.7 4565.1 4557.0 3767.5 2811.3 2325.0	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 88.1 66.5 55.0	Project Total 3.9 1.9 1.6 1.6 1.3 2.6 5.5 13.9 18.9 18.9 18.9 18.9 18.7 18.8 20.4 22.4 23.3 23.5 23.4 19.4 14.5 19.9 7	778 383 324 261 525 1106 2779 4636 5028 4384 3789 3655 3749 4088 4486 4651 4697 4688 3876 2892 2392	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295 5204 3883 3212 2610 1706	756.1 372.0 315.4 253.7 552.5 1151.6 2754.1 4538.5 4809.6 4311.9 3733.6 3605.2 3714.2 3731.3 4044.8 4390.9 4544.7 3250.0 3814.5 2847.3 2350.0 3814.5 2847.3 2350.0 3	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1 66.5 55.0 44.7	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 32.9 30.3 42.7 40.8 49.4 35.4 29.3 38.5 59.4 60.4 34.5 20.0 9.7	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964 2948 2425	Eq. Veh. 1045	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.19 1.15 1.18 1.07 1.03 1.08 1.18 1.25 1.17 1.08 1.108
	0:00 1:00 2:00 3:00 4:00 5:00 6:00 8:00 9:00 11:00 12:00 13:00 14:00 16:00 17:00 18:00 18:00 19:00 21:00 21:00 22:00 22:00	rthbound 398 205 159 126 215 500 1550 2307 2540 2402 24121 1936 2037 1878 1987 2015 2058 2167 2171 1836 1455 1234 1070 657	bound Total 350 350 163 153 125 290 563 1122 2151 2295 1813 1522 1578 1568 1736 1944 2298 2414 2349 2337 1891 1326 1066 799 565 32418 Day Evenin	Eq. Veh. 748 368 312 251 505 1063 2672 4458 4835 4215 3643 3514 3605 3614 3931 4472 4516 4508 3727 2781 2300 1869 1222 67442	1004 494 419 337 678 1427 3388 55986 6492 56659 4891 4718 4840 4853 55278 5791 6005 6064 6053 5004 3734 3088 90554 66630 11827	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9 4520.7 4565.1 4557.0 3767.5 2811.3 2325.0 1889.3 1235.3	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 88.1 66.5 55.0	Project Total 3.9 1.9 1.6 1.6 1.3 2.6 5.5 13.9 2.8 2.5 13.9 18.9 18.9 18.9 18.9 18.9 20.4 22.4 23.3 23.5 23.4 14.5 12.0 Day Evenlir	778 383 324 261 525 1106 2779 4636 5028 4384 33655 3749 3655 3759 4088 4486 4651 4697 4688 3876 2892 1944 1271	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295 5204 3883 3212 2610 1706 94177 69295.4	756.1 372.0 315.4 253.7 552.5 51151.6 2754.1 4538.5 4809.6 4311.9 3733.6 3605.2 3731.2 3731.3 4044.8 4390.9 4544.7 4588.0 3814.5 2847.3 2350.0 0.74 0.13	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1 66.5 55.0 44.7	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 42.7 40.8 49.4 49.4 29.3 36.4 29.3 38.5 50.4 60.4 60.4 Day Even	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964 2948 2425 1944 1271	Eq. Veh. 1045 514 436 3500 1551 5175 6890 7453 6802 5571 5331 5846 6455 6455 6455 6455 6455 6455 6455	Ratio 1.00 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.11 1.19 1.19 1.11 1.15 1.18 1.07 1.03 1.08 1.18 1.25 1.17 1.08 1.00 1.00
	0:00 1:00 2:00 3:00 4:00 5:00 6:00 8:00 9:00 11:00 12:00 13:00 14:00 16:00 17:00 18:00 18:00 19:00 21:00 21:00 22:00 22:00	Arthbound 398 205 159 126 215 500 1550 2307 2540 2402 2121 1936 2037 1878 1987 2015 2058 2167 2171 1836 1455 1234 1070 657 35024	bound Total	Eq. Veh. 748 368 312 251 505 1063 1063 2672 4485 4235 4215 3643 3614 3603 3614 3931 4472 4516 4508 3727 2781 2200 1869 1222 67442	1004 494 419 337 678 1427 3358 5986 6492 4891 4718 4840 4853 5791 6005 6005 6005 6005 3734 33088 2510 1641 90554	756.1 372.0 315.4 253.7 510.5 1074.6 2701.1 4506.5 4887.6 4260.9 3682.6 3552.2 3644.2 3653.3 3973.8 4359.9 4520.7 4566.1 4557.0 3767.5 2811.3 2325.0 1889.3 1235.3	Future No HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 88.1 66.5 55.0	Project Total 3.9 1.9 1.6 1.6 1.3 2.6 5.5 13.9 2.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	778 383 324 261 1106 52779 1106 5028 4384 4636 5028 4384 4681 4688 3876 4688 3876 2392 2392 1944	q. Veh. Auto 1045 514 436 350 705 1484 3731 6225 6752 5886 5087 4907 5034 5047 5489 6023 6245 6306 6295 5204 3883 3212 2610 1706 94177	756.1 372.0 372.0 315.4 253.7 552.5 51151.6 22754.1 4538.5 4809.6 4811.9 3733.6 3605.2 3714.2 3733.6 3605.2 3714.2 3733.6 4644.8 4590.9 4544.7 4600.1 4588.0 3814.5 2847.3 3814.5 2847.3 381.5 2847.3 381.5	HDT 17.9 8.8 7.5 6.0 12.1 25.4 63.9 106.6 115.7 100.8 87.1 84.1 86.2 86.4 94.0 103.2 107.0 108.0 107.8 89.1 66.5 55.0 44.7	Total 3.9 1.9 1.6 1.3 28.6 49.5 58.9 37.2 47.1 49.9 30.3 42.7 40.8 49.4 35.4 49.8 49.4 55.4 60.4 34.5 20.0 9.7 6.4 Day Even Night	778 383 324 261 593 1227 2877 4682 5072 4463 3854 3720 3843 3859 4188 4530 4681 4747 4755 3964 22425 1944 1271	Eq. Veh. 1045 1544 436 3500 1551 5175 6690 7453 6802 5571 5331 5846 6456 6455 6454 6805 7438 4537 3484 2610 1706 107953	Ratio 1.00 1.00 1.00 1.00 2.20 1.97 1.39 1.07 1.10 1.16 1.10 1.09 1.16 1.11 1.09 1.18 1.07 1.03 1.08 1.18 1.07 1.03 1.08 1.18 1.07 1.03 1.08 1.18 1.07 1.00 1.00 1.00

	Project Tri		% of Total	Equivalent
Hour	Employee	Bus	per Hour	Vehicles
0:00	0	0	0.00	0
1:00	0	0	0.00	0
2:00	0	0	0.00	0
3:00	0	0	0.00	0
4:00	42	26	0.02	845
5:00	77	44	0.04	1437
6:00	53	45	0.04	1444
7:00	32	14	0.01	465
8:00	22	22	0.02	702
9:00	51	28	0.02	916
10:00	51	14	0.01	484
11:00	53	12	0.01	424
12:00	70	24	0.02	812
13:00	78	22	0.02	758
14:00	71	29	0.02	967
15:00	31	13	0.01	433
16:00	24	6	0.00	209
17:00	35	15	0.01	499
18:00	31	36	0.03	1143
19:00	47	41	0.03	1314
20:00	36	20	0.02	654
21:00	25	8	0.01	272
22:00	0	0	0.00	0
23:00	0	0	0.00	0
Total:	829	419	1248	1667

Transportation Center Project TENS Analysis

Existing								
		Lea		CNEL				
Roadway/Segment	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet		
La Cienega Boulevard, North of Jefferson Boulevard	72.3	61.3	59.1	72.8	61.8	59.6		
Jefferson Boulevard, South of National Boulevard	71.1	66.4	64.1	70.7	66.0	63.7		
Jefferson Boulevard, West of La Cienega Boulevard	71.1	66.4	64.1	70.7	66.0	63.7		
Future No Project								
		Leq			CNEL			
Roadway/Segment	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet		
La Cienega Boulevard, North of Jefferson Boulevard	75.4	61.8	59.5	75.9	62.3	60.0		
Jefferson Boulevard, South of National Boulevard	71.3	66.5	64.3	70.9	66.1	63.9		
Jefferson Boulevard, West of La Cienega Boulevard	71.3	66.5	64.3	70.9	66.1	63.9		
Future With Project								
		Leq			CNEL			
Roadway/Segment	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet		
La Cienega Boulevard, North of Jefferson Boulevard	76.0	62.6	60.5	76.8	63.4	61.3		
Jefferson Boulevard, South of National Boulevard	73.2	68.5	66.2	74.0	69.3	67.0		
Jefferson Boulevard, West of La Cienega Boulevard	73.2	68.5	66.2	74.0	69.3	67.0		
Summary								
	Project	Cumulative						
Roadway/Segment	Increment	Increment						
La Cienega Boulevard, North of Jefferson Boulevard	1.1	1.6						
Jefferson Boulevard, South of National Boulevard	3.2	3.3						
Jefferson Boulevard, West of La Cienega Boulevard	3.2	3.3						


Analysis of Residental and Park Uses Northwest of the intersection of Jefferson Boulevard and National Boulevard											
		Leq			CNEL						
Land Use	Existing	Future No	Future w/	Existing	Future No	Future w/					
Kronenthal Park	58.9	59.1	61.0	58.5	58.7	61.8					
Residential northwest of Park	54.5	54.7	56.6	54.1	54.3	57.4					

Summary	Project Increment	Cumulative Increment
Land Use		
Kronenthal Park	3.1	3.3
Residential northwest of Park	3.1	3.1

Leq Analysis of 4:00 AM	Nighttime Ambient	Project	Amb + Project	Impact
Residential northwest of Park	51.6	50.4	54.1	2.5
La Cienega Boulevard, North of Jefferson Boulevard	52.9	56.1	57.8	4.9

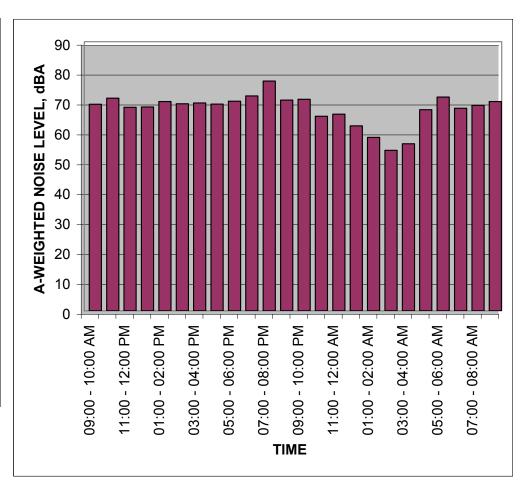
ROADWAY PLUS LRT ALIGNMENT NOISE IMPACTS ALONG JEFFERSON BOULEVARD

NOISE FROM LRT ALIGNMENT										
	CNEL	Distance								
Receiver Location	(dBA)	(feet)								
LRT Alignment Reference Noise Level ^{/a/}	60.0	100								
LRT Noise Level at Syd Kronenthal Park /b/	56.0	250								
LRT Noise Level at Adjacent Industrial Uses /b/	65.2	30								
ROADWAY PLUS LRT NOISE LEVELS										
	Noise Lev	el in CNEL								
Park Adjacent										
Environmental Setting	Location	Industrial								
Existing Conditions ^{/c/}	58.5	66.0								
Future "No Project" Conditions /c/	58.7	66.1								
Future "With Project" Conditions Icl	61.8	69.3								
Future "With Project plus LRT" Conditions /d/	62.8	70.7								
NOISE LEVEL INCREASES										
	Noise Lev	el in CNEL								
	Park	Adjacent								
Project Impact	Location	Industrial								
Project Only	3.1	3.2								
Project + Related Projects + Ambient Growth (Cumulative No LRT)	3.3	3.3								
Cumulative + LRT	4.3	4.7								
Notes:										
^{lal} Extrapolated from LRT Alignment noise data published in the Mid-Ci			S/EIR.							
^{/b/} Reference noise level adjusted for distance using the FHWA RD-77-										
$^{ m extstyle extstyle$	roject traffic st	udy.								
^{/d/} Based on noise level addition using the FHWA RD-77-108 calculatio										

Appendix E-2

Sunset Avenue Site Printout Sheets

- Existing Noise Levels (CNEL)
- Construction-period Noise Impact Evaluation
- Roadway Noise Impact Evaluation


Project: MTA Division 6 Bus Depot (Sunset Avenue Project)

Location: Eastern Side

Sources:

Date: April 29, 2004

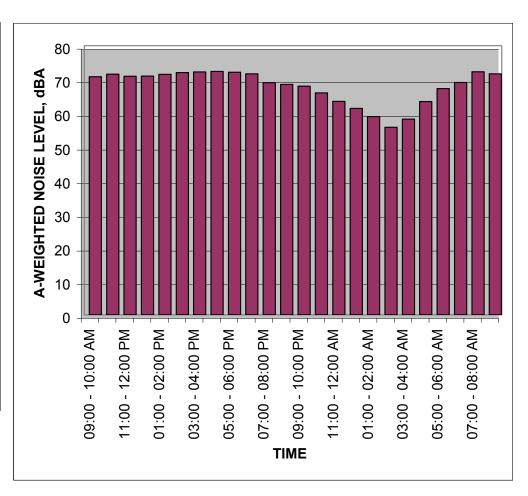
	HNL,
TIME	dB(A)
09:00 - 10:00 AM	69.07
10:00 - 11:00 AM	71.13
11:00 - 12:00 PM	68.06
12:00 - 01:00 PM	68.18
01:00 - 02:00 PM	70.01
02:00 - 03:00 PM	69.25
03:00 - 04:00 PM	69.50
04:00 - 05:00 PM	69.15
05:00 - 06:00 PM	70.08
06:00 - 07:00 PM	71.84
07:00 - 08:00 PM	76.82
08:00 - 09:00 PM	70.46
09:00 - 10:00 PM	70.76
10:00 - 11:00 PM	65.04
11:00 - 12:00 AM	65.74
12:00 - 01:00 AM	61.86
01:00 - 02:00 AM	58.01
02:00 - 03:00 AM	53.68
03:00 - 04:00 AM	55.85
04:00 - 05:00 AM	67.28
05:00 - 06:00 AM	71.46
06:00 - 07:00 AM	67.76
07:00 - 08:00 AM	68.68
08:00 - 09:00 AM	69.97
CNEL, dB(A):	74.6

NOTES:	

Sunset Avenue Project Noise Data - East

Interval data
Translated: 03-May-2004 13:31:30
Translated File: P:\Software\Noise Programs\LARDAV\SLMUTIL\MTA Venice East Site.SLMDL
SLM: 820A1049
Firmware Rev.: 1.500 18Sep1998
Software: SImUtility v2.01
PCR Services Corporation
233 Wilshire Blvd, Suite 130
Santa Monica, CA 90401
Tustin Marine On Base

Rec#	Date	Time	Duration	l on	Lmax I	_min	SEL	Peak	UwPeak	I (1 00)	I (10 00)	1 (25 00)	L(50.00)	1 (90 00)	I (00 nn)
IXEC #	1 28-Apr-04		00:35.5	73	84.44	62.82	88.5	96.43	101.79	83.57	74.11	72	70.62	66.23	63.2
	2 28-Apr-04	17:00:00	0.00:00	69.65	86.11	54.32	105.22	101.5	106.22	78.36	72	69.96	67.91	63.22	59.3
	3 28-Apr-04	18:00:00	0.00:00	69.74	87.66	56.79	105.32	103.83	108.43	77.94	72.45	70.3	67.93	62.32	58.4
	4 28-Apr-04 5 28-Apr-04	19:00:00 20:00:00	0.00:00	75.97 71.75	90.27 87.12	58 54.5	111.55 107.32	107.55 103.9	110.94 106.71	82.5 77.96	78.09 76.43	77 73.63	75.43 68	69.16 60.5	64.06 56.53
	6 28-Apr-04		00:00.0	70.44	87.12	47.49	107.32	103.9	108.43	78.88	74.86	73.03	66.72	55.61	51.04
	7 28-Apr-04		0.00:00	65.72	91.11	45.41	101.3	103.65	106.94	74.94	68.76	65.53	59.93	50.59	47.01
	8 28-Apr-04		0.00:00	63.18	85.23	42.47	98.76	96.52	104.17	72.76	67.24	63.15	55.94	47.65	44.46
	9 29-Apr-04	0:00:00	0.00:00	61.86	92.84	40.97	97.43	104.25	106.22	70.92	64.44	57.62	50.53	44.17	42.26
	10 29-Apr-04	1:00:00	0.00:00	58.01	79.07	40.18	93.58	90.99	101.58	69.9	61.61	53.22	47.45	42.67	41.25
	11 29-Apr-04 12 29-Apr-04	2:00:00 3:00:00	0.00:00	53.68 55.85	75.44 80.81	39.82 39.43	89.25 91.42	87 93.61	97.14 101.58	67.2 69.12	53.47 55.76	46.81 47.17	43.33 43.68	41.22 41.05	40.22 40.07
	13 29-Apr-04	4:00:00	00:00.0	67.28	82.81	40.06	102.86	97.24	104.17	73.87	72.04	70.8	51.37	41.56	40.75
	14 29-Apr-04	5:00:00	0.00:00	71.46	100.55	61.99	107.04	108.86	109.18	77.9	70.79	69.35	68.04	65.33	64.1
	15 29-Apr-04	6:00:00	0.00:00	67.76	83.79	55.68	103.34	93.85	103.15	75.69	70.35	68.18	66.25	61.43	59.11
	16 29-Apr-04	7:00:00	0.00:00	68.68	90.5	49.69	104.25	103.29	106.22	77.46	71.6	69.32	66.29	58.09	52.77
	17 29-Apr-04 18 29-Apr-04	8:00:00 9:00:00	0.00:00	69.97 69.07	86.93 86.83	53.57 50.45	105.54 104.65	100.02 99.1	106.45 104.78	79.26 77.62	72.75 72.02	70.29 69.61	67.75 66.9	61.59 59.96	57.12 53.89
	19 29-Apr-04	10:00:00	0.00:00	71.13	87.98	51.83	106.7	107	107.81	82.68	73.47	69.69	66.52	58.72	54.17
	20 29-Apr-04	11:00:00	0.00:00	68.06	85.68	52.07	103.63	97.79	105.06	76.83	71.07	69.04	65.95	58.31	54.34
	21 29-Apr-04	12:00:00	0.00:00	68.18	84.15	52.22	103.76	98.23	111.81	75.88	71.78	69.03	66.03	58.35	54.42
	22 29-Apr-04		0.00:00	70.01	88.06	52.55	105.58	104.89	111.36	82.89	71.59	68.9	66.27	59.62	55.9
	23 29-Apr-04 24 29-Apr-04	14:00:00 15:00:00	0.00:00	69.25 69.5	86.01 93.79	56 55.8	104.83 105.08	98.89 107.72	107.81 108.22	77.98 78.67	71.86 71.88	69.73 69.79	67.39 67.36	62.15 61.7	58.29 58.07
	25 29-Apr-04	16:00:00	00:00.0	69.15	84.68	55.57	104.72	100.12	104.78	78.06	71.78	69.61	67.27	61.09	57.32
	26 29-Apr-04	17:00:00	0.00:00	70.08	86.51	54.62	105.65	99.29	105.06	78.11	72.82	70.65	68.34	62.47	58.4
	27 29-Apr-04	18:00:00	0.00:00	71.84	88.5	55.67	107.42	103.38	105.96	78.74	74.27	72.76	70.94	65.66	60.42
	28 29-Apr-04	19:00:00	0.00:00	76.82	91.54	56.13	112.4	107.55	109.69	82.27	80.17	78.07	75.66	68.49	60.77
	29 29-Apr-04 30 29-Apr-04		0.00:00	70.46 70.76	87.58 89.32	51.22 50.56	106.04 106.34	100.41 101.87	105.65 106.94	77.1 78.62	73.92 74.76	72.24 71.69	68.05 67.47	59.46 57.11	53.79 53.04
	31 29-Apr-04		00:00.0	65.04	81.93	43.31	100.61	95.24	105.06	73.47	68.87	66.32	61.29	51.9	46.68
	32 29-Apr-04	23:00:00	0.00:00	65.74	94.07	41.06	101.32	108.61	114.04	74.44	68.43	64.93	58.15	47.49	42.75
	33 30-Apr-04	0:00:00	0.00:00	62.36	83.03	40.78	97.93	95.48	102	72.22	67.29	62.01	53.5	44.74	42.06
	34 30-Apr-04	1:00:00 2:00:00	0.00:00	59.55	84.14	41.28	95.13 94.14	94.7 96.43	102.78	70.25	64.36	55.86	47.98	43.81	42.32
	35 30-Apr-04 36 30-Apr-04	3:00:00	0.00:00	58.56 56.3	86.5 83.72	40.25 40.1	91.88	94.04	106.71 103.49	70.49 68.86	59.68 55.81	50.52 47.44	46.1 43.28	43.13 41.26	41.18 40.36
	37 30-Apr-04	4:00:00	0.00:00	64.86	84.7	40.22	100.43	95.9	105.65	74.32	71.72	61.54	49.61	42.18	41.08
	38 30-Apr-04	5:00:00	0.00:00	71.06	86.08	61.72	106.63	100.04	104.47	77.09	72.85	71.82	70.86	65.31	63.48
	39 30-Apr-04	6:00:00	0.00:00	68.25	87.47	60.35	103.83	104.79	106.71	77.85	70.75	68.28	65.2	62.22	60.84
	40 30-Apr-04	7:00:00 8:00:00	0.00:00	70.11	89.11 86.69	59.86 60.85	105.69 106.32	100.79 105.4	105.96	79.4	72.61	70.28 71.22	67.9 69.04	63.06	60.81 62.3
	41 30-Apr-04 42 30-Apr-04	9:00:00	0.00:00	70.74 69.74	84.5	53.7	105.32	95.15	107.6 105.34	78.85 78.71	73.32 72.64	70.29	67.62	64.61 61.23	57.39
	43 30-Apr-04	10:00:00	0.00:00	69.04	89.18	53.51	104.62	103.32	104.78	78.45	71.72	69.41	66.51	60.09	56.45
	44 30-Apr-04	11:00:00	0.00:00	69.29	99.29	52.11	104.86	114.91	116.75	78.32	71.42	68.95	66.11	58.95	54.91
	45 30-Apr-04	12:00:00	0.00:00	68.56	86.7	52.82	104.14	98.31	106.22	77.52	71.36	69.19	66.25	59.35	55.4
	46 30-Apr-04 47 30-Apr-04	13:00:00 14:00:00	0.00:00	69.15 70.06	91.92 88.61	55.96 57.61	104.72 105.63	106.21 100.47	109.34 110.02	77.74 78.74	71.67 72.47	69.54 70.45	67.14 68.18	61.57 63.56	58.54 60.18
	48 30-Apr-04		00:00.0	70.69	86.98	60.33	106.27	103.72	105.34	78.93	73.13	71.26	69.2	64.36	62
	49 30-Apr-04	16:00:00	0.00:00	70.88	91.06	55.2	106.46	104.98	106.45	78.83	73.07	71.26	69.24	63.18	58.49
	50 30-Apr-04		0.00:00	70.63	87	56.05	106.21	104.23	107.39	79.15	73.49	71.09	68.91	63.43	58.6
	51 30-Apr-04	18:00:00	00:00.0	71.28	90.7	55.61	106.86	102.31	105.34	77.97	75.42	71.77	69.14	63.52	59.15
	52 30-Apr-04 53 30-Apr-04	19:00:00 20:00:00	00:00.0	73.7 69.72	90.33 89.58	55.5 51.65	109.28 105.29	104.5 101.88	106.71 106.22	80.47 76.44	76.31 73.29	75.28 71.25	72.85 67.21	65.09 59.91	58.36 54.91
	54 30-Apr-04		0.00:00	74.3	94.32	52.18	109.88	106.62	107.15	79.82	77.54	76.32	72.78	63.47	56.67
	55 30-Apr-04		0.00:00	67.13	84.43	48.93	102.7	100.98	104.17	75.05	70.45	68.03	65.04	55.65	51.68
	56 30-Apr-04		0.00:00	66.61	89.78	46.04	102.18	103.34	108.22	74.91	69.79	67.01	62.58	53.3	49.08
	57 1-May-04	0:00:00	0.00:00	65.62 63.58	88.4	44.76	101.2 99.16	99.71	105.65 106.71	75.5	68.85	65.4	59.73 55.17	49.91 45.96	46.43
	58 1-May-04 59 1-May-04	1:00:00 2:00:00	0.00:00	61.04	83.98 80.84	42.73 42.09	96.62	102.18 93.91	100.71	73.38 72.11	67.75 65.63	62.78 57.82	49.89	44.1	43.43 43
	60 1-May-04	3:00:00	0.00:00	56.9	75.44	41.38	92.47	87.53	97.14	69.85	58.55	49.57	44.65	42.69	42.05
	61 1-May-04	4:00:00	0.00:00	54.58	77.18	42.07	90.16	89.51	101.58	67.7	54.43	47.7	45.11	43.51	42.86
	62 1-May-04	5:00:00	0.00:00	60.47	83.3	43.93	96.04	94.14	108.22	72.4	61.51	58	49.44	46.08	44.86
	63 1-May-04 64 1-May-04	6:00:00 7:00:00	0.00:00	63.44 64.77	84.91 84.67	46.35 46.09	99.02 100.35	95.4 100.37	106.22 104.78	73.86 74.97	67.05 68.54	60.8 64.32	54.28 57.81	49.34 49.78	47.57 47.13
	65 1-May-04	8:00:00	00:00.0	66.27	84.67	47.9	100.33	96.52	104.76	75.72	69.78	66.81	62.43	53.59	49.56
	66 1-May-04	9:00:00	0.00:00	67.83	93.18	48.19	103.41	110.46	112.23	76.4	70.72	68.2	65.07	57.21	51.93
	67 1-May-04	10:00:00	0.00:00	67.9	84.97	49.99	103.47	99.49	104.78	77.2	70.86	68.57	65.42	57.06	52.36
	68 1-May-04		0.00:00	68.35	86.75	50.06	103.93	102.04	109.86	77.97	71.12	68.68	65.64	57.16	52.47
	69 1-May-04 70 1-May-04		0.00:00	68.97 68.18	95.28 92.82	51.07 51.22	104.54 103.75	111.62 108.15	112.56 113.83	77.9 76.93	71.07 70.57	68.84 68.37	66.01 65.68	58.49 58.37	53.35 53.5
	70 1-May-04 71 1-May-04		00:00.0	67.51	87.86	51.65	103.75	105.13	109.5	76.96	70.37	67.67	64.65	56.52	53.29
	72 1-May-04		0.00:00	67.6	87.7	50.08	103.18	102	107.81	77.11	70.56	67.79	64.56	57.23	53.03
	73 1-May-04	16:00:00	0.00:00	70.47	100.83	51.22	106.04	113.63	114.63	78.04	71.15	68.9	66.17	58.47	53.7


Project: MTA Division 6 Bus Depot (Sunset Avenue Project)

Location: Western Side

Sources:

Date: April 29, 2004

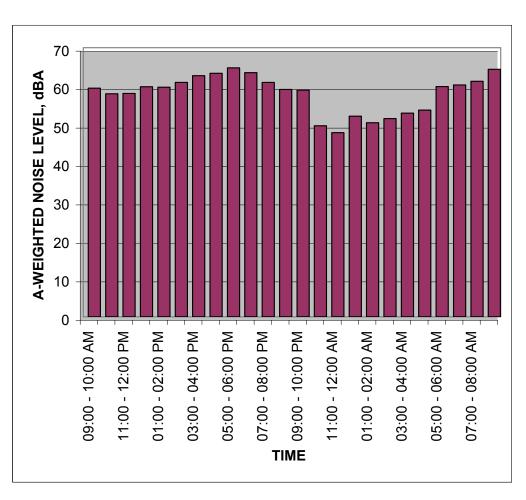
	HNL,
TIME	dB(A)
09:00 - 10:00 AM	70.78
10:00 - 11:00 AM	71.52
11:00 - 12:00 PM	70.91
12:00 - 01:00 PM	70.94
01:00 - 02:00 PM	71.49
02:00 - 03:00 PM	72.02
03:00 - 04:00 PM	72.19
04:00 - 05:00 PM	72.35
05:00 - 06:00 PM	72.12
06:00 - 07:00 PM	71.62
07:00 - 08:00 PM	69.00
08:00 - 09:00 PM	68.47
09:00 - 10:00 PM	67.98
10:00 - 11:00 PM	65.98
11:00 - 12:00 AM	63.43
12:00 - 01:00 AM	61.37
01:00 - 02:00 AM	58.91
02:00 - 03:00 AM	55.73
03:00 - 04:00 AM	58.19
04:00 - 05:00 AM	63.42
05:00 - 06:00 AM	67.24
06:00 - 07:00 AM	69.07
07:00 - 08:00 AM	72.24
08:00 - 09:00 AM	71.61
CNEL, dB(A):	73.1

NOTES:		

Sunset Avenue Project Noise Data - West

Interval data
Translated: 03-May-2004 12:48:34
Translated File: P:\Software\Noise Programs\LARDAV\SLMUTIL\MTA Venice West Site.SLMDL
SLM: 820A1065
Firmware Rev.: 1.500 18Sep1998
Software: SlmUtliity v2.01
PCR Services Corporation
233 Wilshire Blvd, Suite 130
Santa Monica, CA 90401
Tustin Marine Off Base

Rec#	Date	Time	Duration	l ea	Lmax L	_min	SEL	Peak	UwPeak	I (1 00)	L(10.00)	1 (25 00)	L(50.00) I	(90.00)	(99.00)
INCC #	1 28-Apr-04	16:50:27	09:32.1	72.71	84.67	61.18	100.29	101.66	106.69	80.27	74.84	73.64	72	66.66	62.23
	2 28-Apr-04	17:00:00	00:00.0	72.35	86.41	58.65	107.92	99.9	106.69	77.96	74.86	73.48	71.7	66.54	61.55
	3 28-Apr-04	18:00:00	0.00:00	71.31	83.6	59.34	106.89	100.09	106.69	77.19	74.08	72.52	70.52	64.45	60.8
	4 28-Apr-04	19:00:00	0.00:00	69.55	91.44	48.19	105.12	115.9	116.63	74.8	72.09	70.49	68.43	61.56	52.91
	5 28-Apr-04	20:00:00	0.00:00	68.36	85.19	47.3	103.94	100.14	105.26	75.76	71.48	69.66	66.8	59.52	52.7
	6 28-Apr-04	21:00:00	0.00:00	67.86	83.16	44.04	103.43	96.81	107.73	75.39	71.27	69.34	66.3	54.26	47.81
	7 28-Apr-04	22:00:00	0.00:00	65.43		39.78	101.01	93.05	104.95	73.94	69.81	66.92	60.06	45.48	41.23
	8 28-Apr-04	23:00:00	0.00:00	62.28	75.65	35.27	97.85	91.12	103.47	71.98	67.51	62.48	52.66	40.85	37.2
	9 29-Apr-04	0:00:00	0.00:00	61.37	83.26	33.87	96.94	96.03	103.14	72.41	65.91	57.26	47.41	39.08	34.66
	10 29-Apr-04	1:00:00	0.00:00	58.91	79.5	33.01	94.48	95.28	102.08	70.93	62.42	51.91	42.9	34.98	33.33
	11 29-Apr-04	2:00:00	0.00:00	55.73	75.5	32.62	91.31	88.91	97.76	69.5	55.51	44.44	37.34	33.95	33.06
	12 29-Apr-04	3:00:00	0.00:00	58.19	74.73	34.11	93.77	91.14	101.3	70.66	60.59	53.9	46.95	35.37	34.16
	13 29-Apr-04	4:00:00	0.00:00	63.42		56.6	99	93.89	97.76	72.5	67.76	61.8	59.15	57.57	57.03
	14 29-Apr-04	5:00:00	0.00:00	67.24	83.85	49.59	102.82	99.14	104.08	75.37	71.19	68.73	63.18	56.62	52.91
	15 29-Apr-04	6:00:00	0.00:00	69.07	79.48	47.48	104.64	94.9	106.69	75.87	72.37	70.42	67.8	59.37	51.91
	16 29-Apr-04 17 29-Apr-04	7:00:00 8:00:00	00:00.0	72.24 71.61	85.93 84.62	54.51 50.1	107.82	101.56 103.47	108.29 106.9	79.49 77.83	75.33 74.8	73.37 73.09	71.11 70.5	63.63	57.91 53.67
	17 29-Apr-04 18 29-Apr-04	9:00:00	00:00.0	71.61	82.51	49.65	107.19 106.36	97.51	100.9	77.62	73.99	73.09	69.64	61.16 60.98	54.38
	19 29-Apr-04	10:00:00	00:00.0	71.52	94.23	54.22	100.30	115.7	118.73	78.84	74.08	72.21	69.85	61.62	56.41
	20 29-Apr-04	11:00:00	00:00.0	70.91	87.99	52.09	106.49	106.17	111.76	78.82	73.77	71.81	69.38	61.13	55.16
	21 29-Apr-04	12:00:00	00:00.0	70.94	87.74	52.98	106.51	103.52	111.86	77.74	73.87	72.09	69.63	61.19	55.55
	22 29-Apr-04	13:00:00	0.00.0	71.49	85.11	53.36	107.07	105.32	108.29	78.77	74.34	72.51	70.25	63.5	57.08
	23 29-Apr-04	14:00:00	0.00:00	72.02		53.39	107.59	100.93	107.11	79.35	74.87	73.05	71.04	64.44	57.69
	24 29-Apr-04	15:00:00	0.00:00	72.19	88.64	51.9	107.76	106.3	111.27	78.78	74.75	73.16	71.3	64.89	55.64
	25 29-Apr-04	16:00:00	0.00:00	72.35	83.95	53.87	107.92	99.28	110.52	78.08	74.79	73.44	71.74	66.73	60.87
	26 29-Apr-04	17:00:00	0.00:00	72.12		57.33	107.7	99.67	108.64	77.81	74.68	73.25	71.61	65.87	60.3
	27 29-Apr-04	18:00:00	0.00:0	71.62	84.3	58.73	107.19	98.6	106.45	77.8	74.31	72.69	70.76	64.71	60.52
	28 29-Apr-04	19:00:00	0.00:00	69	78.94	48.18	104.57	95.58	102.45	75.01	71.96	70.47	68.27	60.58	53.14
	29 29-Apr-04	20:00:00	0.00:00	68.47	78.9	55.89	104.05	94.05	103.14	74.22	71.65	69.95	67.68	60.45	57.37
	30 29-Apr-04	21:00:00	0.00:00	67.98	92	43.75	103.55	108.97	114.49	75.05	70.76	68.94	65.5	52.87	46.28
	31 29-Apr-04	22:00:00	0.00:00	65.98	83.87	38.12	101.56	101.16	103.47	74.06	70.36	67.56	61.84	46.87	39.58
	32 29-Apr-04	23:00:00	0.00:00	63.43	76.74	35.97	99.01	91.77	99.98	72.38	68.57	64.28	55.47	42.44	36.83
	33 30-Apr-04	0:00:00	0.00:00	61.78		35.72	97.36	93.31	97.76	72.08	67.14	60.04	49.14	39.73	36.66
	34 30-Apr-04	1:00:00	0.00:00	59.45	74.94	34.44	95.03	92.49	96.44	70.94	64.24	54.15	44.88	38.1	35.23
	35 30-Apr-04	2:00:00	0.00:00	55.71	75.17	33.8	91.29	91.98	102.45	69.47	55.66	45.62	39.02	35.47	34.19
	36 30-Apr-04	3:00:00	0.00:00	57.77	77.28	33.55	93.35	95.33	95.69	70.74	59.52	51.91	46.09	37.58	34.37
	37 30-Apr-04	4:00:00	0.00:00	63.48	81.02	50.65	99.05	96.58	100.88	73.11	67.79	62.73	59.33	52.83	51.45
	38 30-Apr-04	5:00:00	0.00:00	67.15	80.27	52.27	102.73	94.83	102.08	75.29	71.45	68.8	62.85	56.33	53.01
	39 30-Apr-04 40 30-Apr-04	6:00:00 7:00:00	00:00.0	70.1 71.96	81.55 84.95	53.41 52.08	105.68 107.54	97.91 99.37	106.01 107.32	77.04 77.89	73.3 74.91	71.38 73.3	69 71.13	59.79 63.33	54.48 56.07
	40 30-Apr-04 41 30-Apr-04	8:00:00	00:00.0	71.96	83.88	53.15	107.54	99.54	107.32	77.89 78.04	75.08	73.3 73.3	71.13	62.31	55.72
	42 30-Apr-04	9:00:00	00:00.0	71.07	84.26	49.82	106.75	99.25	106.45	78.24	74.2	72.46	70.93	60.91	53.33
	43 30-Apr-04	10:00:00	00:00.0	70.94	83.04	49.55	106.73	105.28	106.43	77.44	73.99	72.40	69.9	60.82	53.41
	44 30-Apr-04	11:00:00	00:00.0	71.29	86.08	50.65	106.87	99.62	108.29	77.89	74.16	72.44	70.32	62.48	54.63
	45 30-Apr-04	12:00:00	0.00:00	72.75	95.71	51.56	108.33	116.62	118.19	80.97	74.92	73.01	70.83	63.07	54.74
	46 30-Apr-04	13:00:00	0.00:00	71.88	82.8	53.18	107.45	98.35	109.16	78.6	74.73	72.99	71.04	64.09	57.12
	47 30-Apr-04	14:00:00	0.00:00	72.41	87.12	55.75	107.98	103.77	111.62	78.92	74.77	73.29	71.6	66.28	60.42
	48 30-Apr-04	15:00:00	0.00:00	72.1	81.53	56.62	107.68	98.64	107.11	77.99	74.69	73.19	71.41	66.34	59.97
	49 30-Apr-04	16:00:00	0.00:00	72.35	84.76	55.1	107.92	99.01	106.01	78.26	74.91	73.46	71.67	66.58	59.51
	50 30-Apr-04	17:00:00	0.00:00	72.41	85.79	58.27	107.98	99.28	108.64	78.56	74.98	73.41	71.58	66.03	60.88
	51 30-Apr-04	18:00:00	0.00:00	71.76	85.45	59.75	107.33	100.62	108.48	78.17	74.44	72.92	70.87	65.19	61.38
	52 30-Apr-04	19:00:00	0.00:00	69.52	81.41	52.22	105.1	95.68	104.36	75.35	72.25	70.76	68.85	62.94	56.95
	53 30-Apr-04	20:00:00	0.00:00	69.17	86.12	58.37	104.75	99.66	110.38	75.57	71.8	70.3	68.35	62.08	59.13
	54 30-Apr-04		0.00:00	70.12	99.24	47.6	105.69	111.77	111.37	76.05	71.06	69.37	66.67	56.57	50.86
	55 30-Apr-04	22:00:00	0.00:00	67.88	86.72	44.84	103.45	103.88	110.1	74.66	70.94	69.16	66.32	56.11	47.56


Project: MTA Division 6 Bus Depot (Sunset Avenue Project)

Location: Southern Side

Sources:

Date: April 27, 2004

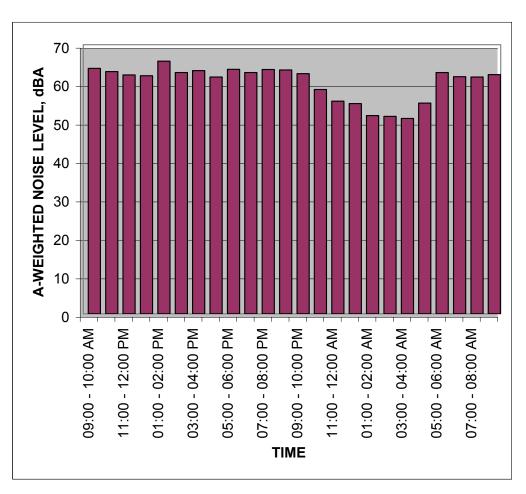
	HNL,
TIME	dB(A)
09:00 - 10:00 AM	59.48
10:00 - 11:00 AM	58.00
11:00 - 12:00 PM	58.10
12:00 - 01:00 PM	59.83
01:00 - 02:00 PM	59.73
02:00 - 03:00 PM	60.98
03:00 - 04:00 PM	62.71
04:00 - 05:00 PM	63.33
05:00 - 06:00 PM	64.75
06:00 - 07:00 PM	63.51
07:00 - 08:00 PM	60.95
08:00 - 09:00 PM	59.14
09:00 - 10:00 PM	58.96
10:00 - 11:00 PM	49.69
11:00 - 12:00 AM	47.89
12:00 - 01:00 AM	52.17
01:00 - 02:00 AM	50.50
02:00 - 03:00 AM	51.56
03:00 - 04:00 AM	52.98
04:00 - 05:00 AM	53.78
05:00 - 06:00 AM	59.87
06:00 - 07:00 AM	60.29
07:00 - 08:00 AM	61.26
08:00 - 09:00 AM	64.37
CNEL, dB(A):	63.8

NOTES:		

Sunset Avenue Project Noise Data - South

Interval data
Translated: 28-Apr-2004 17:28:10
Translated File: C:\Program Files\LARDAV\SLMUTIL\MTA-Venice South 26Apr2004_17-49-44.SLMDL
SLM: 820A1065
Firmware Rev.: 1.500 18Sep1998
Software: SImUtility v2.01
PCR Services Corporation
233 Wilshire Blvd, Suite 130
Santa Monica, CA 90401
Tustin Marine Off Base

Rec#	Date	Time	Duration	Lea	Lmax I	_min	SEL	Peak	UwPeak	L(1.00)	L(10.00)	L(25.00)	L(50.00)	L(90.00)	L(99.00)
	1 26-Apr-04		10:15.1	64.15	85.12	55.62	92.05	104.21	106.45	74.33		62.53	59.07	57.1	56.04
	2 26-Apr-04	18:00:00	0.00:00	59.09	75.2	53.68	94.66	101.44	104.64	67.71	60.58	58.87	57.46	55.48	54.23
	3 26-Apr-04	19:00:00	0.00:00	57.95	76.66	49.27	93.52	90.78	95.69	67.39	59.21	57.06	55.29	52.48	50.4
	4 26-Apr-04	20:00:00	0.00:00	57.71	67.88	52.51	93.29	92.37	94.41	63.26	59.14	58.07	57.21	55.31	53.8
	5 26-Apr-04		0.00:00	55.84	75.97	49.71	91.42	88.6	97.12	62.24		55.59	54.05	52.19	50.73
	6 26-Apr-04	22:00:00	0.00:00	51.23	62.96	44.58	86.8	84.09	96.44	58	53.91	51.93	49.83	47.05	45.21
	7 26-Apr-04	23:00:00	0.00.0	48.81	66.95	43.57	84.38	95.2	93.97	57.12		48.71	47.14	45.07	44.08
	8 27-Apr-04	0:00:00	0.00:00	52.17	69.29	44.79	87.75	88.19	91.73	59.45	54.83	52.76	50.16	47.21	45.32
	9 27-Apr-04	1:00:00	0.00:00	50.5	59.41	45.78	86.08	76.8	92.32	55.19	52.62	51.25	49.91	47.76	46.43
	10 27-Apr-04	2:00:00	0.00:00	51.56	61.38	46.39	87.14	79.41	90.41	56.58	53.66	52.31	50.99	48.8	47.29
	11 27-Apr-04	3:00:00	0.00:00	52.98	64.62	47.12	88.55	79.66	88.84	59.47	54.83	53.33	51.93	49.49	48.12
	12 27-Apr-04	4:00:00	0.00:00	53.78	64.22	50.23	89.36	85.44	95.69	59.21	55.03	54.13	53.22	51.75	50.41
	13 27-Apr-04	5:00:00	0.00:00	59.87	73.96	50.28	95.44	88	96.44	67.89	65.51	57.68	55.34	51.98	50.89
	14 27-Apr-04	6:00:00	0.00:00	60.29	82.01	51.22	95.87	96.76	104.95	70.65	61.29	58.8	57.16	54.21	52.73
	15 27-Apr-04	7:00:00	0.00:00	61.26	82.03	52.28	96.83	110.73	110.1	71.72	62.76	60.22	58.33	55.44	53.57
	16 27-Apr-04	8:00:00	0.00:00	64.37	94.09	49.83	99.94	112.85	115.65	73.48	62.8	59.94	57.96	54.02	51.61
	17 27-Apr-04	9:00:00	0.00:00	59.48	76.16	49.86	95.05	92.48	101.3	69.75	61.8	58.63	56.3	53.03	51.13
	18 27-Apr-04	10:00:00	0.00.0	58	77.17	49.45	93.57	97.78	98.34	69.51	59.14	56.73	54.71	52.01	50.19
	19 27-Apr-04	11:00:00	0.00:00	58.1	76.2	49.88	93.68	89.94	99.49	67.84	59.7	56.87	55.02	52.57	51.09
	20 27-Apr-04	12:00:00	0.00:00	59.83	78.78	48.64	95.41	104.2	102.08	70.97	61.83	58.05	55.17	51.99	50.06
	21 27-Apr-04	13:00:00	0.00:00	59.73	76.29	49.08	95.3	88.71	97.12	71.38	61.71	58.55	55.71	52.34	50.24
	22 27-Apr-04	14:00:00	0.00:00	60.98	80.71	50.82	96.56	101.25	100.44	71.37	62.87	60.34	57.89	54.16	52.3
	23 27-Apr-04	15:00:00	0.00:00	62.71	81.28	49.62	98.29	101.68	106.69	75.86	63.67	58.73	56.62	53.79	51.58
	24 27-Apr-04	16:00:00	0.00:00	63.33	84.89	50.37	98.91	100.64	103.77	70.92	65.74	64.42	59.61	55.18	52.21
	25 27-Apr-04	17:00:00	0.00:00	64.75	78.94	54.76	100.33	96.55	99.49	70.48	66.92	65.66	63.96	59.8	57.05
	26 27-Apr-04	18:00:00	0.00:00	63.51	75.9	58.69	99.09	102.83	107.11	68.3	64.98	64.06	63.1	60.66	59.18
	27 27-Apr-04	19:00:00	0.00:00	60.95	76.65	53.26	96.52	93.23	95.69	70.73	62.98	61.22	58.65	54.69	53.45
	28 27-Apr-04	20:00:00	0.00:00	59.14	76.31	52.26	94.71	89.3	97.76	68.01	60.09	58.69	57.55	55.33	53.55
	29 27-Apr-04	21:00:00	0.00:00	58.96	76.25	44.36	94.54	92.37	100.44	68.05	62.91	59.4	55.23	47.47	45.19
	30 27-Apr-04		0.00:00	49.69	68.35	42.73	85.26	86.48	98.93	58.62		49.36	47.45	44.63	43.3
	31 27-Apr-04		0.00:00	47.89	66.19	41.8	83.47	83.45	95.69	56.74		47.86	45.87	43.21	42.13
	32 28-Apr-04	0:00:00	0.00:00	46.7	65.17	41.66	82.28	78.31	92.91	55.65		46.01	44.18	42.38	42
	33 28-Apr-04	1:00:00	0.00.0	46.66	65.53	41.28	82.24	79.43	92.91	58.51	47.01	44.34	42.94	42.07	41.28
	34 28-Apr-04	2:00:00	0.000.0	45.75	63.14	40.9	81.33	76.42	90.41	56.51	46.99	44.04	42.79	41.58	41.05
	35 28-Apr-04	3:00:00	0.000.0	46.4	59.87	41.01	81.98	71.78	91.73	52.73		47.73	43.66	42.19	41.35
	36 28-Apr-04	4:00:00	0.00:00	54.12	67.98	45.61	89.69	84.89	97.76	61.5		53.23	50.07	47.08	46.02
	37 28-Apr-04	5:00:00	0.000.0	57.05	72.1	45.73	92.62	85.64	96.44	65.12		58.04	52.99	49.02	47.12
	38 28-Apr-04	6:00:00	0.000.0	57.19	71.86	46.48	92.77	85.52	100.88	64.72		58.33	54.9	50.25	47.73
	39 28-Apr-04	7:00:00	0.00:00	58.23	76.27	49.4	93.8	92.67	104.95	67.79		58.01	55.84	52.71	50.58
	40 28-Apr-04	8:00:00	0.00:00	59.8	80.17	48.33	95.38	99.58	101.3	70.37	61.04	58.48	56.32	53.37	50.37
	41 28-Apr-04	9:00:00	0.00:00	59.96	77.83	47.59	95.54	91.59	97.12	73		56.91	54.55	51.05	48.81
	42 28-Apr-04		0.00:00	62.12	79.24	49.75	97.7	91.62	103.14	75.01	62.69	59.19	57.3	54.84	51.83
	43 28-Apr-04		0.00:00	60.84	76.41	53.16	96.42	89.76	97.12	72.66		58.79	57.37	55.31	54.16
	44 28-Apr-04		0.00:00	60.38	78.41	52.92	95.96	93.42	98.34	69.8		59.07	57.38	55.17	53.87
	45 28-Apr-04		0.00:00	61.22	80.18	48.56	96.8	95.88	100.44	72.83		58.44	55.8	52.35	49.85
	46 28-Apr-04		0.00:00	59.54	79.3	48.26	95.12	96.51	98.34	71.53		57.33	55.12	52.34	49.91
	47 28-Apr-04		0.00:00	58.36	76.57	46.77	93.94	90.44	105.75	70.23		56.05	54.42	51.6	49.12
	48 28-Apr-04	10.00.00	22:31.8	59.52	76.55	50.18	90.84	93.9	101.3	69.71	61.69	57.94	55.87	53.42	51.63


Project: MTA Division 6 Bus Depot (Sunset Avenue Project)

Location: Northern Side

Sources:

Date: April 27, 2004

	HNL,
TIME	dB(A)
09:00 - 10:00 AM	63.86
10:00 - 11:00 AM	62.99
11:00 - 12:00 PM	62.15
12:00 - 01:00 PM	61.94
01:00 - 02:00 PM	65.70
02:00 - 03:00 PM	62.77
03:00 - 04:00 PM	63.25
04:00 - 05:00 PM	61.58
05:00 - 06:00 PM	63.58
06:00 - 07:00 PM	62.77
07:00 - 08:00 PM	63.54
08:00 - 09:00 PM	63.42
09:00 - 10:00 PM	62.48
10:00 - 11:00 PM	58.35
11:00 - 12:00 AM	55.30
12:00 - 01:00 AM	54.68
01:00 - 02:00 AM	51.57
02:00 - 03:00 AM	51.37
03:00 - 04:00 AM	50.82
04:00 - 05:00 AM	54.80
05:00 - 06:00 AM	62.75
06:00 - 07:00 AM	61.67
07:00 - 08:00 AM	61.58
08:00 - 09:00 AM	62.20
CNEL, dB(A):	66.1

NOTES:		

Sunset Avenue Project Noise Data - North

Interval data
Translated: 28-Apr-2004 16:50:43
Translated File: C:\Program Files\LARDAV\SLMUTIL\MTA-Venice North 26Apr2004.SLMDL
SLM: 820A1049
Firmware Rev.: 1.500 18Sep1998
Software: SImUtility v2.01
PCR Services Corporation
233 Wilshire Blvd, Suite 130
Santa Monica, CA 90401
Tustin Marine On Base

Rec#	Date	Time	Duration	Log	Lmax	Lmin	SEL	Peak	UwPeak	1 (1 00)	1 (10 00)	1 (25 00)	1 (50 00)	I (00 00)	1 (00 00)
Rec #	1 26-Apr-04		58:23.2	63.81	83.98	53.61	99.27	105.36	127.33	72.11	66.97	63.06	60.9	L(90.00) 57.34	55.07
	2 26-Apr-04		00:00.0	63.37		52.98	98.95	94.56	104.47	71.75		62.93	61.09		55.07
	3 26-Apr-04		00:00.0	62.44		55.29	98.02	91.08	104.47	69.66	64.71	62.71	61.25		57.08
	4 26-Apr-04		0.00:00	62.02		54.84	97.6	90.36	97.82	68.97	63.95	62.15			56.22
	5 26-Apr-04		0.00:00	62.11	78.33	54.08	97.68	89.85	99.63	69.83	63.69	62.36			56.06
	6 26-Apr-04		0.00:00	61.29		49.93	96.86	89.58	100.19	68.19	63.54	62.07	60.5		51.95
	7 26-Apr-04		0.00:00	57.77		48.91	93.35	90.07	95.56	65.72		57.86			50.9
	8 26-Apr-04		0.00:00	55.3		45.15	90.88	85.56	95.56	63.82		55.68	53.2		47.53
	9 27-Apr-04		0.00:00	54.68		43.02	90.25	90.05	103.49	64.36		53.35			45.07
	10 27-Apr-04	1:00:00	0.00:00	51.57		42.07	87.15	91.67	97.82	59.82		51.41	49.57		44.07
	11 27-Apr-04	2:00:00	00:00.0	51.37		43.85	86.95	79.02	91.11	59.01	53.81	51.51	49.7		45.12
	12 27-Apr-04	3:00:00	00:00.0	50.82		43.96	86.4	81.12	91.11	58.6		50.93	49.54		45.49
	13 27-Apr-04		0.000.0	54.8		46.39	90.37	94.61	97.82	61.89		55.18	52.43		47.6
	14 27-Apr-04		0.000.0	62.75		57.68	98.32	88.11	103.49	68.6		62.92			59.11
	15 27-Apr-04		0.00:00	61.67		53.93	97.25	93.47	97.82	68.57	64.13	61.89	60.19		55.36
	16 27-Apr-04		0.00:00	61.58		50.8	97.16	92.02	101.58	71.84	63.46	60.78	58.75		53.04
	17 27-Apr-04		0.00:00	62.2		52.65	97.77	92.08	103.15	70.2		62.29	60.44		54.62
	18 27-Apr-04	9:00:00	0.00:00	63.86		50.98	99.43	103.43	105.34	73.86		62.26	59.61		53.2
	19 27-Apr-04		0.00:00	62.99		52.11	98.56	101.01	106.71	71.15		61.69	59.62		53.57
	20 27-Apr-04	11:00:00	0.00:00	62.15	88.45	50.07	97.72	97.78	106.22	72.81	63.16	60.86	58.71	55.28	52.69
	21 27-Apr-04	12:00:00	0.00:00	61.94		50.63	97.51	94.05	102.4	71.82	63.97	61.54	59.38	55.83	52.63
	22 27-Apr-04	13:00:00	0.00:00	65.7	90.88	53.6	101.28	106.16	107.6	76.47	66.78	63.83	61.3	58.19	55.74
	23 27-Apr-04	14:00:00	0.000.0	62.77	86.34	54.99	98.35	92.34	101.14	71.46		62.75		57.69	56.15
	24 27-Apr-04	15:00:00	0.00:00	63.25	81.18	55.42	98.83	93.76	100.68	70.9	66.11	63.4	61.43	58.74	57.16
	25 27-Apr-04	16:00:00	0.00:00	61.58	78.32	51.68	97.16	92.04	102.4	69.84	63.94	61.54	59.71	56.38	53.75
	26 27-Apr-04	17:00:00	0.00:00	63.58	86.11	51.53	99.16	98.43	103.15	71.27	65.33	63.14	61.43	58.54	55.7
	27 27-Apr-04	18:00:00	0.00:00	62.77	81.57	53.93	98.35	92.78	103.84	70.63	64.97	62.7	60.92	58.02	55.98
	28 27-Apr-04	19:00:00	0.00:00	63.54	82.6	53.41	99.11	87.7	100.19	70.58	65.49	63.69	62.36	60.11	56.57
	29 27-Apr-04	20:00:00	0.00:00	63.42	80.7	53.82	99	90.57	103.84	71.2	65.32	63.56	62.18	59	56.28
	30 27-Apr-04	21:00:00	0.00:00	62.48	82.2	54.46	98.06	96.11	103.15	70.9	63.68	62.14	60.93	58.38	56.18
	31 27-Apr-04	22:00:00	0.00:00	58.35	79.3	43.55	93.93	91.57	100.19	66.4	61.34	58.87	56.37	51.32	46.85
	32 27-Apr-04	23:00:00	0.00:00	55.3	75.04	41.79	90.88	88.32	98.46	64	58.74	55.91	52.15	46.03	43.24
	33 28-Apr-04	0:00:00	0.00:00	53.58	70.79	39.27	89.16	85.3	97.14	62.72	57.49	54.15	49.96	43.75	41.22
	34 28-Apr-04	1:00:00	0.00:00	51.11	69.75	38.61	86.68	83.28	93.61	61.11	54.9	50.58	46.23	41.87	39.87
	35 28-Apr-04	2:00:00	0.00:00	48.94	69.74	37.86	84.51	80.34	93.61	59.4	51.96	46.56	43.09	39.62	38.35
	36 28-Apr-04	3:00:00	0.00:00	48.14	67.61	37.59	83.72	78.76	93.61	58.69	51.53	46.09	42.63	39.25	38.15
	37 28-Apr-04	4:00:00	0.00:00	54.21	76.09	38.33	89.79	88.2	97.82	62.23	58.81	54.79	45.21	40.53	39.2
	38 28-Apr-04	5:00:00	0.00.0	61.15	73.93	53.43	96.72	88.36	99.63	68.75	63.94	61.3	59.4	57.04	55.25
	39 28-Apr-04	6:00:00	0.00:00	61.92	77.79	53.8	97.49	89.73	103.84	69.37	64.47	62.35	60.44	57.12	54.68
	40 28-Apr-04	7:00:00	0.00:00	59.63	80.95	47.68	95.21	93.5	102	67.86	61.82	59.68	57.67	53.32	50.42
	41 28-Apr-04	8:00:00	0.00.0	62.36	76.9	51.4	97.93	91.71	99.04	70.62	64.95	62.55	60.76	57.56	54.25
	42 28-Apr-04	9:00:00	00:00.0	62.04	81.19	48.63	97.62	93.71	99.04	71.25	64.51	61.48	59.04	54.72	51.42
	43 28-Apr-04		0.00:00	62.55		48.73	98.13	97.24	100.19	73.15		61.33	59.15		50.7
	44 28-Apr-04		00:00.0	63.25		49.69	98.83	99	99.63	73.89		61.4	59.14		51.96
	45 28-Apr-04		00:00.0	60.11	80.76	49.39	95.68	92.7	104.47	69.75		59.91	57.58		51.36
	46 28-Apr-04		00:00.0	62.11	79.55	53.14	97.69	91.39	104.17	69.97		62.11	60.05		55.16
	47 28-Apr-04		00:00.0	62.47		52.82	98.04	91.32	104.47	71.18		62.68	60.56		55
	48 28-Apr-04		00:00.0	63.41	81.84	54.32	98.99	97.32	104.17	71.47	65.84	63.35			56.41
	49 28-Apr-04		40:48.0	62.63		51.06	96.54	104.41	107.15	71.24	64.54	62.14			53.29
				22.00		250					2			22.01	

R1	Receptor ID								
R2 - East of Project Site across Pacific Avenue R3 - South of Project Site across Pacific Avenue R5 - South of Project Site across Pacific Avenue R5 - South of Project Site along Royal Court	•	t Avenue						-	
R3 - South of Project Site across Promoton Place R4 - West of Project Site along Royal Court R5 - South of Project Site along Royal Court R1									
R5 - South of Project Site along Royal Court									
Noise Level at Receptor Location (Leq)	R4 - West of Project Site across Pacific	Avenue							
R1	R5 - South of Project Site along Royal (Court							
R1				Noise Level	ot Bosontor I	costion (L.)		<u> </u>	
Ambient Leq (without construction activity): 63 dBA			R1		-		R5		
Distance to Construction Activity Centroid: 100 ft 100 ft 100 ft 100 ft 100 ft 250 ft	Amhient Lea (without con	struction activity):						-	+
Distance Attenuation Adjustment: a 6 dBA 6 dBA 6 dBA 6 dBA 76 dBA 0 dBA	• ` `	• ,							
Reference Noise Level at So Feet (Leg)									
Reference		•					+		-
Construction Stage (With Mufflers) Construction Noise Level at 50 Feet (Loq)	Daine	i ilisertion Loss.	U UBA	UUBA	UUBA	UUBA	-10 UDA	-	+
Ground Clearing	Construction Stage (With Mufflers) ^c	Noise Level at	Distance				Adjusted		
Grading/Excavation	Cround Clearing		76 dD A	76 dD A	76 dD A	76 dD A	E0 4D V	-	+
Foundations								-	+
Structural 83 dBA 77 dBA 80 dB	<u>`</u>								-
Finishing 86 dBA 80 dBA 80 dBA 80 dBA 80 dBA 62 dBA Construction Stage (With Mufflers) ° Composite Noise Level (Construction Noise + Ambient Noise) Composite Noise Level (Construction Noise + Ambient Noise) Ground Clearing 76 dBA 77 dBA 76 dBA 77 dBA 61 dBA Grading/Excavation 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA Foundations 72 dBA 74 dBA 74 dBA 58 dBA 58 dBA Structural 77 dBA 78 dBA 77 dBA 61 dBA 61 dBA Finishing 80 dBA 80 dBA 80 dBA 80 dBA 61 dBA Construction Stage (With Mufflers) ° Noise Level Increase by Phase Ground Clearing 13.2 dBA 6.2 dBA 14.1 dBA 6.2 dBA 3.6 dBA Grading/Excavation 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Foundations 8.6 dBA 3.0 dBA 9.5 dBA 3.0 dBA 1.5 dBA Structural 14.1 dBA 7.0 dBA 15.1 dBA									
Construction Stage (With Mufflers) Composite Noise Level (Construction Noise + Ambient Noise) Ground Clearing 76 dBA 77 dBA 76 dBA 77 dBA 61 dBA Grading/Excavation 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA Foundations 72 dBA 74 dBA 71 dBA 74 dBA 58 dBA Structural 77 dBA 78 dBA 77 dBA 78 dBA 61 dBA Finishing 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA Finishing 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA Foundations 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA Finishing 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA Construction Stage (With Mufflers) Construction Stage (With Mufflers) Substitution 17.1 dBA 9.5 dBA 14.1 dBA 6.2 dBA 14.1 dBA 6.2 dBA 15.1 dBA 6.2 dBA 15.1 d									
Ground Clearing 76 dBA 77 dBA 76 dBA 77 dBA 61 dBA 63 dBA 80 dBA 80 dBA 80 dBA 80 dBA 80 dBA 80 dBA 58 dBA								<u> </u>	
Grading/Excavation 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA 58 dBA Foundations 72 dBA 74 dBA 71 dBA 74 dBA 58 dBA 58 tructural 77 dBA 78 dBA 77 dBA 78 dBA 61 dBA 61 dBA 71 dBA 78 dBA 80 dBA 63 dBA 63 dBA 62 dBA 80 dBA									
Foundations 72 dBA 74 dBA 71 dBA 74 dBA 58 dBA Structural 77 dBA 78 dBA 77 dBA 78 dBA 61 dBA 77 dBA 80 dBA									
Structural 77 dBA 78 dBA 77 dBA 78 dBA 61 dBA 80 dBA 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA 63 dBA 80 dBA 80 dBA 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA 80 dB									
Finishing 80 dBA 80 dBA 80 dBA 80 dBA 63 dBA 63 dBA 63 dBA 60 dBA									
Construction Stage (With Mufflers) c									+
Ground Clearing 13.2 dBA 6.2 dBA 14.1 dBA 6.2 dBA 3.6 dBA Grading/Excavation 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Foundations 8.6 dBA 3.0 dBA 9.5 dBA 3.0 dBA 1.5 dBA Structural 14.1 dBA 7.0 dBA 15.1 dBA 7.0 dBA 15.1 dBA 7.0 dBA 4.1 dBA Finishing 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA 18.0 dBA 9.5 dBA 9.5 dBA 6.2 dBA 18.0 dBA 9.5 dBA 9.5 dBA 6.2 dBA 18.0 dBA 9.5 dBA	Finishing		80 aBA	80 dBA	80 dBA	80 dBA	63 dBA		_
Ground Clearing 13.2 dBA 6.2 dBA 14.1 dBA 6.2 dBA 3.6 dBA Grading/Excavation 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Foundations 8.6 dBA 3.0 dBA 9.5 dBA 3.0 dBA 1.5 dBA Structural 14.1 dBA 7.0 dBA 15.1 dBA 7.0 dBA 15.1 dBA 7.0 dBA 4.1 dBA Finishing 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Notes: Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.	Construction Stage (With Mufflers) ^c			Noise Le	vel Increase	by Phase			
Foundations 8.6 dBA 3.0 dBA 9.5 dBA 3.0 dBA 1.5 dBA Structural 14.1 dBA 7.0 dBA 15.1 dBA 7.0 dBA 4.1 dBA Finishing 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Notes: Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.			13.2 dBA				3.6 dBA		
Structural 14.1 dBA 7.0 dBA 15.1 dBA 7.0 dBA 4.1 dBA Finishing 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Notes: Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.	Grading/Excavation		17.1 dBA	9.5 dBA	18.0 dBA	9.5 dBA	6.2 dBA		
Finishing 17.1 dBA 9.5 dBA 18.0 dBA 9.5 dBA 6.2 dBA Notes: **Oalculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). **Outcome of the company	Foundations		8.6 dBA	3.0 dBA	9.5 dBA	3.0 dBA	1.5 dBA		
Notes: a Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). b When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.	Structural		14.1 dBA	7.0 dBA	15.1 dBA	7.0 dBA	4.1 dBA		
^a Calculation based on standard point-source sound attenuation formula over hard surface propagation path (i.e., 6-dB per doubling of distance). ^b When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.	Finishing		17.1 dBA	9.5 dBA	18.0 dBA	9.5 dBA	6.2 dBA		
b When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.	Notes:								
b When applied, assumes that sound barrier fully penetrates the line-of-sight between noise source and receptor location.	^a Calculation based on standard point-sou	irce sound attenua	tion formula o	ver hard surfa	ce propagation	n path (i.e., 6-	dB per doublin	g of distance	e).
								Ĭ	Í
		<u> </u>		•					

MTA - Venice 1

Existing								
	Traffic \	/olumes		Leq			CNEL	
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet
Sunset Ave, Between Main St and Pacific Ave	39	31	59.7	54.3	52.0	58.9	53.6	51.2
Main St, between Sunset Ave and Thornton PI	1221	1577	69.6	65.6	63.5	68.8	64.8	62.8
Main St, between Thornton PI and Abbot Kinney Blvd	1206	1850	70.3	66.3	64.2	69.5	65.5	63.5
Abbot Kinney Blvd, between Main St and Venice Blvd	996	811	68.7	64.0	61.8	68.0	63.3	61.1
Pacific Ave, between Sunset Ave and Windward Ave	1429	1774	71.7	66.7	64.4	71.0	65.9	63.6
Future No Project								•
	Traffic Volumes Leq				CNEL			
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet
Sunset Ave, Between Main St and Pacific Ave	40	33	59.7	54.3	52.0	58.9	53.6	51.2
Main St, between Sunset Ave and Thornton PI	1330	1723	70.0	66.0	63.9	69.2	65.2	63.2
Main St, between Thornton PI and Abbot Kinney Blvd	1301	1996	70.6	66.6	64.5	69.8	65.8	63.8
Abbot Kinney Blvd, between Main St and Venice Blvd	1057	876	68.9	64.2	62.0	68.2	63.5	61.3
Pacific Ave, between Sunset Ave and Windward Ave	1516	1880	71.9	66.9	64.6	71.2	66.1	63.8
Future With Project								
	Traffic \	/olumes		Leq			CNEL	
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet
Sunset Ave, Between Main St and Pacific Ave	59	95	59.7	54.3	52.0	58.9	53.6	51.2
Main St, between Sunset Ave and Thornton PI	1411	1814	70.2	66.2	64.1	69.4	65.4	63.4
Main St, between Thornton PI and Abbot Kinney Blvd	1368	2081	70.8	66.8	64.7	70.0	66.0	64.0
Abbot Kinney Blvd, between Main St and Venice Blvd	1103	936	69.1	64.4	62.2	68.4	63.7	61.5
Pacific Ave, between Sunset Ave and Windward Ave	1542	1922	72.0	67.0	64.7	71.3	66.2	63.9

CNEL

Summary	50 ft. fro				
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Sunset Ave, Between Main St and Pacific Ave	0.0	0.0	0.0	0.0	
Main St, between Sunset Ave and Thornton Pl	0.2	0.6	0.2	0.6	
Main St, between Thornton PI and Abbot Kinney Blvd	0.2	0.5	0.2	0.5	
Abbot Kinney Blvd, between Main St and Venice Blvd	0.2	0.4	0.2	0.4	
Pacific Ave, between Sunset Ave and Windward Ave	0.1	0.3	0.1	0.3	

				Project	Cumulative
	Exisiting	Future NP	Future WP	Increment	Increment
Sunset Ave, Between Main St and Pacific Ave	53.6	53.6	53.6	0.0	0.0
Main St, between Sunset Ave and Thornton Pl	64.8	65.2	65.4	0.2	0.6
Main St, between Thornton PI and Abbot Kinney Blvd	65.5	65.8	66.0	0.2	0.5
Abbot Kinney Blvd, between Main St and Venice Blvd	63.3	63.5	63.7	0.2	0.4
Pacific Ave, between Sunset Ave and Windward Ave	65.9	66.1	66.2	0.1	0.3

MTA - Venice 2

Existing	cisting									
_	Traffic \	/olumes		Leq			CNEL			
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet		
Pacific Ave, between Windward Ave and Venice Blvd (North)	812	1121	69.2	64.5	62.3	68.5	63.8	61.6		
Venice Blvd (North), between Abbot Kinney Blvd and Pacific Ave	187	311	63.6	58.9	56.7	62.9	58.2	56.0		
Venice Blvd (South) between Abbot Kinney Blvd and Pacific Ave	246	400	64.7	60.0	57.8	64.0	59.3	57.1		
Pacific Ave, between Rose Ave and Sunset Ave	1778	2305	72.8	67.8	65.5	72.1	67.0	64.7		
Future No Project										
	Traffic \	/olumes		Leq		CNEL				
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet		
Pacific Ave, between Windward Ave and Venice Blvd (North)	874	1187	69.4	64.7	62.5	68.7	64.0	61.8		
Venice Blvd (North), between Abbot Kinney Blvd and Pacific Ave	203	336	64.0	59.3	57.1	63.3	58.6	56.4		
Venice Blvd (South) between Abbot Kinney Blvd and Pacific Ave	266	434	65.1	60.4	58.2	64.4	59.7	57.5		
Pacific Ave, between Rose Ave and Sunset Ave	1903	2434	73.1	68.1	65.8	72.4	67.3	65.0		
Future With Project										
	Traffic \	/olumes		Leq			CNEL			
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet		
Pacific Ave, between Windward Ave and Venice Blvd (North)	884	1210	69.5	64.8	62.6	68.8	64.1	61.9		
Venice Blvd (North), between Abbot Kinney Blvd and Pacific Ave	203	336	64.0	59.3	57.1	63.3	58.6	56.4		
Venice Blvd (South) between Abbot Kinney Blvd and Pacific Ave	266	434	65.1	60.4	58.2	64.4	59.7	57.5		
Pacific Ave, between Rose Ave and Sunset Ave	1916	2480	73.1	68.1	65.8	72.4	67.3	65.0		

CNEL

Summary	50 ft. fro	om ROW	At ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Pacific Ave, between Windward Ave and Venice Blvd (North)	0.1	0.3	0.1	0.3	
Venice Blvd (North), between Abbot Kinney Blvd and Pacific Ave	0.0	0.4	0.0	0.4	
Venice Blvd (South) between Abbot Kinney Blvd and Pacific Ave	0.0	0.4	0.0	0.4	
Pacific Ave, between Rose Ave and Sunset Ave	0.0	0.3	0.0	0.3	

				Project	Cumulative
	Exisiting	Future NP	Future WP	Increment	Increment
Pacific Ave, between Windward Ave and Venice Blvd (North)	63.8	64.0	64.1	0.1	0.3
Venice Blvd (North), between Abbot Kinney Blvd and Pacific Ave	58.2	58.6	58.6	0.0	0.4
Venice Blvd (South) between Abbot Kinney Blvd and Pacific Ave	59.3	59.7	59.7	0.0	0.4
Pacific Ave, between Rose Ave and Sunset Ave	67.0	67.3	67.3	0.0	0.3

MTA - Venice 3

Existing								
	Traffic Volumes		Leq			CNEL		
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet
Main St, between Ocean Park Blvd and Rose Ave	1324	1544	69.5	65.5	63.4	68.7	64.7	62.7
Main St, between Rose Ave and Sunset Ave	1336	1564	69.5	65.5	63.4	68.7	64.7	62.7
Nielson Wy/Pacific Ave, between Ocean Park Blvd and Rose Ave	1951	2410	73.0	68.0	65.7	72.3	67.2	64.9
Rose Ave, between Main St and Lincoln Blvd	649	756	67.5	62.8	60.6	66.8	62.1	59.9
Future No Project								
	Traffic Volumes		Leq			CNEL		
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet
Main St, between Ocean Park Blvd and Rose Ave	1458	1720	70.0	66.0	63.9	69.2	65.2	63.2
Main St, between Rose Ave and Sunset Ave	1457	1726	70.0	66.0	63.9	69.2	65.2	63.2
Nielson Wy/Pacific Ave, between Ocean Park Blvd and Rose Ave	2084	2564	73.3	68.3	66.0	72.6	67.5	65.2
Rose Ave, between Main St and Lincoln Blvd	699	823	67.9	63.2	61.0	67.2	62.5	60.3
Future With Project								
	Traffic Volumes		Leq			CNEL		
Roadway/Segment	AM	PM	ROW	50 Feet	100 Feet	ROW	50 Feet	100 Feet
Main St, between Ocean Park Blvd and Rose Ave	1491	1772	70.1	66.1	64.0	69.3	65.3	63.3
Main St, between Rose Ave and Sunset Ave	1508	1806	70.2	66.2	64.1	69.4	65.4	63.4
Nielson Wy/Pacific Ave, between Ocean Park Blvd and Rose Ave	2118	2623	73.4	68.4	66.1	72.7	67.6	65.3
Rose Ave, between Main St and Lincoln Blvd	726	866	68.1	63.4	61.2	67.4	62.7	60.5

CNEL

Summary	50 ft. fro	om ROW	At ROW		
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Main St, between Ocean Park Blvd and Rose Ave	0.1	0.6	0.1	0.6	
Main St, between Rose Ave and Sunset Ave	0.2	0.7	0.2	0.7	
Nielson Wy/Pacific Ave, between Ocean Park Blvd and Rose Ave	0.1	0.4	0.1	0.4	
Rose Ave, between Main St and Lincoln Blvd	0.2	0.6	0.2	0.6	

				Project	Cumulative
	Exisiting	Future NP	Future WP	Increment	Increment
Main St, between Ocean Park Blvd and Rose Ave	64.7	65.2	65.3	0.1	0.6
Main St, between Rose Ave and Sunset Ave	64.7	65.2	65.4	0.2	0.7
Nielson Wy/Pacific Ave, between Ocean Park Blvd and Rose Ave	67.2	67.5	67.6	0.1	0.4
Rose Ave, between Main St and Lincoln Blvd	62.1	62.5	62.7	0.2	0.6

APPENDIX F - TRANSPORTATION:

WEST LOS ANGELES TRANSPORTATION FACILITY

F1 - TRAFFIC IMPACT ANALYSIS FOR A PROPOSED

BUS MAINTENANCE FACILITY,

OVERLAND TRAFFIC CONSULTANTS, INC.,

AUGUST 2003,

REVISED JULY 2004.

SUNSET AVENUE PROJECT

F2 - TRAFFIC IMPACT ANALYSIS FOR A MIXED-USE RESIDENTIAL
& COMMERCIAL DEVELOPMENT,
OVERLAND TRAFFIC CONSULTANTS, INC.,
JULY 2004.

West Los Angeles Transportation Facility

F1 - TRAFFIC IMPACT ANALYSIS FOR A PROPOSED

BUS MAINTENANCE FACILITY,

OVERLAND TRAFFIC CONSULTANTS, INC.,

AUGUST 2003,

REVISED JULY 2004.

TRAFFIC IMPACT ANALYSIS FOR A PROPOSED BUS MAINTENANCE FACILITY

Located on Jefferson Boulevard South of National Boulevard in the City of Los Angeles

Prepared for: RAD Jefferson, LLC

Prepared by:
Overland Traffic Consultants, Inc.
25876 The Old Road #307
Santa Clarita, California 91381
(661) 799-8423

TRAFFIC IMPACT ANALYSIS FOR A PROPOSED BUS MAINTENANCE FACILITY

Located on Jefferson Boulevard South of National Boulevard In the City of Los Angeles

Prepared for:

RAD Jefferson LLC 615 Hampton Drive, Suite A108 Venice, CA 90291

Prepared by:

Overland Traffic Consultants, Inc. 25876 The Old Road # 307 Santa Clarita, California 91381 (661) 799 – 8423

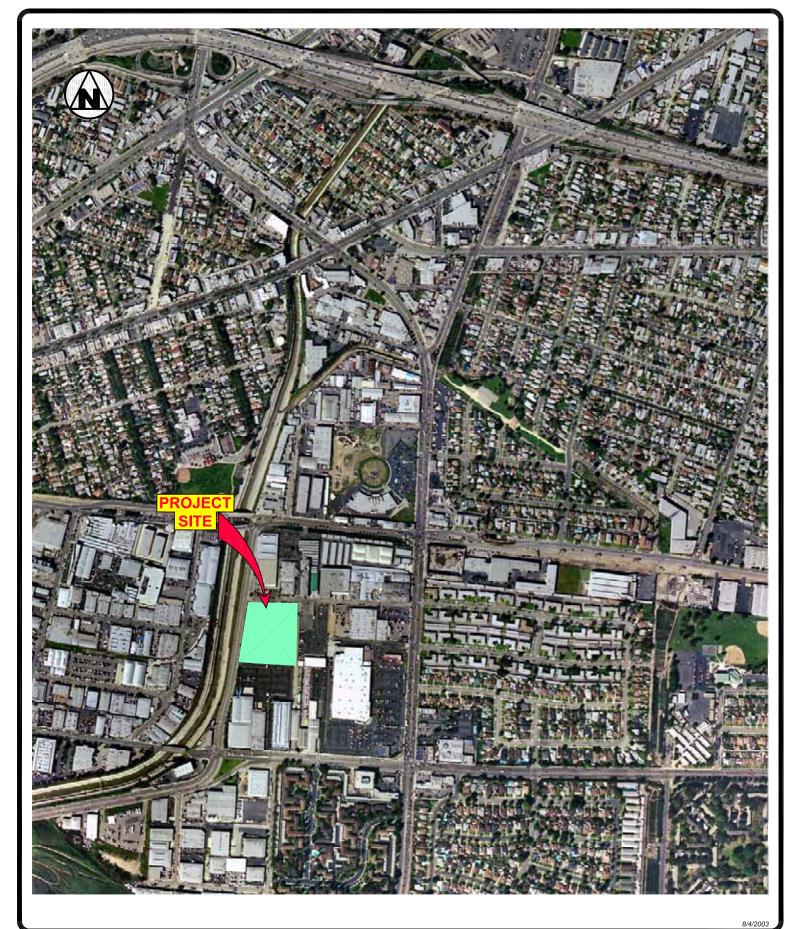
July 2004

EXECUTIVE SUMMARY

The project under consideration is the construction of a bus maintenance facility to service approximately 175 buses. The project site is situated on a vacant industrial parcel of approximately 4.65 acres along the east side of Jefferson Boulevard south of National Boulevard in the City of Los Angeles, as shown in the following photograph.

This new facility will replace the existing Division 6 bus maintenance facility located in the Venice community at Main Street and Sunset Avenue which will be redeveloped with a mixed – use project. A separate traffic study has been prepared for the Venice mixed-use project because that site is located approximately 6 miles west of the proposed Jefferson maintenance facility. The potential traffic impacts created by each project have been identified separately in each study area, which do not overlap.

The focus of this traffic study is to evaluate the potential traffic impact created by the maintenance center during the peak traffic hours on the adjacent streets and nearby intersections. Based on traffic surveys of similar facilities, it has been determined that the bus maintenance facility generates its peak traffic flows earlier and later that the peak hours of traffic on the adjacent streets. Therefore, the proposed bus maintenance facility will not significantly impact the peak traffic flow during the peak hours.


It is estimated that the project would generate 1,247 daily trips with 79 and 67 trips occurring during the morning and afternoon commute hours, respectively. To account for the effect of large vehicles on the nearby intersections and adjacent streets, the bus traffic volume has been increased by applying a passenger car equivalency (PCE) factor of 2. Using the adjusted traffic volume to account for bus traffic, the traffic impacts have been evaluated based on a trip generation of 1,666 daily trips with 107 and 103 morning and afternoon peak hour trips, respectively.

A potential bus routing impact has been identified, however, at the intersection of Jefferson Boulevard and La Cienega Boulevard due to the physical roadway constraints at this intersection. Inbound buses traveling southbound on La Cienega Boulevard will have a difficult right - turn to westbound Jefferson Boulevard. It appears that the travel path of the southbound bus will need to encroach into the adjacent through lane to negotiate this southbound right - turn.

Test runs have been made by the MTA and it has been determined that the bus can negotiate the turn but it is a tight turn. The tight right - turn can be mitigated by the implementation of intersection modifications such as street widening and restriping of the intersection. This street widening is within the Exposition right-of-way and should be coordinated with the design of the Exposition LRT project to avoid potential design issues between the aerial column placement and widening of Jefferson Boulevard.

In addition to the potential busing routing impacts, traffic generated by the proposed project will add to the eastbound vehicle queue turning left from Jefferson Boulevard to northbound La Cienega Boulevard. Due to the large volume of vehicles currently turning left from Jefferson Boulevard to La Cienega Boulevard, the left-turn vehicle queue may at times exceed the left-turn storage capacity provided at the intersection, which is approximately 600 feet of storage. However, the eastbound left-turn storage area can be increased as part of the Jefferson Boulevard intersection modifications discussed above that would accommodate the added project traffic. The proposed street widening on Jefferson Boulevard would allow for the implementation of longer eastbound left-turn lanes that would fully mitigate these potential queuing impacts from the project added traffic.

li i

Overland Traffic Consultants, Inc.

TABLE OF CONTENTS

Chapter 1 - Introduction	1
Chapter 2 - Project Description	3
Chapter 3 - Environmental Setting	5
Freeway and Street Characteristics	7
Chapter 4 - Project Traffic	9
Traffic Generation	9
Traffic Assignment	13
Chapter 5 - Traffic Conditions Analysis	18
Existing Peak Hour Traffic Volumes	18
Analysis of Existing Traffic Conditions	18
Analysis of Future Traffic Conditions	22
Impacts on Regional Transportation System	32
Construction Impacts	32
Chapter 6 – Mitigation Measures	36
Appendix A – Community Plan Land Use and Circulation Maps Appendix B – Exposition Boulevard Rail Project Information Appendix C – Street Plans & Street Standards Appendix D – Traffic Generation Data Appendix E – Traffic Volume Data Appendix F – Level of Service Worksheets	

Overland Traffic Consultants, Inc.

LIST OF FIGURES

Project Location	2
Project Site Plan	4
Study Intersections Characteristics	6
Employee and Bus Traffic Flow Data	10
Total PCE Adjusted Traffic Flow Data	12
Site Access Route	14
Employee Traffic Volume - Peak Hours	15
Bus (PCE) Traffic Volume - Peak Hours	16
Total Site Traffic Volume - Peak Hours	17
Existing Traffic Volume - AM Peak Hour	19
Existing Traffic Volume - PM Peak Hour	20
Related Project Location Map	25
Future (2006 Traffic Volume (Without Project) – AM Peak Hour	26
Future (2006) Traffic Volume (Without Project) - PM Peak Hour	27
Future (2006) Traffic Volume (With Project) - AM Peak Hour	30
Future (2006) Traffic Volume (With Project) - PM Peak Hour	31
Potential Right – Turn Impact	38
Jefferson Boulevard Street Widening Mitigation	39
Potential Right – Turn Impact (Articulated Bus)	40
Jefferson Boulevard Widening (Articulated Bus)	41

Overland Traffic Consultants, Inc.

LIST OF TABLES

Non-adjusted Project Trip Generation	11
Adjusted PCE Project Traffic Generation	13
Level of Service Definitions	21
Existing Traffic Conditions Summary	22
Related Project Listing	23
Estimated Related Project Traffic	24
Future Traffic Conditions Without Project	28
Future Traffic Conditions With Project	29

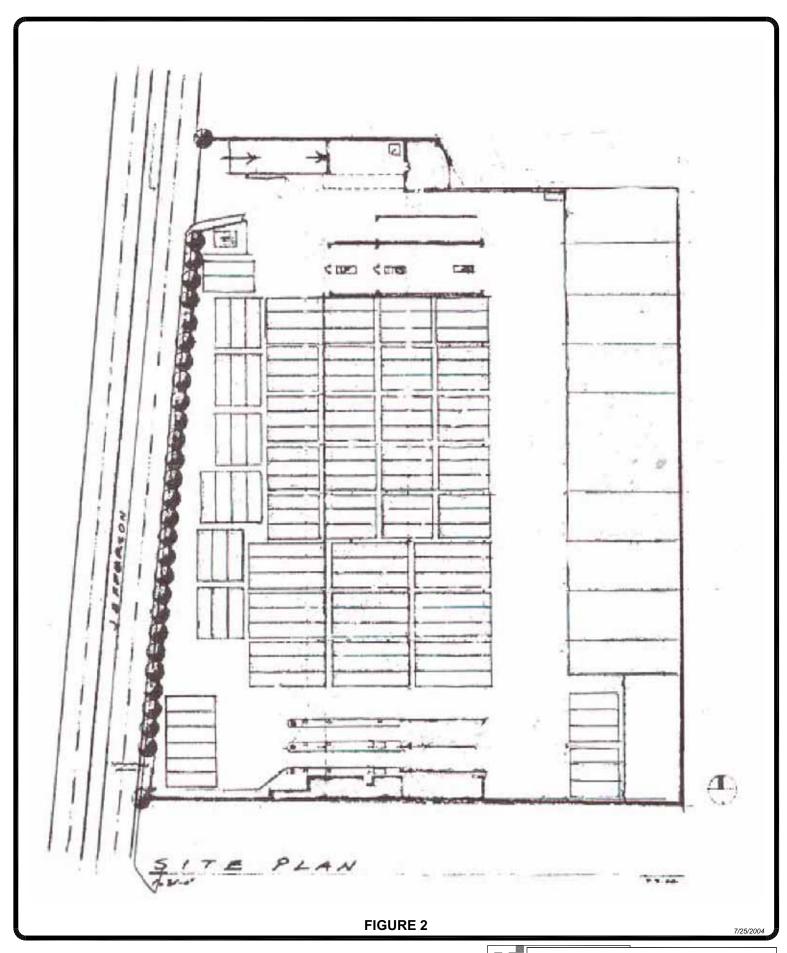

CHAPTER 1 INTRODUCTION

The applicant, RAD Jefferson LLC plans to develop a bus maintenance facility for the Metropolitan Transportation Authority (MTA) that would support up to 175 buses. The site is located on the east side of Jefferson Boulevard south of National Boulevard in the City of Los Angeles as shown on Figure 1. The City of Culver City is located immediately west of Jefferson Boulevard.

As part of the process for the project's environmental approval, the applicant has contracted with Overland Traffic Consultants Inc. to evaluate the potential traffic impact of the proposed development. A detailed analysis of the project's traffic flow during peak traffic periods has been conducted at the three intersections listed below. These intersections are located on bus/employee routes to and from the project site that are expected to handle the majority of the new project traffic.

- o Jefferson Boulevard and National Boulevard
- o Jefferson Boulevard and La Cienega Boulevard
- Jefferson Boulevard and Rodeo Road/Higuera Street

The procedures used in this study are consistent with the City of Los Angeles guidelines for preparing and analyzing traffic impacts. Furthermore, the proposed bus routing assignments within the study area associated with the facility have been reviewed and approved by MTA for use in this study.

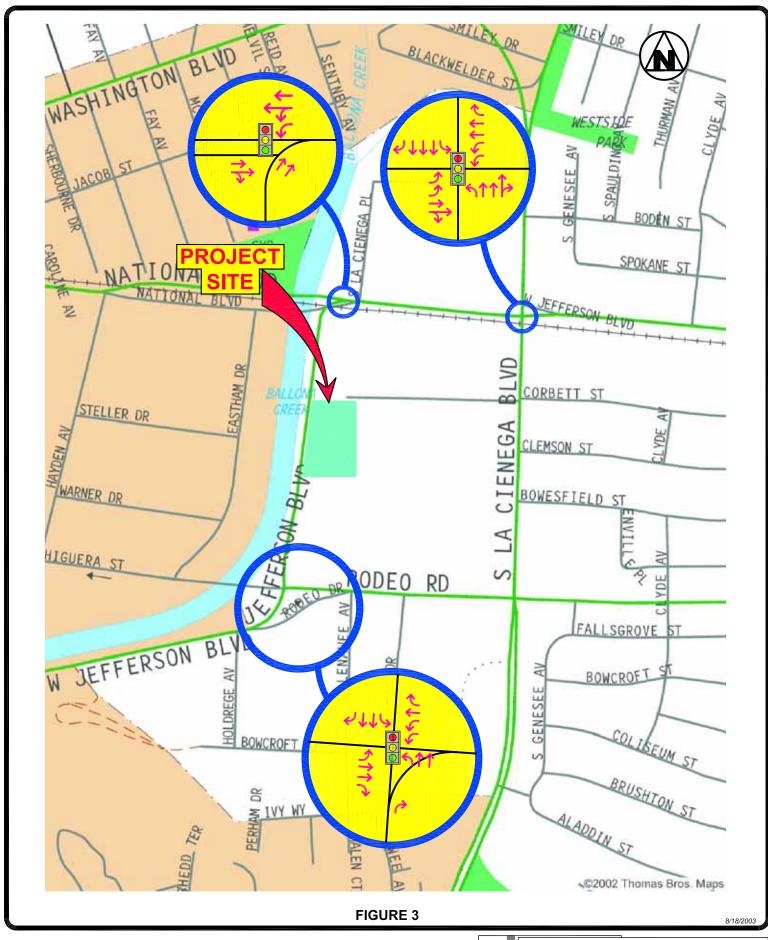


CHAPTER 2

PROJECT DESCRIPTION

The project being proposed is the construction of a transit maintenance center serving up to 175 buses. The facility will provide an administrative building, a tire shop, a fare retrieval vault house, and a cleaning and maintenance building. The center will operate 7 days per week 24 hours per day with 3 work shifts (early morning, mid-day and night shift). Buses will undergo routine maintenance, refueling and cleaning at the proposed facility.

Vehicular access to the site will be provided by one driveway located on Jefferson Boulevard. An employee (auto) access will be located on the north end of the site providing access to approximately 240 roof top parking spaces. Access to and from the bus parking bays and maintenance facilities is also planned from the northerly driveway. The concept site plan is illustrated in Figure 2.


CHAPTER 3

ENVIRONMENTAL SETTING

The project is located in the West Adams - Baldwin Hills - Leimert Community Plan area located approximately 7 miles southwest of Downtown Los Angeles. The land uses surrounding the site are industrial. Ballona Creek is located to the west of Jefferson Boulevard. The Community Plan land use map and the Culver City General Plan Land Use Element are included in Appendix A of this report for general reference.

The principal transit lines proposed in this Community are along the Exposition Right-of-Way and the Crenshaw-Prairie Corridor. The Exposition Light Rail Transit project is a proposed 9.6 mile long line extending along the MTA-owned Exposition right-or-way from the existing Metro Rail station at 7th/Metro Center in downtown Los Angeles to Venice/Washington in Culver City. Ground breaking is planned to occur in 2007 with completion to Culver City by year 2012. Seven new stations plus upgrades to three existing station s are planned. Three of the stations on the proposed alignment are within the Plan Area, namely: (1) Exposition/Crenshaw Boulevards; (2) La Brea Avenue/Exposition Boulevard; and (3) La Cienega/Jefferson Boulevards. Additional information on the Exposition project from the Mid-City/Exposition LRT Project Final EIS/EIR is provided in Appendix B.

In addition to collecting traffic volume data, field surveys were conducted to determine the roadway and intersection geometry and traffic signal operations. All study intersections are controlled by traffic signals. Figure 3 illustrates the study locations, type of intersection traffic control and lane configurations. Street plans for the study area roadways and the Los Angeles street standards are provided in Appendix C.

Freeway and Street Characteristics

<u>Santa Monica Freeway</u> (Interstate 10) is located north of the project site. This east -west freeway provides four mixed-flow lanes plus auxiliary lanes between ramp connections in each direction in the vicinity of study area. Freeway access is provided from Washington Boulevard, Fairfax Avenue, Venice Boulevard and La Cienega Boulevard. Average daily traffic volume on the 10 Freeway at La Cienega Boulevard is approximately 280,000 vehicles per day (ADT). Freeway capacities are typically 2,000 vehicles per hour (VPH) per lane under free flow conditions. Using this capacity value, the 10 Interstate provides a theoretical free flow capacity of approximately 16,000 - 20,000 VPH. Current non-directional peak hour traffic volume on the Santa Monica Freeway is 18,000 – 19,000 VPH per Caltrans.

<u>Jefferson Boulevard</u> is a north-south secondary highway providing two lanes in the each direction plus a median left-turn lane adjacent to the project site. The roadway is developed to a 60-foot width curb to curb on 70 feet on right-of-way. On-street parking is not permitted on the west side of Jefferson Boulevard. Daily traffic volume on Jefferson Boulevard south of National Boulevard is approximately 17,500 ADT with directional peak hour flows between 600 – 900 vehicles per hour (vph).

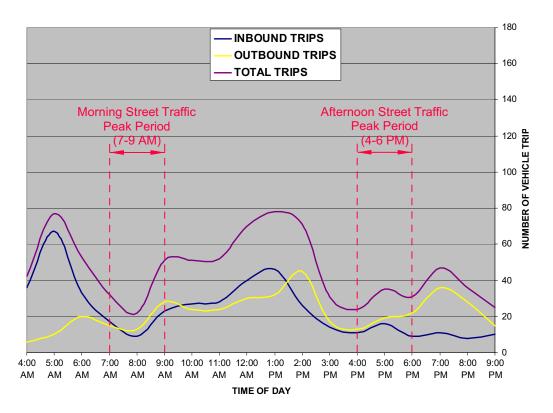
The current designation of Jefferson Boulevard is a Secondary Highway which may require additional highway dedication (8 feet) and street widening (5 feet) to bring it up to its standard. Except where environmental issues and planning practices warrant alternate standards consistent with capacity requirements, street dedications shall be developed in accordance with standards and criteria contained in the Circulation Element of the General Plan and the City's Standard Street Dimensions. It should be noted that the added dedication and street widening would not provide for any additional traffic lanes or roadway capacity on Jefferson Boulevard.

<u>La Cienega Boulevard</u> is a north-south class II major highway. Three lanes in each direction plus left-turn lanes are provided. The roadway carries approximately 67,500 vehicles per day with peak hourly flows of 4,400 – 4,800 VPH. The street is constructed with 80 feet of roadway curb to curb on 100 feet of right-of-way. South of Rodeo Road, the right-of-way on La Cienega Boulevard increases to 120 feet in width to provide for a raised median and dual left-turn lanes. On-street parking is not permitted on La Cienega Boulevard.

Rodeo Road/Higuera Street is an east-west class II major highway between the City limits and Martin Luther King Jr. Boulevard. Three lane in each direction plus left-turn lanes are provided. The street is constructed with 78 feet curb to curb on 100 feet of right-of-way between Jefferson Boulevard and La Cienega Boulevard.

CHAPTER 4 PROJECT TRAFFIC

Traffic Generation


The database normally used to estimate traffic generation of a new land use is the ITE Trip Generation Handbook. Traffic-generating characteristics of the proposed bus maintenance facility, however, have not been surveyed by the Institute of Transportation Engineers (ITE). Therefore, site specific traffic generation studies have been conducted at a similar MTA bus maintenance facility and used as the basis for the traffic estimates of the proposed Jefferson Boulevard facility.

The traffic generation surveys were conducted at the Division 10 bus maintenance facility located at 742 North Mission Road in the City of Los Angeles. Traffic data was collected for three days between the hours of 4 AM and 9 PM. Directional employee trips and bus trips to and from the site were counted to determine the hourly traffic characteristics by trip type. The Division 10 data is presented in Appendix D.

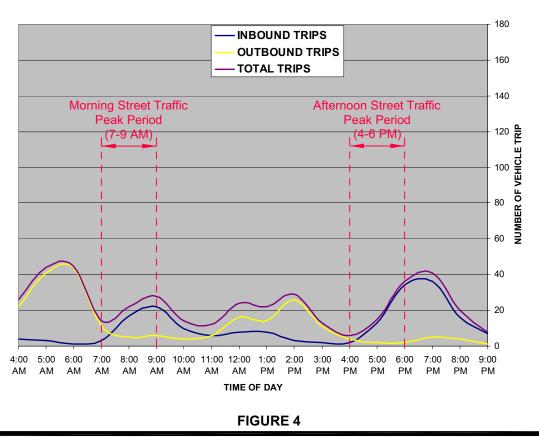

The Division 10 survey data was then adjusted based on the number of buses serviced at the Division 10 facility and that proposed at the Jefferson Boulevard facility (adjustment factor 175/271). Figure 4 shows the estimated hourly trips generated by employees and buses expected at the Jefferson site. As shown in Figure 4, the peak traffic flows generated by the project fall outside the normal morning and afternoon peak traffic periods on the adjacent streets.

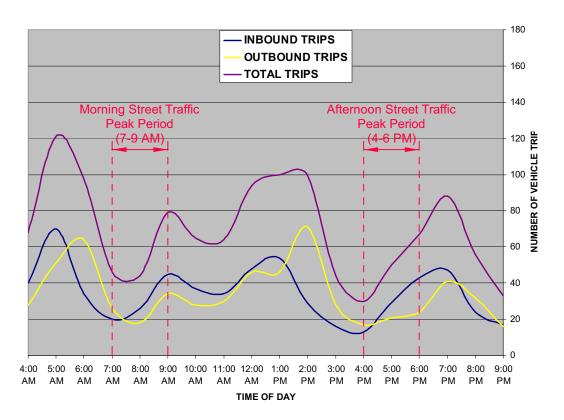
Table 1 contains the project traffic volume expected during the morning and afternoon peak hours. It is estimated that the project would generate an average of 1,247 vehicle trips per day with 79 morning trips and 67 afternoon trips at the project driveways.

NON-BUS TRIP GENERATION

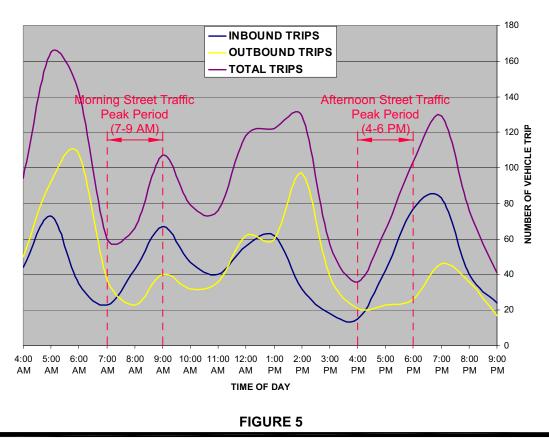
BUS TRIP GENERATION

HOURLY TREND LINE OF NON-BUS AND BUS TRAFFIC FLOW

Overland Traffic Consultants, Inc.


Table 1
Estimated Project Traffic Generation
Non-adjusted Trips

	Daily	AM I	AM Peak Hour			PM	<u>lour</u>	
Trip Type	<u>Traffic</u>	Total	<u>In</u>	<u>Out</u>		<u>Total</u>	<u>In</u>	<u>Out</u>
Employee Trips	828	51	23	28		31	9	22
Bus Trips	419	28	22	6		36	34	2
Non-adjusted Site Trips	1,247	79	45	34		67	43	24


A main consideration for traffic impacts generated by the bus maintenance facility is the effect of heavy vehicles on the capacity of the streets and intersections. Heavy vehicles are those with more than four tires touching the pavement. Adjustments for heavy vehicles are necessary to account for the additional space occupied by these vehicles and for the difference in operating capabilities compared to passenger cars. To account for these effects, each bus (i.e., heavy vehicle) is converted to an equivalent number of passenger cars (PCE). The recommended average PCE value for converting heavy vehicles is 2.0.

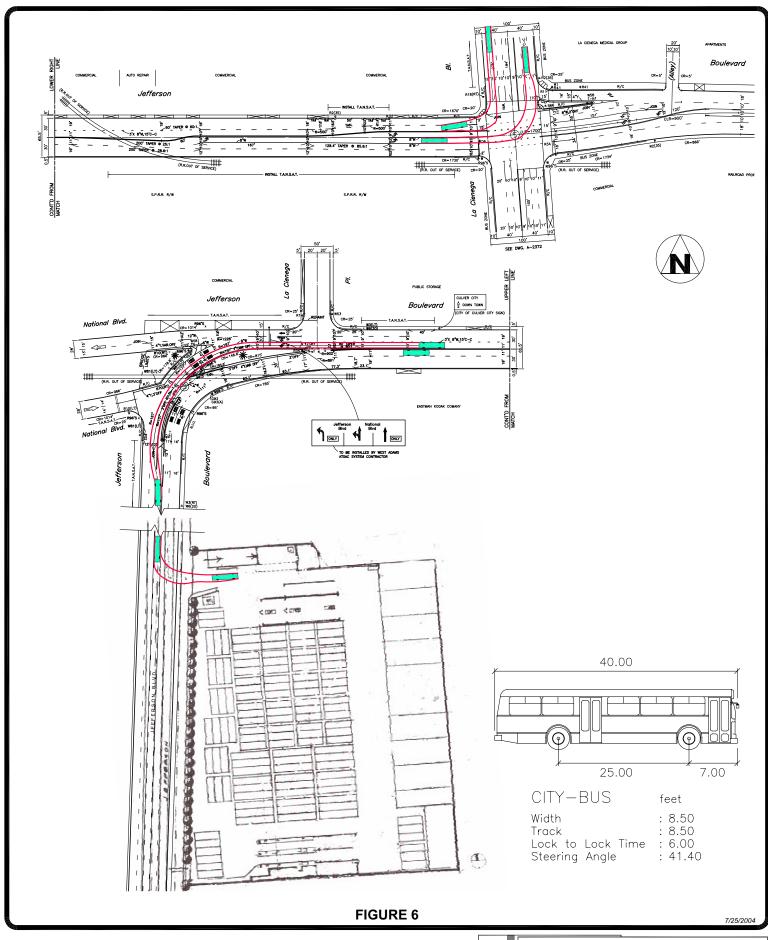
Therefore, the estimated traffic volume generated by buses has been adjusted by the passenger car equivalent value (PCE) for the intersection traffic impact assessment. Figure 5 shows the total estimated hourly trips generated by employees and buses expected at the Jefferson site. Also shown in Figure 5, is the total traffic volume with the bus volume multiplied by the PCE factor of 2. The daily and peak hour PCE traffic flow generated by the project used for the traffic impact analysis is shown in Table 2. The trip generation worksheet for the project is contained in Appendix D.

TOTAL TRIP GENERATION

TOTAL TRIP GENERATION ADJUSTED FOR BUS TRAFFIC

HOURLY TREND LINE OF TOTAL PROJECT TRAFFIC FLOW (WITH & WITHOUT PCE ADJUSTMENT)

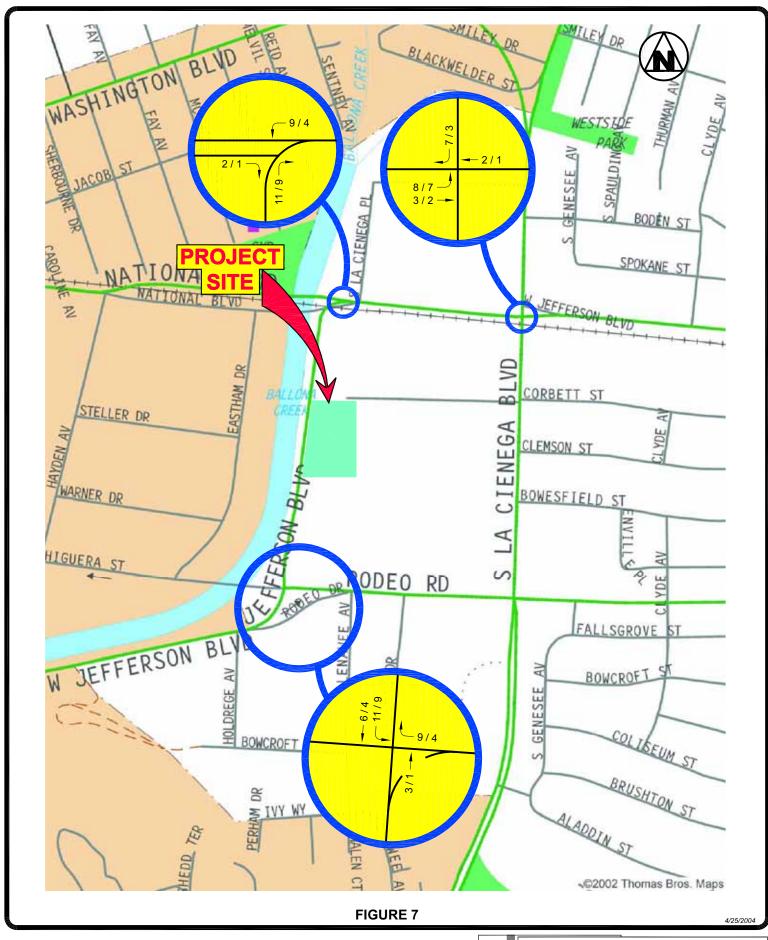
Overland Traffic Consultants, Inc.


Table 2
Estimated Project Traffic Generation
PCE Adjusted Trips

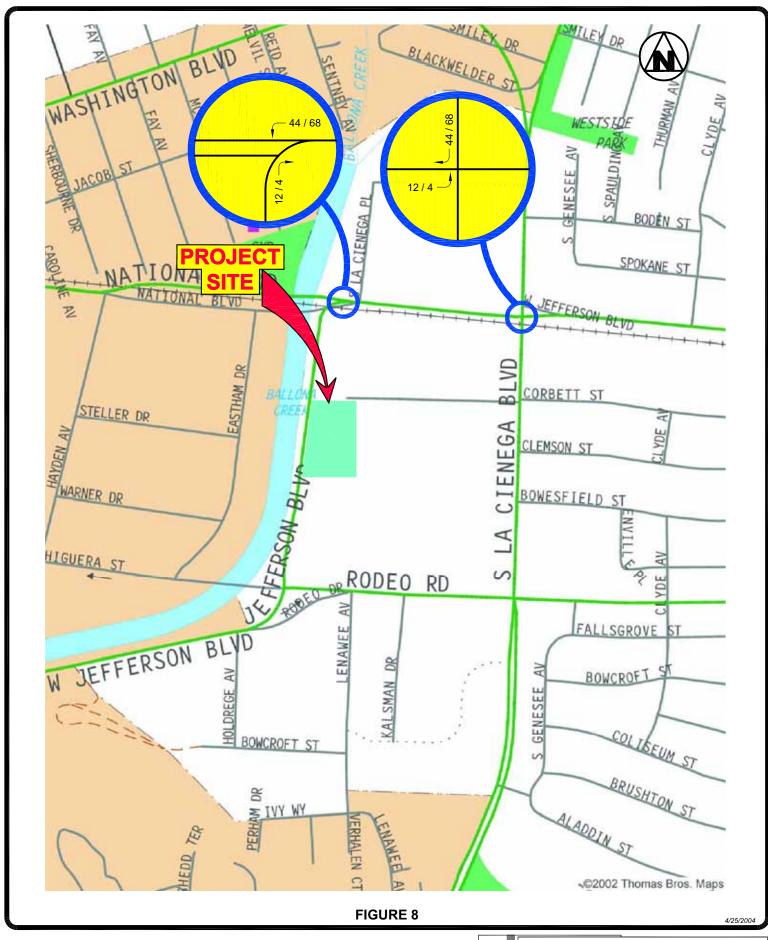
	Daily	AM I	AM Peak Hour			PM Peak Ho		
Trip Type	<u>Traffic</u>	Total	<u>In</u>	Out	Tota	<u>l In</u>	Out	
Employee Trips	828	51	23	28	31	9	22	
Bus PCE Trips	838	56	44	12	72	68	4	
Adjusted PCE Site Trips	1,666	107	67	40	103	77	26	

Traffic Assignment

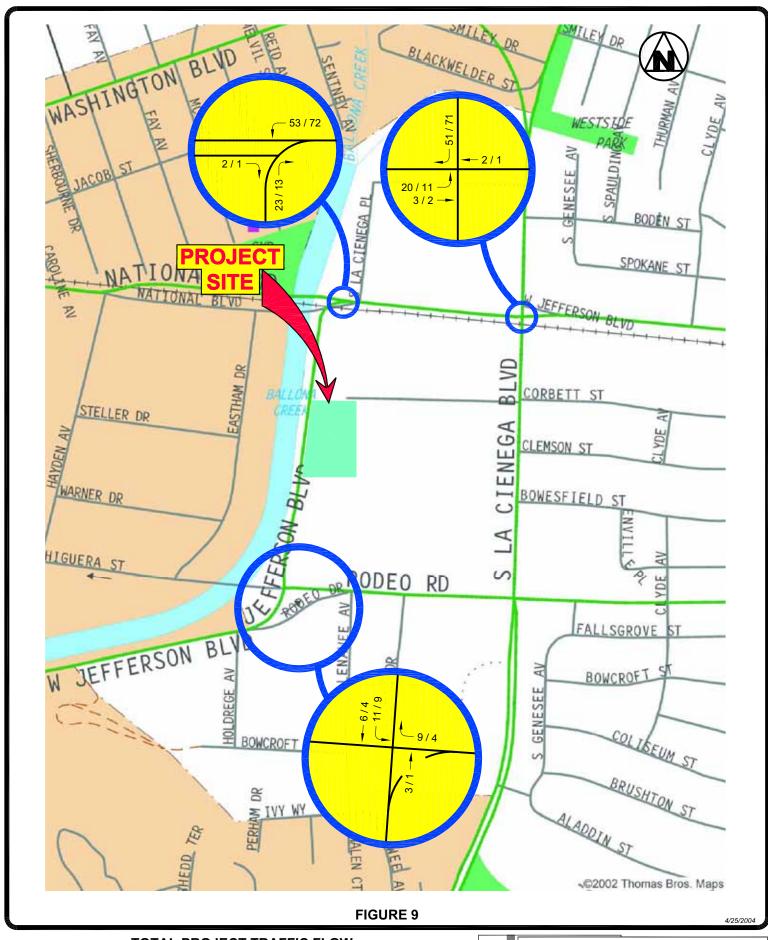
The proposed route for the bus traffic flow has been provided by the MTA and is illustrated in Figure 6. As shown in Figure 6, vehicles entering the bus maintenance facility from Jefferson Boulevard will use the existing median left-turn lane which provides sufficient stacking area for the estimated project traffic demands into the facility. Buses exiting the site and turning left from Jefferson Boulevard at La Cienega Boulevard will queue in the existing dual left-turn lanes which provided approximately 600 feet of storage. However due to the high peak hour volume turning left from eastbound Jefferson Boulevard to northbound La Cienega Boulevard the left-turn vehicle queue may at times exceed the left-turn storage capacity.


Using the traffic volumes contained in Table 2, trip assignments to the study intersections were developed separately for the employee and bus (PCE) trip types. Figures 7, 8 and 9 illustrate the assignment of the employee trips, the bus PCE trips and the total PCE trips to the study area, respectively. This estimated assignment of the project traffic flow provides the necessary level of detail to analyze the potential peak hour traffic impacts generated by the project at the study locations.

BUS TRAVEL PATHS
TO AND FROM MAINTENANCE CENTER


Overland Traffic Consultants, Inc.

EMPLOYEE TRAFFIC FLOW AM / PM PEAK HOUR


Overland Traffic Consultants, Inc.

BUS (PCE) TRAFFIC FLOW AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.

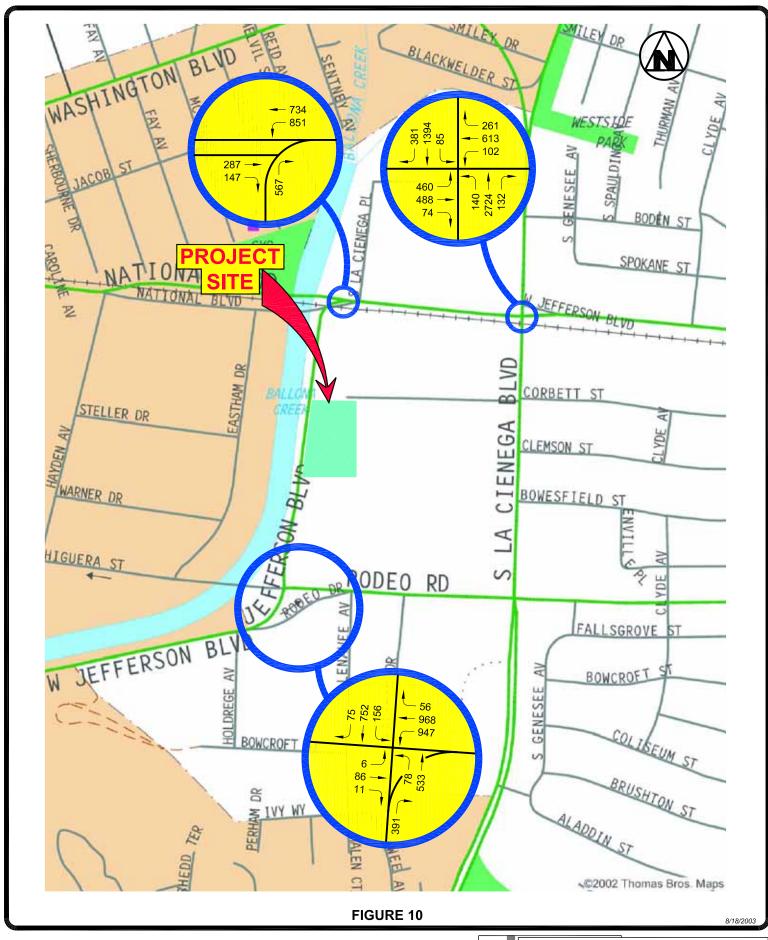
TOTAL PROJECT TRAFFIC FLOW PCE VOLUMES AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.

CHAPTER 5

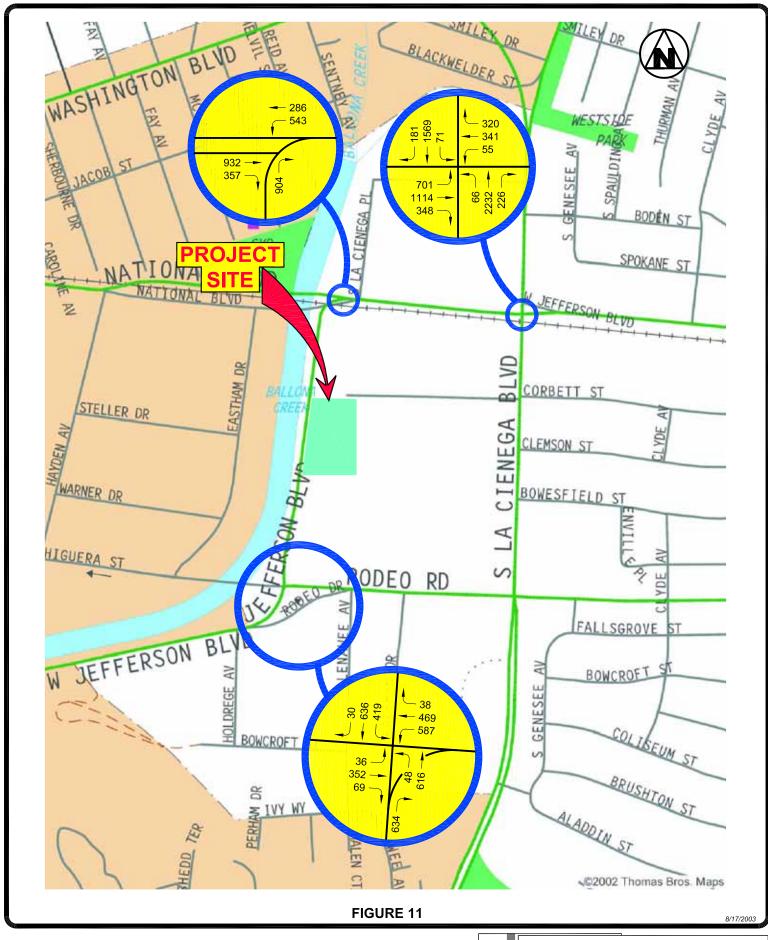
TRAFFIC CONDITIONS ANALYSIS

Existing Peak Hour Traffic Volumes


Traffic volume data used in the following peak hour intersectional analysis were based on traffic counts conducted by The Traffic Solution, an independent traffic data collection company. The AM and PM peak period counts were conducted manually from 7:00 AM to 10:00 AM and 4:00 PM to 7:00 PM in August 2003. All traffic counts were conducted by counting the number of vehicles at each of the 3 study intersections making each movement. The peak hour volume for each intersection was then determined by finding the four highest consecutive 15-minute volumes for all movements.

Existing peak hour traffic volume at each study intersection is illustrated in Figure 10 for the morning rush hour and Figure 11 for the afternoon rush hour. Data collection worksheets for the peak hour and daily counts are contained in Appendix E.

Analysis of Existing Traffic Conditions


The traffic conditions analysis was conducted using the Critical Movement Analysis (CMA) method. All study intersections were evaluated using this methodology pursuant to the criteria established by the City of Los Angeles Department of Transportation. The peak hour traffic counts were used along with current intersection geometrics and traffic controls to determine the intersection's operating condition.

The highest combinations of conflicting traffic volume (V) at an intersection are divided by the intersection capacity value. Intersection capacity (C) represents the maximum volume of vehicles which has a reasonable expectation of passing through an intersection in one hour under typical traffic flow conditions.

EXISTING (2003) TRAFFIC VOLUMES AM PEAK HOUR

EXISTING (2003) TRAFFIC VOLUMES PM PEAK HOUR

The CMA procedure uses a ratio of the traffic volume to the capacity of an intersection. This volume-to-capacity (V/C) ratio defines the proportion of an hour necessary to accommodate all the traffic moving through the intersection assuming all approaches were operating at full capacity. CMA ratios provide an ideal means for quantifying intersection operating characteristics. For example, if an intersection has a CMA value of 0.70, the intersection is operating at 70% capacity with 30% unused capacity.

Once the volume-to-capacity ratio (i.e., CMA value) has been calculated, operating characteristics are assigned a level of service grade (A through F) to estimate the level of congestion and stability of the traffic flow. The term "Level of Service" (LOS) is used by traffic engineers to describe the quality of traffic flow. Definitions of the LOS grades are shown in Table 3.

Table 3
Level of Service Definitions

Lovelof	ECVOI OF OCT VICE DETITITIONS	
Level of <u>Service</u>	Description of Operating Characteristics	Equivalent CMA
Α	Free flow conditions with low traffic density.	0.00 - 0.60
В	A stable flow of traffic	0.61 - 0.70
С	Light congestion but stable, occasional backups behind left-turning vehicles.	0.71 - 0.80
D	Approaching capacity, drivers are restricted in freely changing lanes. Vehicles may be required to wait more than one light cycle.	0.81 - 0.90
E	At or near capacity with some long lines for left-turning vehicles. Blockage of intersection may occur if traffic signal does not provide for protected turning movements.	0.91 - 1.00
F	Jammed conditions with stoppages of long duration	n. > 1.00

By applying the CMA procedures to the intersection data, the capacity values and the corresponding Levels of Service (LOS) for existing traffic conditions were determined. The LOS values are summarized in Table 4. Supporting capacity worksheets are contained in Appendix F of this report.

Table 4
Level of Service for Existing Conditions

		AM Peak Ho			Hour
<u>No.</u>	<u>Intersection</u>	<u>CMA</u>	<u>LOS</u>	<u>CMA</u>	<u>LOS</u>
1.	Jefferson Bd. & La Cienega Bd.	1.050	F	1.089	F
2.	Jefferson Bd. & Rodeo Road	0.958	Е	0.893	D
3.	Jefferson Bd. & National Bd.	0.427	Α	0.661	В

Analysis of Future Traffic Conditions

Future traffic volume projections have been developed to analyze the traffic conditions after completion of other planned land developments including the proposed project. Pursuant to the City of Los Angeles traffic impact guidelines, the following steps have been taken to develop the future traffic volume estimate:

- (a) Existing traffic plus ambient growth (4%) to 2006 study year;
- (b) Traffic in (a) plus related projects (without project scenario);
- (c) Traffic in (b) with the proposed project traffic (with project scenario);
- (d) Traffic in (c) plus the proposed traffic mitigation, if necessary.

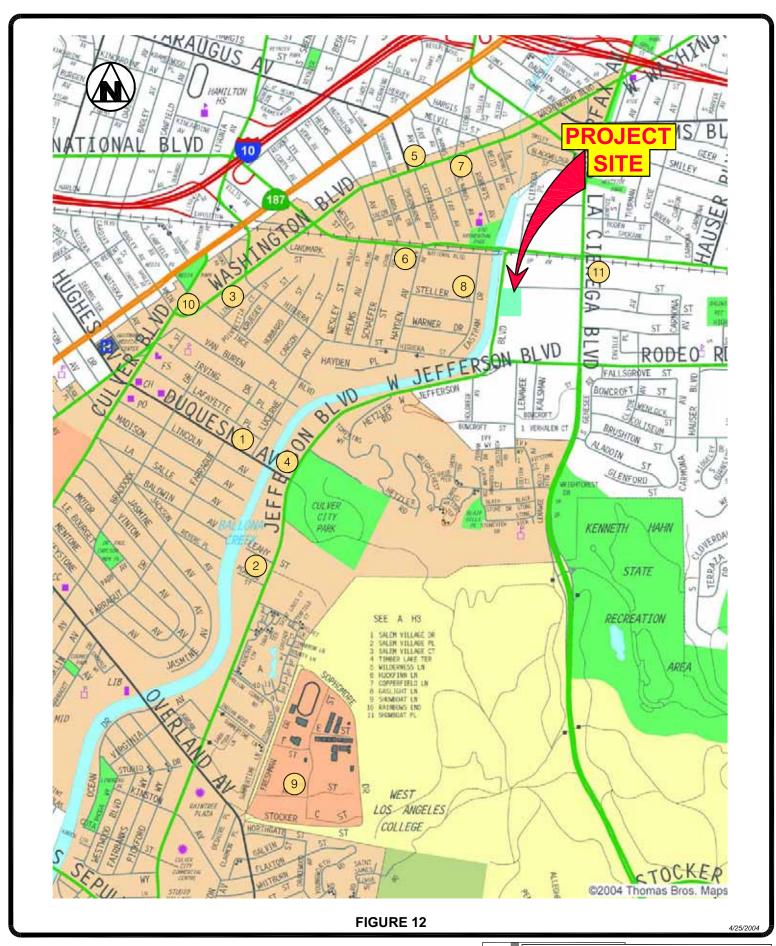
The future cumulative analysis includes other development projects located within the study area that are either under construction or planned. As part of this analysis, a development list was obtained from the City of Los Angles Department of Transportation and Culver City for use in this study. The records were reviewed and

checked in the field to identify those projects that could produce additional traffic at the study intersections for study year 2006. It should be noted that this project, or any actions taken by the City regarding this project, does not have a direct bearing on these other proposed related projects. The locations of eleven related projects are described in Table 5.

Estimates of the peak hour trips generated by the other developments were calculated by applying ITE trip generation rates to evaluate future traffic conditions with the related projects. The potential net increase in traffic from the related projects is shown in Table 6. Figure 12 shows the location of the related projects.

The potential traffic impact of traffic growth has been calculated by adding the existing traffic volume, an ambient growth factor (an average of the CMP and DOT growth rates resulting in a 1.04 growth rate) and traffic from other development projects. Future cumulative "without project" peak hour traffic volume estimates are shown in Figures 13 and 14 for the morning and afternoon, respectively.

Table 5
Related Projects Descriptions


<u>No</u> .		<u>Size</u>	<u>Location</u>	<u>Status</u>
1.	Apartment	8 units	4210 Duquesne Avenue	Planning
2.	Industrial	250,000 s.f.	10100 Jefferson Blvd.	Planning
3.	Office	27,000 s.f.	9050 Washington Blvd.	Planning
4.	Office/Condo	28 units	9599 Jefferson Blvd.	Planning
5.	Office/Apts.	25,969 s.f.	8601 Washington Blvd.	Planning
6.	Office	151,000 s.f.	3505 Hayden Ave.	Planning
7.	Live/Work	25' lot	8500 Washington Blvd.	Planning
8.	Live/work	11,000 s.f.	3525 Eastham Drive	Unknown
9.	College	Phase I	West LA College	Planning
10.	Mixed Use	-	9300 Culver Blvd.	Planning
11.	LRT Center	530 spaces	Jefferson/LaCienega.	Planning

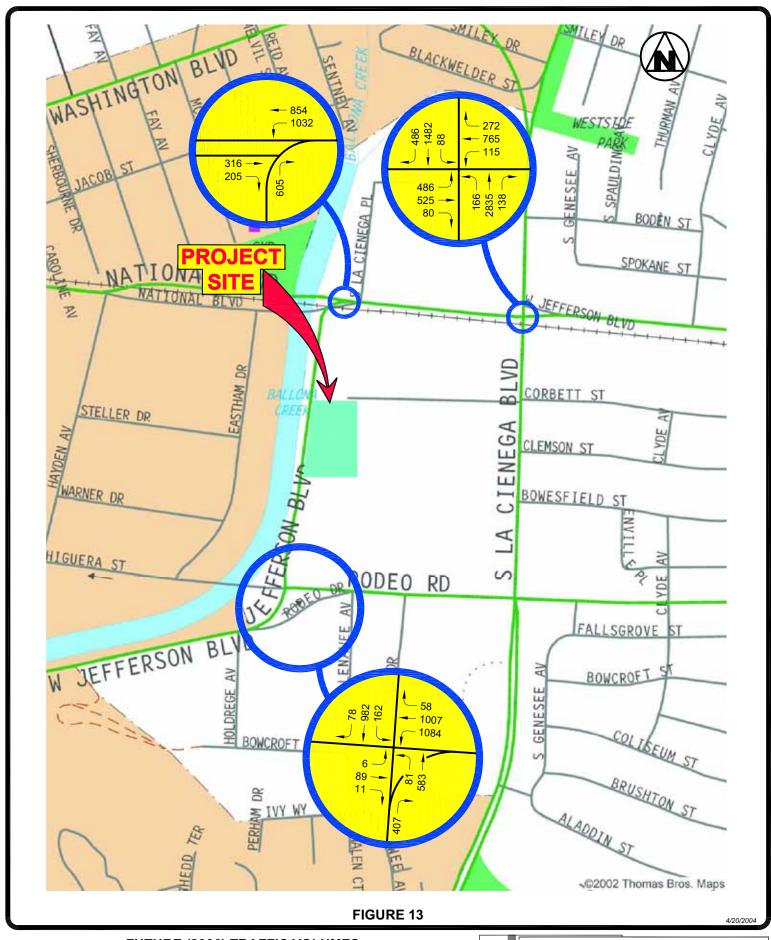

Overland Traffic Consultants, Inc.

Table 6
Related Projects Traffic Generation

Мар		Daily	AM Pe	ak Hour	PM Pe	eak Hour
<u>No.</u>	<u>Project</u>	<u>Traffic</u>	<u>IN</u>	<u>OUT</u>	<u>IN</u>	<u>OUT</u>
1.	4210 Duquesne Avenue	53	1	3	3	2
2.	10100 Jefferson Blvd.	2,620	314	64	74	2
3.	9050 Washington Blvd.	297	37	5	7	2
4.	9599 Jefferson Blvd.	94	12	2	2	2
5.	8601 Washington Blvd.	339	37	8	10	2
6.	3505 Hayden Ave.	1,663	207	27	38	2
7.	8500 Washington Blvd.	7	-	-	-	-
8.	3525 Eastham Drive	64	1	4	4	2
9.	West LA College	10,078	627	65	462	205
10.	9300 Culver Blvd.	1,007	48	44	178	157
11.	Exposition LRT Center (2013)	N/A	194	41	69	276

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

FUTURE (2006) TRAFFIC VOLUMES
WITHOUT PROJECT
AM PEAK HOUR

Overland Traffic Consultants, Inc.

FUTURE (2006) TRAFFIC VOLUMES
WITHOUT PROJECT
PM PEAK HOUR

Overland Traffic Consultants, Inc.

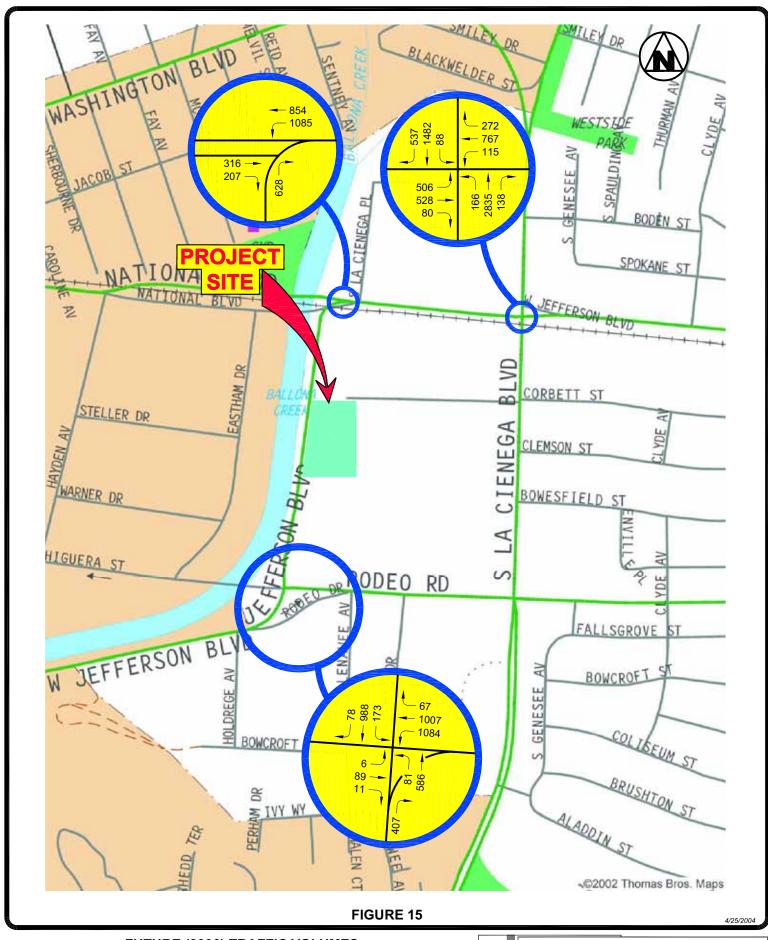
The traffic impacts created by the traffic growth without the project are shown below in Table 7.

Table 7
Future Traffic Conditions
Without Project

		Peak	Exis	sting	Future \	Nithout	<u>Project</u>
<u>No</u>	. Intersection	<u>Hour</u>	<u>CMA</u>	<u>LOS</u>	<u>CMA</u>	<u>LOS</u>	<u>Growth</u>
1.	Jefferson Bd. &	AM	1.050	F	1.143	F	+ 0.093
	La Cienega Bd.	PM	1.089	F	1.170	F	+ 0.081
2.	Jefferson Bd. &	AM	0.958	Ε	1.070	F	+ 0.112
	Rodeo Road	PM	0.893	D	0.970	Е	+ 0.077
3.	Jefferson Bd. &	AM	0.427	Α	0.523	Α	+ 0.096
	National Bd.	PM	0.661	В	0.743	С	+ 0.082

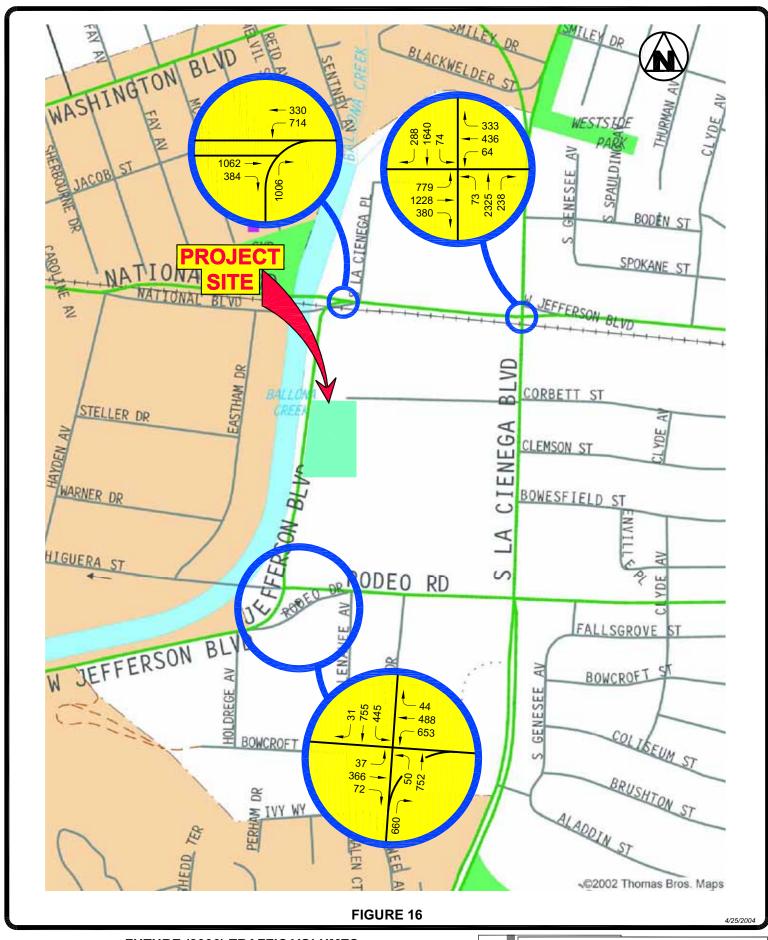
The traffic impact of project's traffic volume has been calculated by adding the project volume to the future without project traffic. Future cumulative "with project" peak hour traffic volumes are shown in Figures 15 and 16 for the morning and afternoon, respectively. Table 8 contains the project impact values at the study intersections.

Comparing the changes in the traffic conditions between the different traffic growth scenarios provides the necessary information to determine if the traffic increases create a significant impact on the study intersections. According to the standards adopted by LADOT, a traffic impact is considered significant if the related increase in the CMA value equals or exceeds the thresholds shown below:


<u>LOS</u>	Final CMA Value	Increase in CMA Value
С	0.71 - 0.80	+ 0.04
D	0.81 - 0.90	+ 0.02
E, F	> 0.90	+ 0.01 or more

As shown below, none of the study intersections are impacted by project traffic volume using the significant impact criteria established by the City of Los Angeles Department of Transportation. It should be noted that the impact analysis does not consider any changes to the existing intersection configuration (i.e., future roadway improvements).

Table 6
Future Traffic Conditions
With Project (PCE Adjusted)


No	. Intersection	Peak Hour	Future With CMA	nout Project LOS	<u>Futu</u> CMA	re With I LOS	Project Impact
INO	<u>. intersection</u>	<u>Hour</u>	CIVIA	<u>LU3</u>	CIVIA	<u>LU3</u>	Impact
1.	Jefferson Bd. &	AM	1.143	F	1.151	F	+ 0.008
	La Cienega Bd.	PM	1.170	F	1.170	F	+ 0.000
2.	Jefferson Bd. &	AM	1.070	F	1.072	F	+ 0.002
	Rodeo Road	PM	0.970	E	0.977	E	+ 0.007
3.	Jefferson Bd. &	AM	0.523	A	0.535	A	+ 0.012
	National Bd.	PM	0.743	C	0.747	C	+ 0.004

FUTURE (2006) TRAFFIC VOLUMES
WITH PROJECT
AM PEAK HOUR

Overland Traffic Consultants, Inc.

FUTURE (2006) TRAFFIC VOLUMES
WITH PROJECT
PM PEAK HOUR

Overland Traffic Consultants, Inc.

Impacts on Regional Transportation System

The Congestion Management program (CMP) was adopted to track regional traffic growth, building permits and transportation improvements. The CMP designated a transportation network including all state highways and some arterials within the County to be monitored by local jurisdictions. If the LOS standard deteriorates on the CMP network, then local jurisdictions must prepare a deficiency plan to be in conformance with the CMP program. Local jurisdictions found to be in nonconformance with the CMP risk the loss of state gas tax funding. Current changes to the CMP program being considered by local officials include adding a countywide trip fee to mitigate regional cumulative impacts.

For purposes of the CMP LOS analysis, a substantial change in freeway segments are defined as an increase or decrease of 0.10 in the demand to capacity ratio and a change in LOS. A CMP traffic impact analysis is required if a project will add 150 or more trips to a freeway segment in either direction during either the AM or PM weekday peak hour. The nearest CMP monitoring location is Jefferson Boulevard and La Cienega Boulevard. The traffic study shows that significant traffic impacts would not be exceeded at this location. Therefore, no additional CMP analysis is necessary.

Construction Impacts

Neither the Los Angeles Department of Transportation, nor the L.A CEQA Thresholds Guide has established a significance threshold for traffic impacts resulting from construction activity. For purposes of this Traffic Report] a short-term significant impact on traffic due to construction is conservatively identified if:

 Haul trucks and staging activities associated with excavation would cause substantial inconvenience to travelers, residents and commercial interests in the project area for a period of at least several months;


The trips generated due to construction activities would exceed the thresholds
established for project operations, as may be adjusted by LADOT to account for
the relative short-term nature of construction activities as compared to the longterm impacts associated with indefinite project operations.

Construction of the project will require environmental clean up, demolition of all existing structures, grading, and construction of the new facility. Traffic during construction activities would be generated by construction equipment, crew vehicles, haul trucks and vehicles delivering building materials. The number of construction workers and construction equipment would vary throughout the construction process in order to maintain a reasonable schedule of completion.

The amount of export/import material at the site for the construction of the bus maintenance facility is estimated at less than 20,000 cubic yards. During the early stages of the grading operation it is estimated that moving this amount of material will generate up to approximately 50 truckloads per day, or 100 directional daily trips. This level of truck activity would generated approximately 6 peak hour truckloads an equivalent of 12 truck trips during each hour of an 8 hour work day. This volume of truck activity would not create significant traffic impacts.

All delivery trucks would be brought onto the project site and be stored within the perimeter fence of the construction site. No detours around the construction site are expected, however, flagmen would be used to control traffic movement during the ingress and egress of trucks and heavy equipment.

Construction hours and days are planned to occur from 7 am to 3 pm, Monday through Friday with overtime hours and some weekends as required. Since construction workers trips would occur outside of the morning and afternoon peak hours, construction impacts from this particular type of traffic activity would be less than significant.

Excavation activity at the project site would be limited. Further, site conditions, including site accessibility and the nature of surrounding uses, do not pose unusual or difficult conditions for removing excavated materials from the project site. The site preparation work is estimated to take approximately 1 month with site grading/excavation lasting an additional month in duration. The construction of the bus facility will take approximately 12 months to complete. Therefore, on-site construction impacts would be less then significant. Nonetheless, Work Area Traffic Control Plans are typically advised in construction projects, to minimize non-significant adverse impacts, and to assure that significant impacts do not occur. Therefore mitigation measures are proposed for construction activities.

The project developer would be required to submit formal construction staging and traffic control plans for review and approval by the local agency prior to the issuance of any construction permits. A Work Area Traffic Control Plan will be developed for use during the entire construction period. This plan will also incorporate safety measures around the construction site to reduce the risk to pedestrian traffic near the work area. The Work Area Traffic Control Plan will identify all traffic control measures, signs, delineators and work instructions to be implemented by the construction contractor through the duration of demolition and construction activity.

Based on current plans, the haul route identified for the site excavation and soil movement would direct traffic to travel east (north) on Jefferson Boulevard, north on La Cienega Boulevard to the I -10 Interstate Freeway. Return trips will travel the same route.

Construction equipment and worker cars will generally be contained onsite. At times when on-site staging and parking is not available, a secondary staging area is planned to occur in the parking lane on the east side of Jefferson Boulevard adjacent to the site.

The proposed mitigation measures listed below are recommended to minimize the potential conflicts between construction activities, street traffic and pedestrians. Mitigation measures may also include access restrictions, covered sidewalks, and designating alternative pedestrian routes.

Prior to the issuance of construction permits the developer shall prepare Work Area Traffic Control Plans that at a minimum should include:

- Identification of a designated haul route to be used by construction trucks;
- Provide an estimate of the number to trucks trips and anticipated trips;
- Identification of traffic control procedures, emergency access provisions, and construction alternative crew parking locations;
- Identification of the on-site location of vehicle and equipment staging;
- Provide a schedule of construction activities:
- Limitations on any potential lane closures to off-peak travel periods;
- Scheduling the delivery of construction materials during non-peak travel periods, to the extent possible;
- Coordinating deliveries to reduce the potential of trucks waiting to unload building materials;
- Prohibiting parking by construction workers on neighborhood streets as determined in conjunction with the City.

In summary, the traffic impacts associated with the construction activities will not be long-tem adverse impacts, and as such, will be less than significant. Nevertheless, it is necessary to develop and implement an approved Work Area Traffic Control plan including a designated haul route, staging area and traffic control procedures to mitigate any potential short-term adverse impacts during construction.

CHAPTER 6

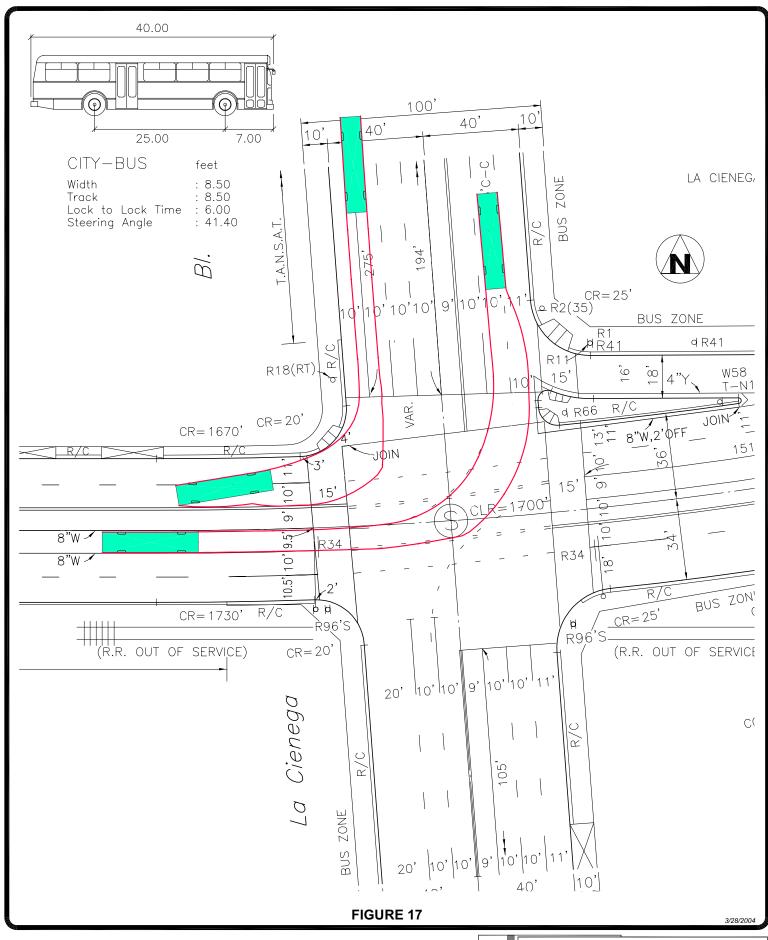
MITIGATION MEASURES

As determined in the preceding section, project traffic impacts are below the significance limits and therefore, the project does not need to implement traffic mitigation measures to offset the increase in traffic due to the project development.

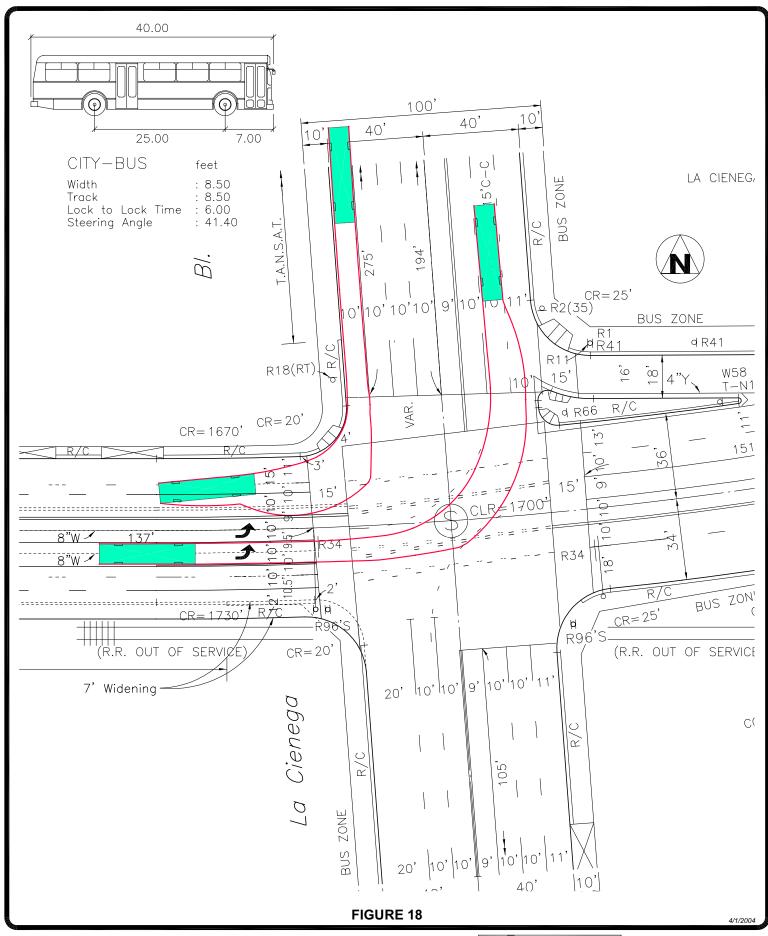
Neither the Los Angeles Department of Transportation, nor the L.A CEQA Thresholds Guide has established a significance threshold for traffic impacts resulting from bus routing and bus operations in regard to intersection configurations. For purposes of this Traffic Report, a short-term significant impact on traffic due to bus routing is conservatively identified if bus operations at a studied intersection would encroach into adjacent traffic in a manner that could substantially interfere with traffic flow.

The analysis of operations at the studied intersections identified a potential project impact with regard to the routing of buses through the intersection of Jefferson Boulevard and La Cienega Boulevard, due to the physical roadway constraints at this intersection. Inbound buses traveling southbound on La Cienega Boulevard will have a difficult right - turn maneuver to westbound Jefferson Boulevard. The travel path of the southbound bus will need to encroach into the adjacent through lane to negotiate this southbound right - turn. Figures 17 and 19 were created to simulate the right - turn movement using the AutoTurn program. According to test runs, the program illustration is overly conservative with the encroachment area not as large as shown by the simulation program.

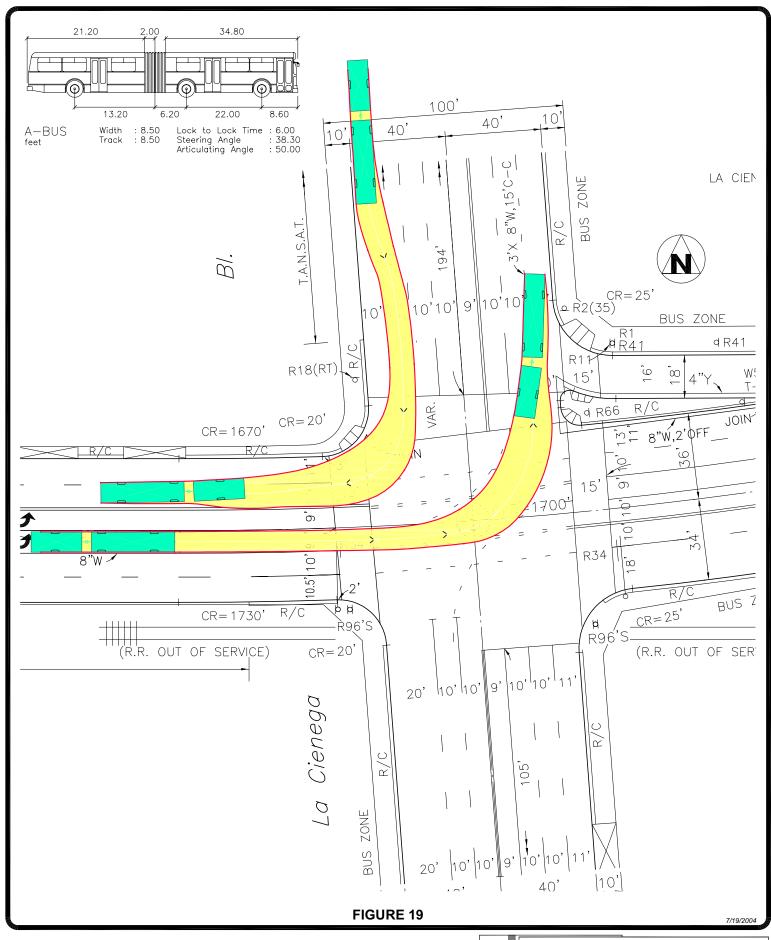
Test runs have been made by the MTA and it has been determined that buses can negotiate the turn but it is tight. At peak times this intersection is congested and a right - turning bus could encroach into adjacent traffic. In addition, longer articulated buses will also be using the maintenance facility and traveling on the routes to and from the site. Such potential encroachment is conservatively estimated to pose a potential for substantially affecting traffic flow at the intersection. This impact is considered

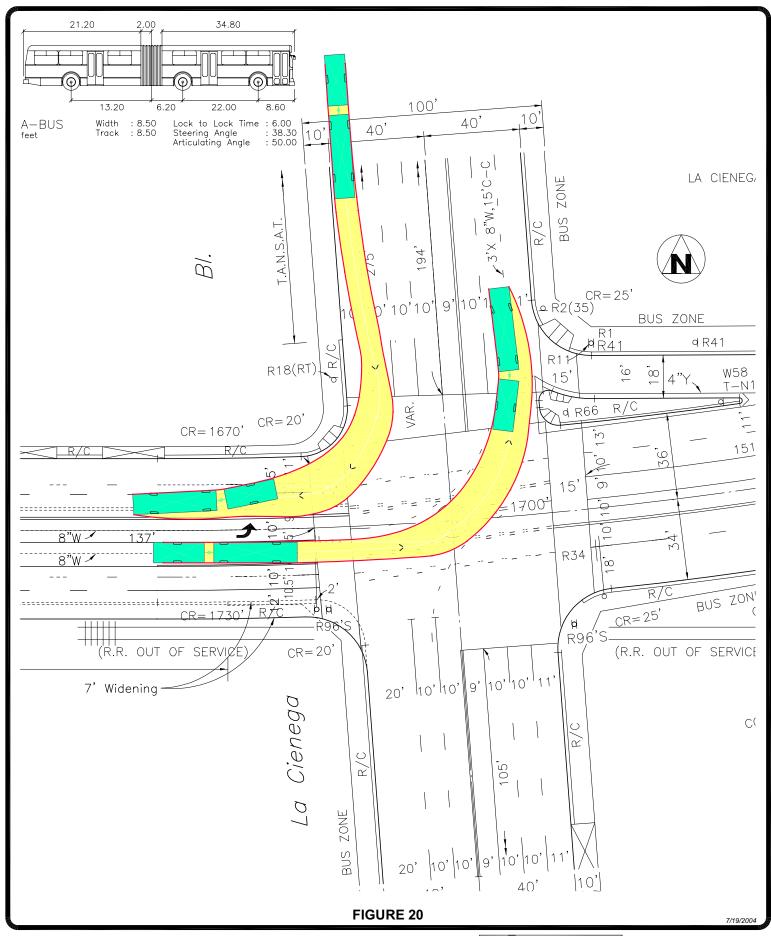


significant, prior to mitigation. A mitigation measure is proposed below to reduce such impacts to less than significant.


The tight right - turn can be mitigated by the implementation of intersection modifications, such as street widening and restriping the intersection. One solution would be to widen Jefferson Boulevard along the south side west of La Cienega Boulevard and shift the traffic lanes southerly providing a wider westbound curb lane for the bus to turn into (see concept plan Figures 18 and 20). This street widening is within the Exposition right-of-way and should be coordinated with the design of the Exposition LRT project to avoid potential design issues between the aerial column placement and widening of Jefferson Boulevard.

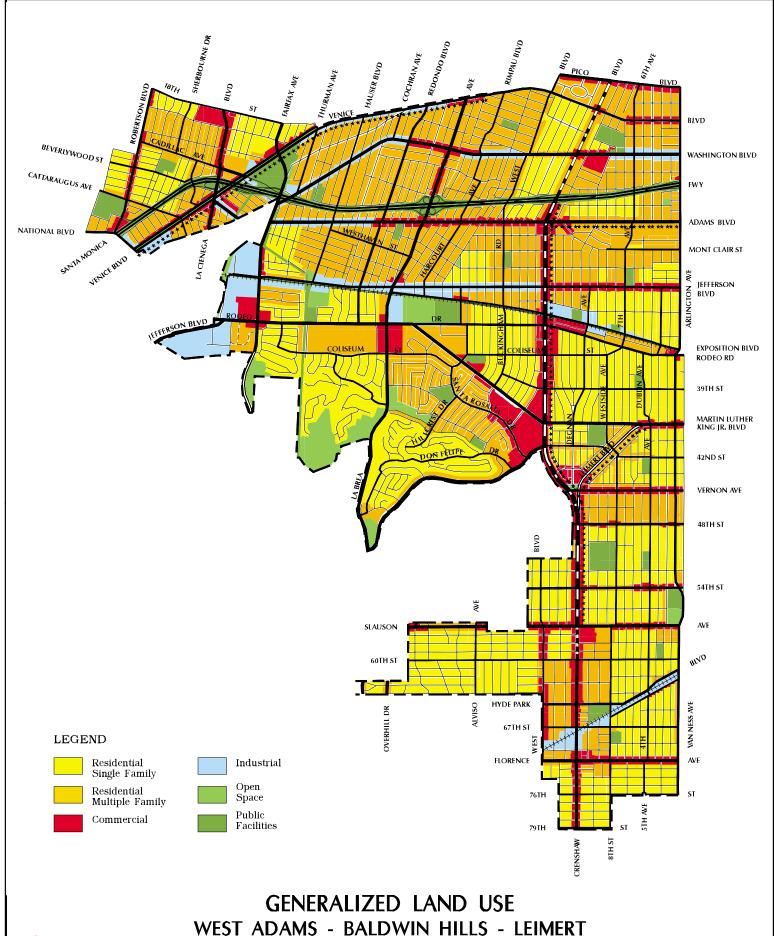
Another solution is to reroute the inbound buses to Rodeo Road and make the southbound right-turn at that intersection with another right-turn from westbound Rodeo Road to northbound Jefferson Boulevard. This revised inbound route provides right-turn capacity that can accommodate the bus maneuvers but may create noise impacts to nearby residential units. However, because of an adopted Resolution by the LA County Board of Supervisors prohibiting this bus route, the re-routing is not being recommended at this time.


In addition to the potential busing routing impacts, traffic generated by the proposed project will add to the eastbound vehicle queue turning left from Jefferson Boulevard to northbound La Cienega Boulevard. Due to the large volume of vehicles currently turning left from Jefferson Boulevard to La Cienega Boulevard, the left-turn vehicle queue may at times exceed the left-turn storage capacity provided at the intersection, which is approximately 600 feet of storage. However, the eastbound left-turn storage area can be increased as part of the Jefferson Boulevard intersection modifications discussed above that would accommodate the added project traffic. The proposed street widening on Jefferson Boulevard would allow for the implementation of longer eastbound left-turn lanes that would fully mitigate these potential queuing impacts from the project added traffic.


25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTCINC@attbi.com

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTCINC@attbi.com

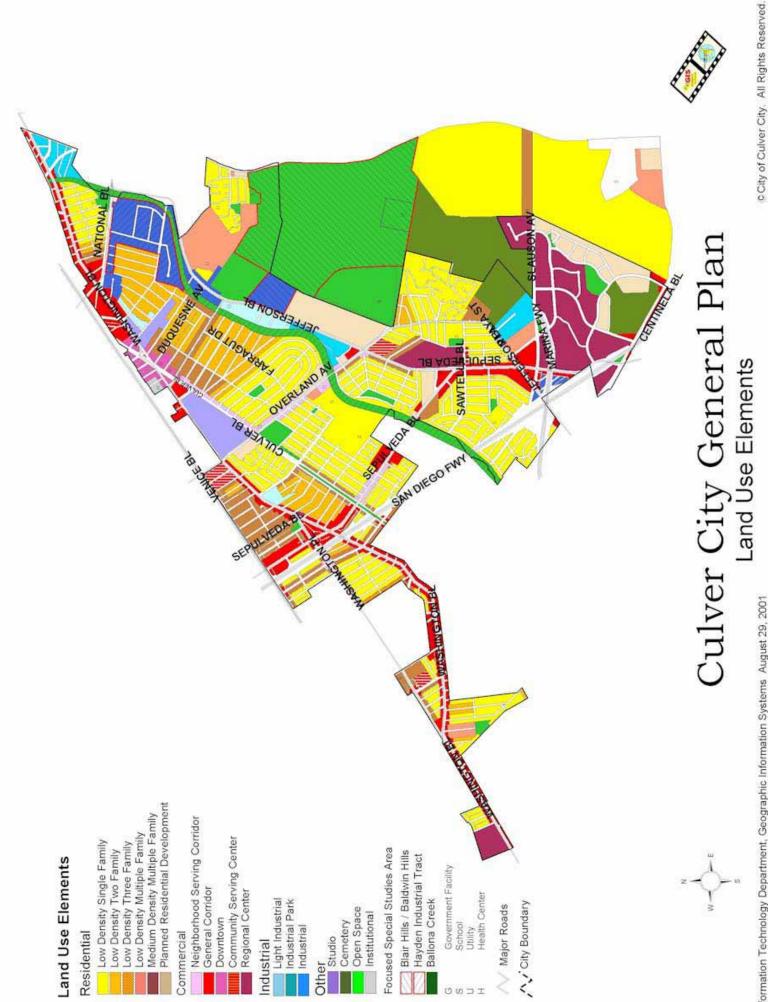
25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTCINC@attbi.com


JEFFERSON BOULEVARD STREET WIDENING MITIGATION

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTCINC@attbi.com

APPENDIX A

COMMUNITY PLAN LAND USE & CIRCULATION MAPS



WEST ADAMS- BALDWIN HILLS - LEIMERT

SUMMARY OF LAND USE

CATEGORY	LAND USE	CORRESPONDING ZONES	NET ACRES	% A REA	Total Net Acres	TOTAL % AREA
RESIDENTIAL						
Single Family					2,283	29.0
	Minimum	OS, A1, A2, RE40,	21.78	1.0		
	Low	RE9, RS, R1, RU, RD5, RD6				
Multiple Family					1,911	24.2
	Low Medium I	R2, RD3, RD4, RZ3, RZ4, RU, RW1	361.15	18.9		
	Low Medium II	RD1.5, RD2, RW2, RZ2.5	1,257.74	65.8		
	Medium	R3	648.66	34.0		
	High Medium	R4	4.23	0.2		
COMMERCIAL					597	7.6
	Neighborhood	C1, C1.5, C2, C4, P	80.00	13.3		
	General (F)	C1.5, C2, C4, P	299.04	50.1		
	Community	CR, C2, C4, P, PB	156.00	26.1		
	Regional	CR, C1.5, C2, C4, R3, R4,	62.00	10.4		
INDUSTRIAL					353	4.5
	Commercial	CM, P	171.51	48.7		
	Limited	CM, MR1, M1, P	181.00	51.3		
OPEN SPACE/PUBL	LIC FACILITIES				645	8.2
	Open Space	OS, A1	199.82	31.0		
	Public Facilities	PF	445.67	69.0		
STREETS						
	Private Street		2.02	0.1	2,092	26.5
	Public Street		2,089.85	99.9	•	
TOTAL					7,881	100.0

WEST ADAMS - BALDWIN HILLS - LEIMERT

Information Technology Department, Geographic Information Systems August 29, 2001

APPENDIX B

EXPOSITION BOULEVARD RAIL PROJECT INFORMATION

Exposition Light Rail Line West End Segment Information

The West End segment of the Light Rail line is defined as the alignment between La Cienega and Venice/Roberston Boulevards. The LRT would use an elevated bridge structure to cross over La Cienega Boulevard, with other options that extend the bridge over Jefferson Boulevard and Ballona Creek. The Jefferson/National Boulevard intersection would be realigned and reconfigured under the elevated bridge structure. The elevated LRT alignment would return to ground level at a point just east of La Cienega Place within the City of Los Angeles.

In this section, National Boulevard would be realigned and relocated so that both directions of travel are located to the south of the LRT right-of-way. A portion of the existing National Boulevard would be vacated as part of the project. A segment of National Boulevard from Washington Boulevard to Ballona Creek would be converted into an off-street bikeway.

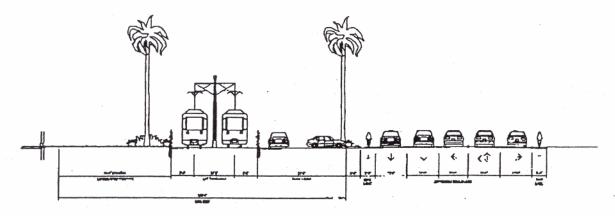
Two stations are located in the West End segment of the proposed Light Rail Line, La Cienega Station and the Venice /Robertson Station. Both stations will be center platform station. The La Cienega Station will be a gateway station (an origin and destination to a major attraction or district) located atop an elevated structure that would bridge over La Cienega Boulevard. Vertical circulation would be provided on the east side of La Cienega Boulevard.

Approximately 530 parking spaces would be provided in a parking structure located in the southeast quadrant of the La Cienega Boulevard and Jefferson Boulevard intersection and on a surface lot on the MTA ROW east of La Cienega Boulevard.

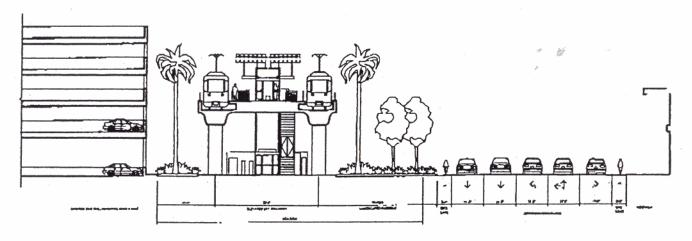

A detailed AM and PM peak hour analysis of existing and future traffic conditions was completed as part of the rail project environmental analysis. The Operations Analysis Method was used to estimate the average number of seconds of delay experienced by motorists traveling through the intersections. Based on these procedures, the threshold of significance is based on the amount of change in average vehicular delay incurred by vehicles through the intersection (as opposed to the change in the volume/capacity ratio used by the City of Los Angeles to quantify the level of service of an intersection).

To accommodate the mobility elements and to achieve an acceptable level of service by 2020, several changes were recommended at the intersection of Jefferson/National Boulevard, as follows: Convert Jefferson/National Boulevard southbound existing lane configuration to accommodate one exclusive right-turn lane, one shared through/right-turn lane and one exclusive through lane, add an exclusive left-turn land for northbound, and add an exclusive right-turn lane to eastbound.

No lane changes were recommended for La Cienega Boulevard and Jefferson Boulevard.

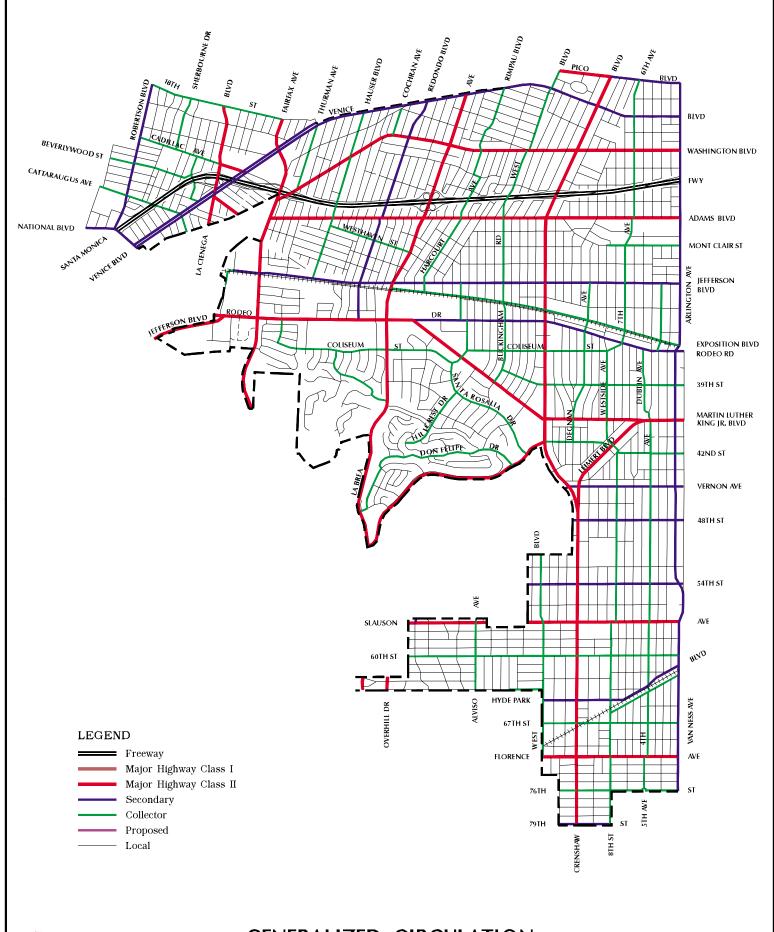

Based on the definition of significant traffic impact, the La Cienega Station will not significantly impact any study intersection. However, a new traffic signal will be installed at the project's new access road intersection with La Cienega Boulevard beneath the trackway located approximately 300 feet east of the La Cienega Boulevard/ Jefferson Boulevard intersection.

Source: Mid-City /Exposition LRT Project Final EIS/EIR, Section 3.1 Traffic and Circulation.



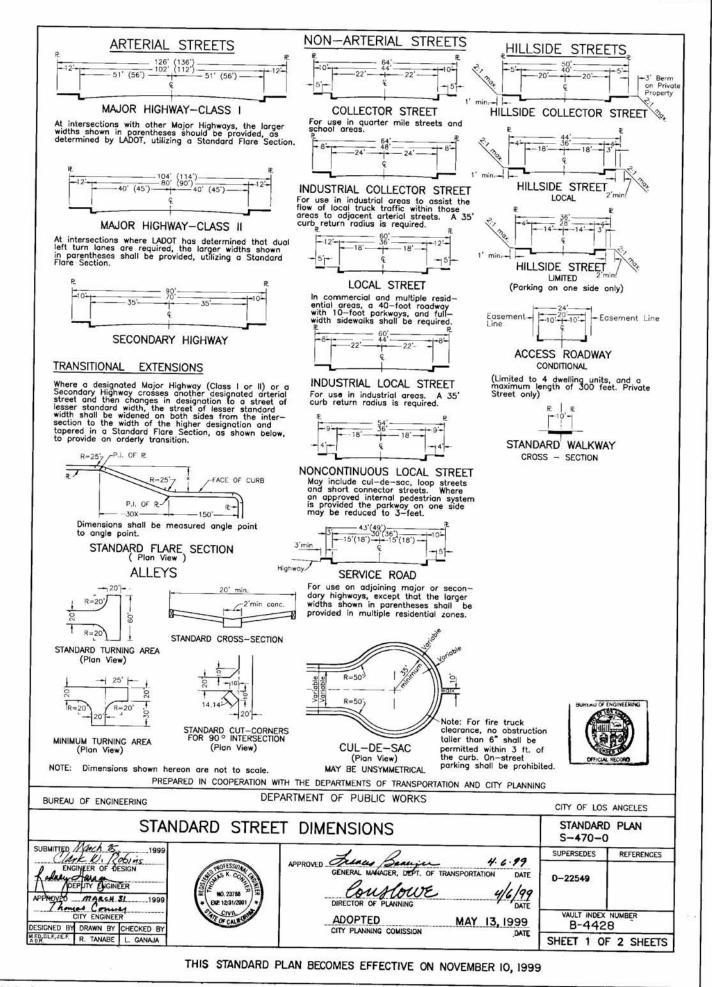
SOURCE: Zimmer Gunsul Frasca Partnership

Cross Section P: Carmona Avenue to La Cienega (Near Clyde)

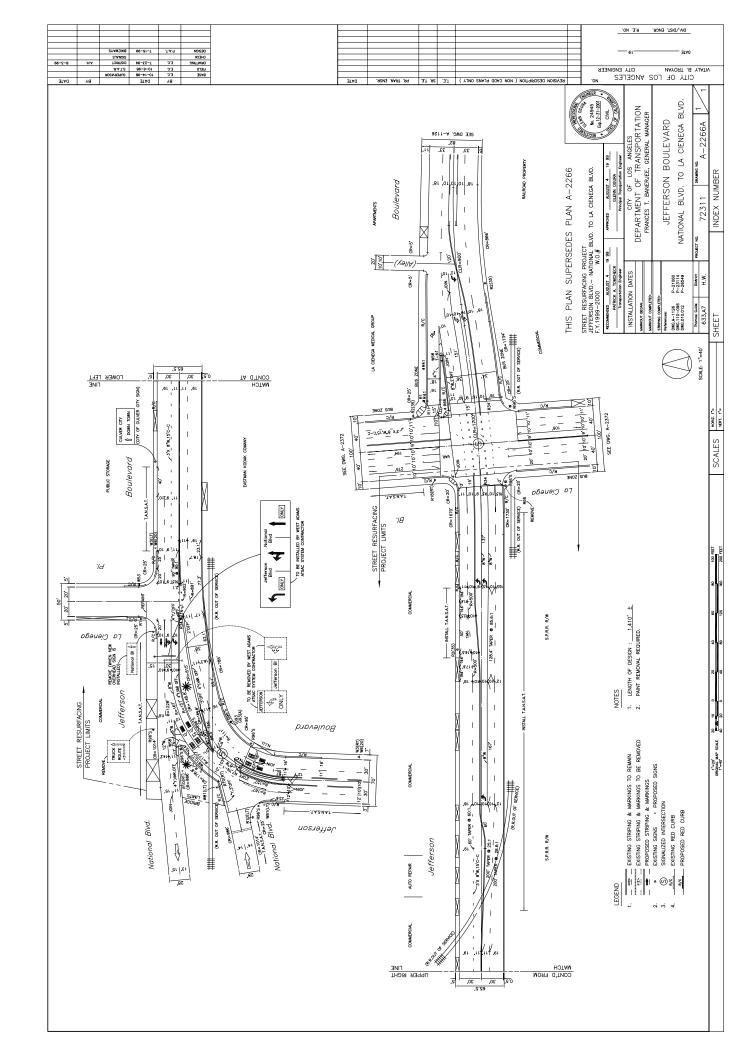

Cross Section Q: La Clenega Station

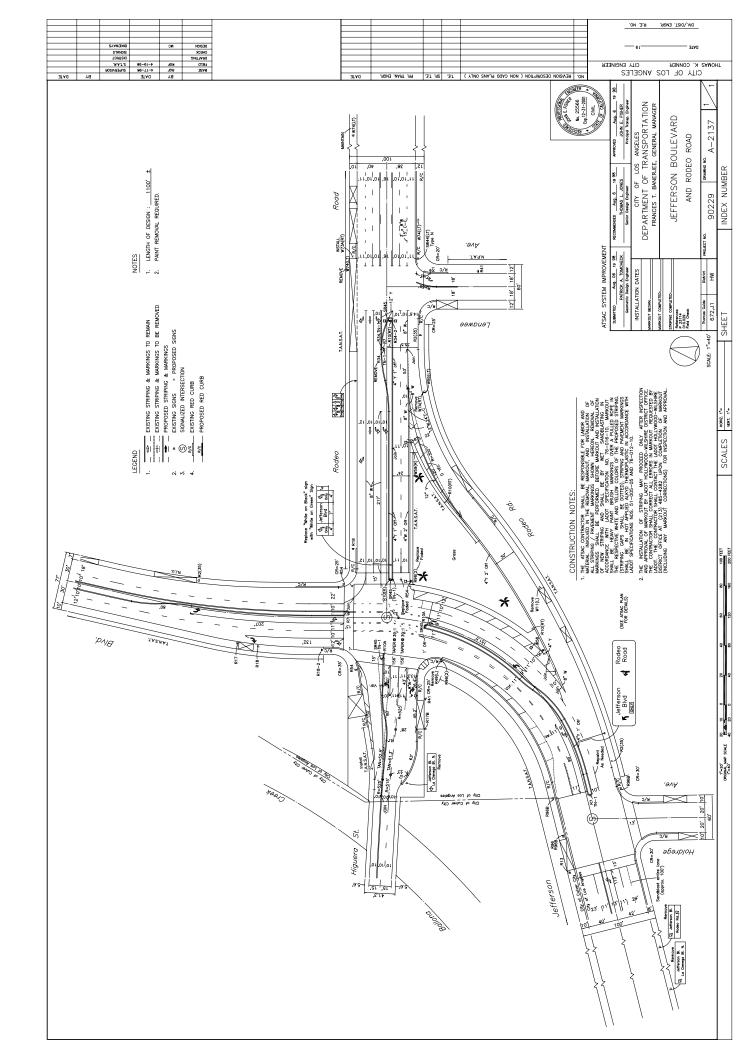
SOURCE: DMJM Harris

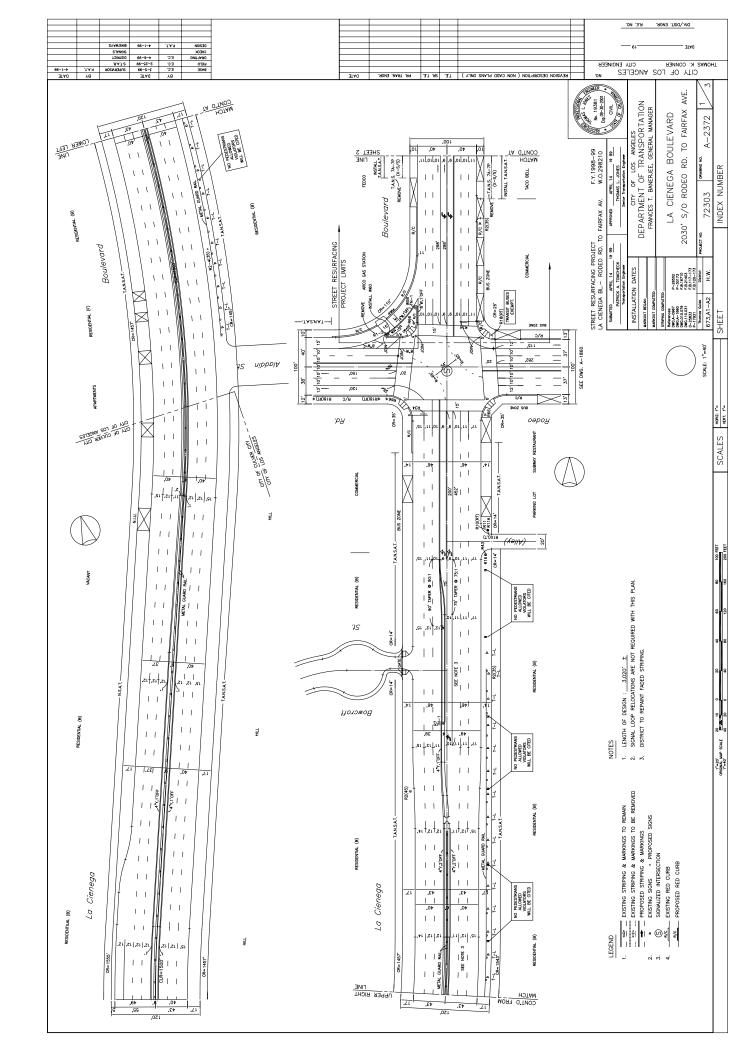
APPENDIX C

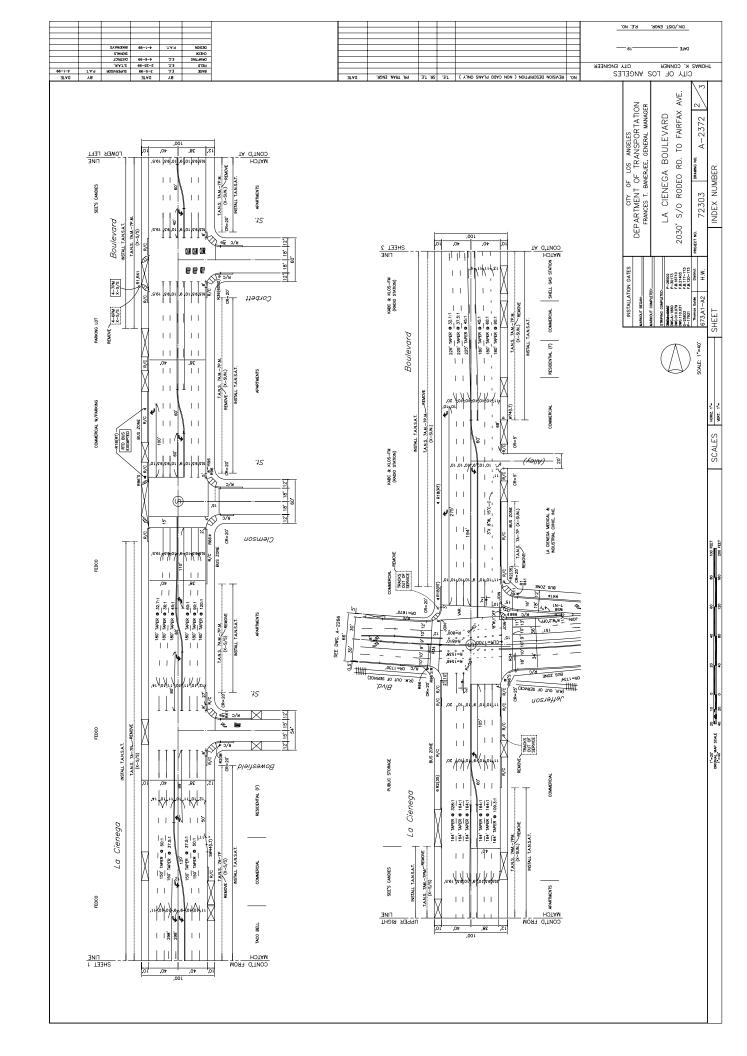

STREET PLANS & STREET STANDARDS

GENERALIZED CIRCULATION
WEST ADAMS - BALDWIN HILLS - LEIMERT






STANDARD STREET CONDITIONS


- 1. City Council may, by ordinance, adopt specific standards for individual streets which differ from these official standard street dimensions. Community Plans should be reviewed for designation of Pedestrian Priority Street Segments of arterial streets which would require wider sidewalks than those indicated on this Standard Plan.
- 2. Sidewalk widths for non-arterial streets shall be the minimum shown hereon. Greater widths, up to full width between curb and property line, with tree wells, shall be required where commercial and multiple residential frontage, schools, areas of heavy pedestrian traffic or other special circumstances indicate the need.
- 3. Except for special conditions or as otherwise provided, sidewalk shall be placed as close to the property line as possible.
- 4. Where sidewalk is constructed adjacent to the curb it shall have a minimum width of 10 feet inclusive of curb thickness except for hillside streets, noncontinuous local streets and industrial streets.
- 5. Where sidewalk is constructed on the fill or low side of a hillside street, a berm may be required on private property.
- 6. Easements may be required in addition to the widths shown hereon, where necessary for the installation of public utilities or for widened sidewalks (minimum 15—foot width) adjacent to transit stations.
- 7. Fifty—foot curb radii (instead of the standard 35' curb radii) shall be provided for cul—de—sacs in industrial areas.
- 8. Private street development should conform to the standard public street dimensions shown on this sheet, where appropriate. Variations may be approved on a case—by—case basis.
- For intersections of streets the following dedications shall apply:
 a. Intersections of arterial streets with any other street: 15'x15'
 cut corner OR 20' curved corner radius.
 - b. Intersections of non-arterial and/or hillside streets: 10'x10' cut corner OR 15' curved corner radius.
- 10. Hillside Collector Streets. In hillside areas where topography or other environmental considerations, documented to the satisfaction of the City Engineer, would render full street improvements infeasible, the roadway width of the hillside collector street may be reduced to no less than 32 feet, provided that parking is limited to one side only.

APPENDIX D

TRAFFIC GENERATION DATA

DIVISION 10

742 North Mission Road Los Angeles, California

A. SITE and YARD:

Division 10 is situated on a 20-acre site in East Los Angeles near the Los Angeles River channel. The facility is one of the most centrally located Divisions in the system. The Maintenance and Transportation buildings were constructed in 1984.

Surrounding Land Uses:

North: Mission Road

- Industrial Property

South: Interstate 10

- Railway r/w

• East: Developed Property

- Commercial Property

· West: San Vicente Blvd.

- Commercial Property

Employee Parking (on-site):

Surface Parking:

293 spaces

Handicapped Parking:

2 spaces

Environmental:

Soil and groundwater contamination exists at the site as a result of the underground storage tank upgrade work in 1998. The contamination exists at two distinct locations, east of the maintenance storage shed and south of the fuel island. Metro is continuing to monitor and report to the Regional Water Quality Control Board on the quality of groundwater at the site. Natural attenuation and biodegradation of contaminants in groundwater is reported to be occurring.

B. FLEET ASSIGNMENT:

Parking Configuration:

In-Line, Tandem

Designed Capacity of Yard:

241 coaches

Current Storage Capacity:

259 coaches

Maximum Capacity:

276 coaches

Size of current fleet: Type of current fleet:

271 standard 40-ft. coaches

250 CNG fueled

21 Diesel fueled

Employee and Bus Trip Generation Jefferson Boulevard Los Angeles, California

TOTAL 94 165 143 60 66	107	79	92	118	122	129	22	36	69	103	129	92	4	1666		TOTAL	99	121	86	46	44	6/	00 %	2 2	100	100	44	30	20	29	88	26	33	1,247
TOTAL OUT 50 92 108 37 23	40	32	36	62	09	26	39	21	23	26	46	36	17	845		TOTAL OUT	28	51	64	26	2 3	34	78	46	46	71	28	17	21	24	41	32	16	621
TOTAL IN 44 73 35 23 43	29	47	40	26	62	32	18	15	42	77	83	40	24	821		TOTAL IN	40	20	34	20	97	45	37	4 8	54	29	16	13	29	43	47	24	17	929
TOTAL BUS (PCE) TRIPS 52 88 88 90 28 28	26	28	24	48	44	28	26	12	30	72	82	40	16	838	TOTAL BUS	TRIPS	26	44	45	14	77	87	4- 6-	24	22	29	13	9	15	36	41	20	∞ :	419
S (PCE) TRIPS OUT 44 82 88 88 22 10	12	8	12	32	28	52	22	ω •	4	4	10	8	2	448		S TRIPS OUT	22	41	44	<u> </u>	ဂ	9	4 u	9	14	26		4	2	2	5	4		224
BUS (PCE) TRIPS BUS (PCE) TRIPS IN OUT 8 44 6 82 2 88 6 22 34 10	44	20	12	16	16	9	4	4 (56	89	72	32	14	390		BUS TRIPS IN BUS	4	3	_	ကျွ	/-	77	0.	0 00	00	8	2	2	13	34	36	16	2	195
TOTAL EMPLOYEE B TRIPS 42 77 77 53 32	51	51	52	70	78	71	31	24	35	31	47	36	25	828	<u>TOTAL</u> EMPLOYEE	RIPS	42	77	53	32	77	1.0	51	35 70	78	71	31	24	35	31	47	36	25	828
EMPLOYEE TRIPS OUT 6 10 20 113	28	24	24	30	32	45	17	13	19	22	36	28	15	397	EMPLOYEE	TRIPS OUT	9	10	20	15	5 3	87	24 7.0	30	32	45	17	13	19	22	36	28	15	397
EMPLOYEE TRIPS IN 36 67 33 17	23	27	28	40	46	26	14	- ;	16	6	11	8	10	431	EMPLOYEE	TRIPS IN	36	29	33	17	5	23	77	40	46	26	14	7	16	6	11	∞	10	431
Time of Day 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 AM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	Total		Time of Day	4:00 AM	5:00 AM	6:00 AM	7:00 AM	8:00 AIM	9:00 AM	10:00 AM	12:00 AM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	Total

APPENDIX E

TRAFFIC VOLUME DATA

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

OVERLAND TRAFFIC CONSULTANTS, INC. CULVER CITY / LOS ANGELES WEDNESDAY, AUGUST 06 , 2003 CLIENT:

PROJECT: DATE:

PERIOD:

INTERSECTION:

N/S JEFFERSON BLVD. E/W HIGUERA ST. / RODEO RD.

FILE NUMBER:

15 MINITE		·	٣	_	ĸ	ď	7	α	o	10	11	12
	-	7	,	۲	,	>	-	,	,	2	=	7
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

11 0	14 0	18 0	20 1	23 0	23 1	20 4	21 2	20 0	21 5	17 3	
0	0	0	_	က	က	4	80	80	13	6	
∞	12	18	18	24	19	17	22	22	19	15	
98				140							
52	62			103	•						
123				243							
5 144	7 159			3 256				7 162	8 135	8 119	
13 5	18 7	•	7 15	•	•		7 6	2			
				3 34							
8 132	1 160	13 20:		19 193							
	1	_	_	_	_	_	_	2	1	1	
700-715	715-730	730-745	745-800	800-815	815-830	830-845	845-900	900-915	915-930	930-945	

	TALS	
	ТОТ	
12	EBLT	
11	EBTH	
10	EBRT	
6	NBLT	
8	VBRT NBTH	
7	NBRT	
9	WBLT	
5	WBTH	
4	WBRT	
3	SBLT	
2	SBTH	
-	SBRT	
1 HOUR	TOTALS	

	TOTALS	3154	3620	3913	4059	3960	3737	3467	3136	2786
7.1	EBLT	_	_	2	9	7	7	1	10	10
	ЕВТН	63	75	8	98	87	8	82	79	70
01	EBRT	_	4	7	7	18	23	33	38	40
D)	NBLT	26	72	79	78	82	80	80	78	29
œ	NBTH	423	477	518	533	543	515	452	412	356
,	NBRT	278	326	371	391	400	392	382	365	332
٥	WBLT	269	817	905	947	915	844	739	635	546
c	WBTH	718	830	917	968	929	835	724	809	524
4	WBRT	40	48	23	26	48	42	38	30	30
5	SBLT	93	114	139	156	148	139	122	106	104
7	SBTH	733	794	771	752	711	703	731	701	631
-	SBRT	51	62	70	75	72	73	73	74	92
YOU'	TOTALS	700-800	715-815	730-830	745-845	800-900	815-915	830-930	845-945	900-1000

		ı
12	EBLT	
11	EBTH	
10	EBRT	
6	NBLT	
8	HLBN	
7	NBRT	
9	MBLT	
5	WBTH	
4	WBRT	
3	SBLT	
2	SBTH	
1	SBRT	
15 MINUTE	TOTALS	

2	3	4	2	12	7	80	2	6	2	2	ဗ
20	20	49	73	8	87	92	68	81	82	78	99
13	4	7	7	17	4	17	21	24	4	10	7
=	13	17	10	12	12	4	10	7	80	80	7
137	136	141	132	143	153	165	155	164	150	143	144
150	158	159	44	152	160	166	156	179	173	174	179
113	122	130	134	138	154	155	140	143	144	142	134
06	93	93	102	113	130	122	104	88	87	8	79
œ	6	10	7	12	7	=	80	2	7	9	2
98	93	94	95	102	115	116	98	80	82	79	74
134	133	142	149	158	175	158	145	145	142	130	128
7	7	80	7	6	10	7	4	4	2	က	~
400-415	415-430	430-445	445-500	500-515	515-530	530-545	545-600	600-615	615-630	630-645	645-700

_	2	က	4	2	9	7	∞	6	10	7	12	
SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
29	558	365	34	378	499	611	546	51	49	277	14	3411
31	582	381	38	401	524	613	552	52	53	291	24	3542
8	624	403	36	438	556	615	569	51	53	308	32	3719
33	640	425	37	467	581	622	593	48	59	336	36	3877
30	636	419	38	469	587	634	616	48	69	352	36	3934
25	623	397	31	445	592	661	637	43	16	349	33	3912
17	280	367	31	402	582	674	634	39		344	27	3783
13	562	330	26	364	569	682	612	33		330	21	3611
10	545	318	23	339	563	705	601	30		306	19	3514
	29 31 33 33 33 34 17 17		558 582 582 640 636 590 552 552 5545	558 365 582 381 624 403 640 425 640 425 652 397 560 367 562 330 545 318	558 365 34 603 36 640 425 37 660 387 31 88 650 387 31 650 887 31 650 387 31 6	558 365 34 378 401 624 403 36 428 469 426 37 467 660 628 397 31 445 62 330 26 384 63 648 648 648 648 648 648 648 648 648 648	558 365 34 378 499 624 403 36 438 566 640 425 37 467 581 640 425 37 467 581 658 419 38 469 587 662 337 31 445 592 7 590 367 31 402 582 8 562 330 26 364 569 8 562 330 26 364 569 8 562 330 26 364 569	558 365 34 378 499 611 582 381 38 401 524 613 640 425 37 467 581 625 638 419 38 469 615 615 640 425 37 467 581 622 653 419 38 469 587 634 623 397 31 445 592 661 750 367 31 402 582 674 8 562 330 26 364 569 682 8 562 330 26 384 569 682 8 562 330 26 384 569 682	558 365 34 378 499 611 546 624 403 36 438 556 615 569 640 425 37 467 581 622 593 623 397 31 445 592 661 637 623 397 31 445 592 661 637 623 367 31 402 582 674 634 624 367 368 562 661 637 625 369 367 31 402 582 674 634 650 367 31 402 582 674 634 652 330 26 384 569 682 612 651 37 47 589 682 612 612 652 339 563 705 601 601	558 365 34 378 499 611 546 51 624 403 36 438 556 615 569 51 640 425 37 467 581 622 593 48 640 425 37 467 581 622 593 48 6 40 426 37 446 587 616 48 48 6 50 419 38 469 587 634 616 48 6 62 397 31 445 592 661 637 43 7 590 367 31 402 582 674 634 39 8 562 330 26 384 569 682 612 33 8 562 330 26 384 569 682 612 33 9 562 330 26 384 569 682 612 33	558 365 34 378 499 611 546 51 499 624 403 36 438 556 615 569 51 53 640 425 37 467 581 622 593 48 59 638 419 38 469 587 624 616 48 69 638 419 38 469 587 634 61 48 69 623 397 31 445 592 661 637 43 76 630 387 31 402 582 674 634 39 76 656 330 26 364 569 682 612 33 69 645 318 23 339 563 705 601 30 56	558 365 34 378 499 611 546 51 49 277 624 403 36 438 566 615 569 51 53 291 640 425 37 467 581 622 593 48 59 336 640 425 37 467 581 622 593 48 59 336 640 426 37 467 581 622 593 48 59 336 623 397 31 445 592 661 637 43 76 349 623 397 31 402 582 674 634 39 76 344 650 367 368 682 612 33 69 330 648 396 368 569 612 33 69 330 650 367 398 563

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT:

OVERLAND TRAFFIC CONSULTANTS, INC. CULVER CITY / LOS ANGELES WEDNESDAY, AUGUST 06 , 2003 PROJECT: DATE:

N/S JEFFERSON BLVD.

E/W JEFFERSON BLVD. / NATIONAL BLVD. INTERSECTION:

															5	7	0	(A	(/	0	n	0	7	7
12	EBLT	0	0	0	0	0	0	0	0	0	0	0	0	12	EBLT	0	0	0	0	0	0	0	0	0
1	ЕВТН	193	209	214	218	227	230	249	238	215	214	194	152	11	EBTH	834	868	889	924	944	932	916	861	775
10	EBRT	63	72	7	99	69	86	93	86	92	82	82	77	10	EBRT	272	278	292	314	334	357	353	342	333
6	NBLT	0	0	0	0	0	0	0	0	0	0	0	0	6	NBLT	0	0	0	0	0	0	0	0	0
8	NBTH	0	0	0	0	0	0	0	0	0	0	0	0	8	NBTH	0	0	0	0	0	0	0	0	0
7	NBRT	182	192	194	196	211	224	240	221	219	220	193	188	7	NBRT	764	793	825	871	896	904	006	853	820
9	WBLT	106	116	109	115	117	135	154	126	128	123	116	108	9	WBLT	446	457	476	521	532	543	531	493	475
2	WBTH	20	61	29	61	72	79	71	89	89	61	62	92	2	WBTH	259	261	279	283	290	286	268	259	256
4	WBRT	0	0	0	0	0	0	0	0	0	0	0	0	4	WBRT	0	0	0	0	0	0	0	0	0
3	SBLT	0	0	0	0	0	0	0	0	0	0	0	0	3	SBLT	0	0	0	0	0	0	0	0	0
2	SBTH	0	0	0	0	0	0	0	0	0	0	0	0	2	SBTH	0	0	0	0	0	0	0	0	0
-	SBRT	0	0	0	0	0	0	0	0	0	0	0	0	1	SBRT	0	0	0	0	0	0	0	0	0
15 MINUTE	TOTALS	400-415	415-430	430-445	445-500	500-515	515-530	530-545	545-600	600-615	615-630	630-645	645-700	1 HOUR	TOTALS	400-200	415-515	430-530	445-545	200-600	515-615	530-630	545-645	002-009
															ဟ	9	ω	9	က			0	Ω	
12	BLT	0	0	0	0	0	0	0	0	0	0	0	0	12	BLT TOTALS	0 2326	0 2508	0 2586	0 2543	0 2483	0 2338	0 2129	0 1952	0 1783
11 12	втн Евст	44	51 0	61 0	63 0	0 08	83 0	75 0	71 0	0 09	54 0	53 0	55 0	11 12	EBLT									212 0 178
H	ЕВТН														EBTH EBLT		0	0	0	0	0	0	0	0
1	т евкт евтн	44	51	61	63	80	83	75	71	20	54	53	55	11	EBRT EBTH EBLT	219 0	255 0	287 0	301 0	309 0	279 0	250 0	228 0	212 0
10 11	NBLT EBRT EBTH	22 44	31 51	34 61	40 63	34 80	39 83	29 75	34 71	30 50	31 54	31 53	35 55	10 11	NBLT EBRT EBTH EBLT	127 219 0	139 255 0	147 287 0	142 301 0	136 309 0	132 279 0	124 250 0	126 228 0	127 212 0
9 10 11	BRT NBTH NBLT EBRT EBTH	0 22 44	0 31 51	0 34 61	0 40 63	0 34 80	0 39 83	0 29 75	0 34 71	0 30 50	0 31 54	0 31 53	0 35 55	9 10 11	BRT NBTH NBLT EBRT EBTH EBLT	127 219 0	0 139 255 0	0 147 287 0	0 142 301 0	0 136 309 0	0 132 279 0	0 124 250 0	0 126 228 0	127 212 0
8 9 10 11	NBRT NBTH NBLT EBRT EBTH	0 0 22 44	0 0 31 51	0 0 34 61	0 0 40 63	0 0 34 80	0 0 39 83	0 0 29 75	0 0 34 71	0 0 30 50	0 0 31 54	0 0 31 53	0 0 35 55	8 9 10 11	NBRT NBTH NBLT EBRT EBTH EBLT	0 0 127 219 0	0 0 139 255 0	0 0 147 287 0	0 0 142 301 0	0 0 136 309 0	0 0 132 279 0	0 0 124 250 0	0 0 126 228 0	0 0 127 212 0
7 8 9 10 11	WBLT NBRT NBTH NBLT EBRT EBTH	99 0 0 22 44	115 0 0 31 51	118 0 0 34 61	125 0 0 40 63	147 0 0 34 80	177 0 0 39 83	155 0 0 29 75	138 0 0 34 71	124 0 0 30 50	101 0 0 31 54	98 0 0 31 53	77 0 0 35 55	7 8 9 10 11	WBLT NBRT NBTH NBLT EBRT EBTH EBLT	457 0 0 127 219 0	505 0 0 139 255 0	567 0 0 147 287 0	604 0 0 142 301 0	617 0 0 136 309 0	594 0 0 132 279 0	518 0 0 124 250 0	461 0 0 126 228 0	400 0 0 127 212 0
6 7 8 9 10 11	WBTH WBLT NBRT NBTH NBLT EBRT EBTH	142 99 0 0 22 44	178 115 0 0 31 51	219 118 0 0 34 61	213 125 0 0 40 63	212 147 0 0 34 80	207 177 0 0 39 83	199 155 0 0 29 75	193 138 0 0 34 71	168 124 0 0 30 50	152 101 0 0 31 54	134 98 0 0 31 53	134 77 0 0 35 55	6 7 8 9 10 11	WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT	1 752 457 0 0 127 219 0	822 505 0 0 139 255 0	851 567 0 0 147 287 0	831 604 0 0 142 301 0	811 617 0 0 136 309 0	767 594 0 0 132 279 0	712 518 0 0 124 250 0	647 461 0 0 126 228 0	588 400 0 0 127 212 0
5 6 7 8 9 10 11	WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH	142 99 0 0 22 44	178 115 0 0 31 51	219 118 0 0 34 61	193 213 125 0 0 40 63	172 212 147 0 0 34 80	156 207 177 0 0 39 83	144 199 155 0 0 29 75	138 193 138 0 0 34 71	128 168 124 0 0 30 50	115 152 101 0 0 31 54	109 134 98 0 0 31 53	104 134 77 0 0 35 55	5 6 7 8 9 10 11	WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT	1 752 457 0 0 127 219 0	787 822 505 0 0 139 255 0	851 567 0 0 147 287 0	665 831 604 0 0 142 301 0	610 811 617 0 0 136 309 0	566 767 594 0 0 132 279 0	525 712 518 0 0 124 250 0	490 647 461 0 0 126 228 0	456 588 400 0 0 127 212 0
3 4 5 6 7 8 9 10 11	SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH	142 99 0 0 22 44	178 115 0 0 31 51	219 118 0 0 34 61	193 213 125 0 0 40 63	172 212 147 0 0 34 80	156 207 177 0 0 39 83	144 199 155 0 0 29 75	138 193 138 0 0 34 71	128 168 124 0 0 30 50	0 115 152 101 0 0 31 54	0 109 134 98 0 0 31 53	0 104 134 77 0 0 35 55	3 4 5 6 7 8 9 10 11	SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT	1 752 457 0 0 127 219 0	787 822 505 0 0 139 255 0	851 567 0 0 147 287 0	665 831 604 0 0 142 301 0	610 811 617 0 0 136 309 0	566 767 594 0 0 132 279 0	0 525 712 518 0 0 124 250 0	0 490 647 461 0 0 126 228 0	456 588 400 0 0 127 212 0
2 3 4 5 6 7 8 9 10 11	SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH	142 99 0 0 22 44	0 0 209 178 115 0 0 31 51	0 0 213 219 118 0 0 34 61	0 0 193 213 125 0 0 40 63	0 0 172 212 147 0 0 34 80	0 0 156 207 177 0 0 39 83	0 0 144 199 155 0 0 29 75	0 0 138 193 138 0 0 34 71	0 0 128 168 124 0 0 30 50	0 0 115 152 101 0 0 31 54	0 0 109 134 98 0 0 31 53	0 0 104 134 77 0 0 35 55	2 3 4 5 6 7 8 9 10 11	SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT	1 752 457 0 0 127 219 0	0 0 787 822 505 0 0 139 255 0	851 567 0 0 147 287 0	0 0 665 831 604 0 0 142 301 0	0 0 610 811 617 0 0 136 309 0	0 0 566 767 594 0 0 132 279 0	0 0 525 712 518 0 0 124 250 0	0 0 490 647 461 0 0 126 228 0	456 588 400 0 0 127 212 0
3 4 5 6 7 8 9 10 11	SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH	0 0 0 156 142 99 0 0 22 44	0 0 209 178 115 0 0 31 51	0 0 0 213 219 118 0 0 34 61	0 0 0 193 213 125 0 0 40 63	0 0 0 172 212 147 0 0 34 80	0 0 0 156 207 177 0 0 39 83	0 0 0 144 199 155 0 0 29 75	0 0 0 138 193 138 0 0 34 71	0 0 0 128 168 124 0 0 30 50	0 0 0 115 152 101 0 0 31 54	0 0 0 109 134 98 0 0 31 53	0 0 0 104 134 77 0 0 35 55	3 4 5 6 7 8 9 10 11	SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT	1 752 457 0 0 127 219 0	0 0 787 822 505 0 0 139 255 0	851 567 0 0 147 287 0	0 0 0 665 831 604 0 0 142 301 0	0 0 0 610 811 617 0 0 136 309 0	0 0 0 566 767 594 0 0 132 279 0	0 0 0 525 712 518 0 0 124 250 0	0 0 0 490 647 461 0 0 126 228 0	456 588 400 0 0 127 212 0

0 2575 0 2657 0 2761 0 2996 0 3022 0 2968 0 3022 0 2668

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

OVERLAND TRAFFIC CONSULTANTS, INC. CULVER CITY / LOS ANGELES CLIENT:

WEDNESDAY, AUGUST 06, 2003 PROJECT: DATE

PERIOD:

INTERSECTION:

N/S LA CIENEGA BLVD. E/W JEFFERSON BLVD.

															5	Ü	9 00	Ø	9	7	7	7	7	9
12	EBLT	137	134	139	147	171	189	195	163	154	150	146	143	12	EBLT	557	591	646	702	718	701	662	613	593
7	ЕВТН	254	251	250	268	271	274	282	281	277	279	277	265	11	ЕВТН	10.23	1040	1063	1095	1108	1114	1119	1114	1098
10	EBRT	53	52	29	89	74	88	92	87	80	74	72	99	10	EBRT	232	253	290	323	342	348	333	313	292
6	NBLT	7	2	80	12	7	17	15	18	16	15	10	7	6	NBLT	33	3 %	48	22	61	99	64	29	52
®	NBTH	437	434	457	453	487	522	545	629	586	581	573	561	8	NBTH	1781	1831	1919	2007	2133	2232	2291	2319	2301
7	NBRT	52	20	26	9	89	99	54	52	54	20	48	47	7	NBRT	222	238	254	252	240	226	210	204	199
9	WBLT	15	22	24	21	15	1	15	12	17	1	1	12	9	WBLT	č	82 82	71	62	23	22	22	51	21
2	WBTH	26	104	102	96	82	87	8	82	82	88	8	81	2	WBTH	300	387	370	352	341	341	342	342	338
4	WBRT	89	99	75	78	82	8	9/	78	82	80	72	75	4	WBRT	787	304	322	323	323	320	316	312	309
3	SBLT W	19	24	28	24	18	17	16	16	22	15	16	15	3	SBLT	, y	8 8	87	75	29	7	69	69	89
2	SBTH	372	378	383	393	386	406	393	392	378	353	345	341	2	SBTH	1506	1540	1568	1578	1577	1569	1516	1468	1417
-	SBRT	39	37	39	45	40	45	48	45	49	47	46	4	-	SBRT S	157	158	163	172	172	181	186	184	183
里		400-415	415-430	430-445	445-500	500-515	515-530	530-545	545-600	600-615	615-630	630-645	645-700	1 HOUR	TOTALS	400 600	415-515	430-530	445-545	200-600	515-615	530-630	545-645	000-200
15 MINUTE	TOTALS	4	4	4	4	Σ	Ωí	ñ	ά	99	9	9	8	-	Ĕ]	ťΨ	4	4	56	ù	ò	ά	9
		0	-	6	7	7	7	7	4	72	74	7.1	62		TOTALS	7 6480		0 6854	8 6587	5 6311	0 6135	7 6085	1 6093	6052
12	EBLT	96	111	119	3 117	117	107	1 97	9 84					12	EBLT	737		3 460	3 438	1 405	360	327	301	279
7	EBTH	83	123	151	126	121	6	8	79	8	8	83	76	1	EBTH	783	521	488	418	371	334	328	330	327
10	EBRT	15	20	19	20	17	18	16	14	18	12	16	7	10	EBRT		76	74	71	65	99	9	9	22
6	NBLT	24	32	32	38	32	38	40	45	48	45	43	38	6	NBLT	126	13 5	140	148	155	171	178	181	174
8	NBTH	556	616	689	869	685	652	643	635	640	636	635	622	8	NBTH	2550	2688	2724	2678	2615	2570	2554	2546	2533
7	NBRT	30	37	34	31	36	31	30	40	42	4	38	37	7	NBRT	132	138	132	128	137	143	153	161	158
9	WBLT	22	27	59	24	25	24	24	36	45	99	52	51	9	WBLT	5	105	102	26	109	129	161	189	204
	. < 1										_	2	8				. ~	ဗ	66	7	00	4	355	343
2	-	26	127	155	178	152	128	111	96	93	8	85	ω	2	BTH	7.77	612	613	269	487	428	384	co	8
4 5	WBTH	42 97	52 127	63 155	77 178	65 152	56 128	111	36 96	36 93	36 84	35 8.	19 8	4 5	BRT WBTH	750		261 61	242 56	201 48	172 42	152 38	143 3	126 34
4	WBRT WBTH			63	77	99		4	36	36	36	35		4	WBRT		257							
3 4	SBLT WBRT WBTH	1 12 42	15 52	20 63	24 77	20 65	21 56	29 44	32 36	32 36	37 36	34 35	32 19	3 4	SBLT WBRT	74 234	79 257	85 261	94 242	102 201	114 172	130 152	135 143	135 126
4	SBTH SBLT WBRT WBTH	301 12 42	341 15 52	388 20 63	351 24 77	334 20 65	321 21 56	320 29 44	325 32 36	331 32 36	336 37 36	352 34 35	347 32 19	4	SBTH SBLT WBRT	1381 71 93/	1414 79 257	1394 85 261	1326 94 242	1300 102 201	1297 114 172	1312 130 152	1344 135 143	1366 135 126
3 4	SBLT WBRT WBTH	1 12 42	15 52	20 63	24 77	334 20 65	21 56	320 29 44	32 36	32 36	37 36	34 35	32 19	3 4	SBLT WBRT	74 234	1414 79 257	85 261	94 242	102 201	114 172	130 152	135 143	126
2 3 4	SBTH SBLT WBRT WBTH	301 12 42	77 341 15 52	388 20 63	351 24 77	334 20 65	321 21 56	320 29 44	325 32 36	331 32 36	336 37 36	352 34 35	347 32 19	2 3 4	SBTH SBLT WBRT	1381 71 93/	366 1414 79 257	381 1394 85 261	1326 94 242	1300 102 201	1297 114 172	1312 130 152	1344 135 143	1366 135 126

6393 6554 6801 7135 7224 7163 7048 646 702 718 **701** 662

THE TRAFFIC SOLUTION - ADT WORKSHEET

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: CULVER CITY

LOCATION: JEFFERSON BOULEVARD S/O NATIONAL BOULEVARD

DATE: WEDNESDAY, AUGUST 06, 2003

FILE NO: A-1

DIRECTIO	N:		NORT	HBOUND	
TIME	00-15	15-30	30-45	45-60	HOUR
					TOTALS
00:00	11	9	5	3	28
01:00	3	3	1	3	10
02:00	4	7	3	3	17
03:00	1	5	1	1	8
04:00	0	3	4	4	11
05:00	8	12	13	30	63
06:00	32	50	48	76	206
07:00	103	118	131	131	483
08:00	154	140	164	135	593
09:00	112	104	105	85	406
10:00	85	99	108	91	383
11:00	95	102	88	74	359
12:00	90	92	112	101	395
13:00	114	105	123	106	448
14:00	107	118	170	108	503
15:00	139	134	157	151	581
16:00	178	168	201	179	726
17:00	250	205	212	202	869
18:00	213	174	179	154	720
19:00	111	105	101	83	400
20:00	93	66	64	66	289
21:00	66	71	34	47	218
22:00	37	39	46	37	159
23:00	14	20	17	15	66
				TOTAL	7941
AM PEAK	HOUR			08:00-09:0	10
VOLUME	HOOK			593	,,,
PM PEAK	HOUR			17:00-18:0	10
					,,,
VOLUME				869	

DIRECTIC	N:		SOUT	HBOUND		
TIME	TIME 00-15		30-45	45-60	HOUR	
					TOTALS	
00:00	16	8	8	9	41	
01:00	3	8	4	6	21	
02:00	4	8	0	7	19	
03:00	4	6	3	4	17	
04:00	6	7	10	10	33	
05:00	17	23	73	78	191	
06:00	53	82	102	137	374	
07:00	148	195	240	232	815	
08:00	203	178	215	211	807	
09:00	185	129	162	145	621	
10:00	149	115	114	115	493	
11:00	109	111	118	130	468	
12:00	133	108	152	125	518	
13:00	134	120	119	122	495	
14:00	145		162	139	587	
15:00	128	146	147	169	590	
16:00	158	171	160	177	666	
17:00	177	187	204	211	779	
18:00	215	185	195	173	768	
19:00	135	121	106	103	465	
20:00	87	61	51	65	264	
21:00	53	65	61	57	236	
22:00	45	47	34	28	154	
23:00	27	27	25	16	95	
				TOTAL	9517	
AM PEAK	HOUR			07:15-08:1	5	
VOLUME			870			
PM PEAK	HOUR		17:15-18:15			
VOLUME			817			

TOTAL BI-DIRECTIONAL VOLUME	17458

THE TRAFFIC SOLUTION - ADT WORKSHEET

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: CULVER CITY

LOCATION: JEFFERSON BOULEVARD S/O NATIONAL BOULEVARD

DATE: THURSDAY, AUGUST 07, 2003

FILE NO: A-2

00:00 01:00 02:00	11 5 3 0 2	15-30 9 8 5	30-45 8 4 2	45-60 6 3	HOUR TOTALS 34	
01:00 02:00	5 3 0	8 5	4			
01:00 02:00	5 3 0	8 5	4		34	
02:00	3	5		3		
	0		2		20	
02.00	-	1		2	12	
03:00	2	-	2	2	5	
04:00		1	4	2	9	
05:00	8	13	18	25	64	
06:00	55	42	47	67	211	
07:00	95	131	135	169	530	
08:00	147	178	153	135	613	
09:00	132	127	90	78	427	
10:00	70	91	86	97	344	
11:00	99	98	96	99	392	
12:00	108	101	124	123	456	
13:00	121	103	101	115	440	
14:00	108	108	162	113	491	
15:00	146	117	152	131	546	
16:00	189	174	209	192	764	
17:00	217	220	194	183	814	
18:00	191	197	177	110	675	
19:00	130	110	92	91	423	
20:00	101	82	61	70	314	
21:00	86	70	55	46	257	
22:00	53	27	45	24	149	
23:00	25	23	15	7	70	
				TOTAL	8060	
AM PEAK HOUR	,			07:45-08:4	5	
VOLUME			07:45-08:45 647			
PM PEAK HOUR	2		16:30-17:30			
VOLUME			838			

DIRECTIO	N:		SOUT	SOUTHBOUND			
TIME	00-15	15-30	30-45	45-60	HOUR		
					TOTALS		
00:00	14	12	10	5	41		
01:00	6	5	5	4	20		
02:00	8	6	2	3	19		
03:00	6	4	7	3	20		
04:00	3	10	7	9	29		
05:00	14	24	60	87	185		
06:00	35	88	91	138	352		
07:00	135	191	236	243	805		
08:00	196	190	185	193	764		
09:00	170	143	153	147	613		
10:00	159	106	114	99	478		
11:00	98	107	134	127	466		
12:00	130	101	145	144	520		
13:00	149	130	155	125	559		
14:00	135	131	158	174	598		
15:00	156	152	160	178	646		
16:00	172	193	160	148	673		
17:00	191	197	214	230	832		
18:00	203	188	154	165	710		
19:00	146	136	96	105	483		
20:00	99	82	62	68	311		
21:00	65	48	48	41	202		
22:00	55	50	51	33	189		
23:00	31	24	20	16	91		
				TOTAL	9606		
AM PEAK	HOUR			07:15-08:1	5		
VOLUME			866				
PM PEAK	HOUR			17:15-18:1	5		
VOLUME			844				

TOTAL BI-DIRECTIONAL VOLUME	17666	

BETA FILE

City of Los Angeles **Department of Transportation**

COUNTER **ARMANDO**

DATE

05/06/1903

START TIME

12 AM

LOCATION INTERSECTION JEFFERSON BL E/O LA CIENEGA BL

DAY OF WEEK

TUESDAY

DATE PREPARED

07-May-03

E/W STREET

DOT DISTRICT **HOLLYWOOD** SENSOR LAYOUT

'11'

DESCRIPTION

4E+009

WEATHER

CLOUDY

SENSOR SPACING

'160'

NORTH / WEST BOUND

SOUTH / EAST BOUND

	1ST	2ND	3RD	4TH	HOUR	1ST	2ND	3RD	4TH	HOUR	
TIME	QTR	QTR	QTR	QTR	TOTAL	QTR	QTR	QTR	QTR	TOTAL	TOTAL
12 AM	16	13	6	12	47	24	22	16	17	79	126
1 AM	6	10	3	7	26	14	14	10	7	45	71
2 AM	7	3	2	8	20	10	8	5	5	28	48
3 AM	8	5	8	10	31	5	9	3	4	21	52
4 AM	10	10	14	26	60	1	8	7	7	23	83
5 AM	27	35	66	84	212	11	10	, 16	, 24	61	273
6 AM	76	112	160	242	590	40	52	68	90	250	840
7 AM	298	270	260	288	1116	103	112	101	140	456	1572
8 AM	285	266	254	275	1080	174	182	183	151	690	1770
9 AM	243	186	180	134	743	120	128	114	128	490	1233
10 AM	134	146	150	144	574	128	112	124	115	479	1053
11 AM	113	118	136	139	506	118	144	132	126	520	1026
12 NN	148	128	148	130	554	166	139	138	127	570	1124
1 PM	146	138	145	142	571	158	150	154	147	609	1180
2 PM	136	148	158	158	600	163	159	168	167	657	1257
3 PM	166	179	170	190	705	160	181	238	242	821	1526
4 PM	188	191	222	212	813	232	239	252	239	962	1775
5 PM	225	207	224	231	887	276	239 274	248	239	1046	1933
6 PM	216	207	197	165	785	240	233	198	2 4 6 168	839	1624
7 PM	118		111	83	440			152	118	587	1024
8 PM		128			324	187	130 97			398	722
9 PM	92 55	90	82	60	211	98		100	103	366	577
	55	52	48	56		80	116	84	86		
10 PM	60	50	33	30	173	75	64	72	50	261	434
11 PM	21	23	27	18	89	53	29	35	40	157	246

FIRST 12-HOURS PEAK QUARTER COUNT LAST 12-HOURS PEAK QUARTER COUNT 24 HOUR VEHICLES TOTAL TOTAL VEHICLES STANDARD DEVIATION (STD)

7 AM 298 1ST 231 5 PM 4TH 11157 [+,-] 335.32

183	8 AM	3RD
276	5 PM	1ST
	10415	21572
[+,-]	305.18	610.87

PEAK HOURS VOLUME

	NORTH / WEST BOUND			SC	OUTH / EAST BOUND		BOTH DIRE	ECTIONS
	PEAK		VOLUME	PEAK		VOLUME	PEAK	VOLUME
	HOUR		VEHICLES	HOUR		VEHICLES	HOUR	VEHICLES
FIRST 12H PEAK	7 AM		1116	8 AM		690	1116	1806
LAST 12H PEAK	5 PM		887	5 PM		1046	1046	1933
FIRST 12H PEAK STD		[+,-]	14.87		[+,-]	12.89		27.76
LAST 12H PEAK STD		[+,-]	8.93		[+,-]	13.52		22.45

APPENDIX F LEVEL OF SERVICE WORKSHEETS

Project: Jefferson MTA Bus Maintenance Facility

Intersection: 1 Jefferson Boulevard and La Cienega Boulevard

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Peak Hour Traffic Volumes			
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	
NB Left	140	140		66	66		
NB Thru	2724	952	*	2232	819	*	
NB Right	132	N/A		226	N/A		
SB Left	85	85	*	71	71	*	
SB Thru	1394	465		1569	523		
SB Right	381	381		181	181		
EB Left	460	253	*	701	386		
EB Thru	488	281		1114	731	*	
EB Right	74	N/A		348	N/A		
WB Left	102	56		55	30	*	
WB Thru	613	307	*	341	171		
WB Right (free)	261	261		320	320		

	AM PEAK	PM PEAK	Approach	RTOR	Codes
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	1	1	Number of Phases	3	3
SB Left-Thru	0	0	Phasing Code	0	0
SB Thru	3	3			
SB Right-Thru	0	0	Capacity Codes	0	0
SB Right	1	1			
			=======================================		======
EB Left	2	2	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	0	0	=======================================	=======	======
EB Thru	1	1		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	1	1	East/West Critical Volumes	560	761
EB Right	0	0	North/South Critical Volumes	1,037	890
			Sum of Critical Volumes	1,597	1,652
WB Left	2	2	Capacity	1,425	1,425
WB Left-Thru	0	0			
WB Thru	2	2	Intersection CMA Value	1.120	1.159
WB Right-Thru	0	0	ATSAC CMA Value	1.050	1.089
WB Right	1	1	Intersection Level of Service	F ========	F ======

Existing Conditions

Project: Jefferson MTA Bus Maintenance Facility

Intersection: 1 Jefferson Boulevard and La Cienega Boulevard Scenario: Future Conditions (2006), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic	<u>Volumes</u>	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	20	6	166	166		4	3	73	73	
NB Thru	1	110	2835	991	*	3	90	2325	854	*
NB Right	1	5	138	N/A		3	9	238	N/A	
SB Left	0	3	88	88	*	0	3	74	74	*
SB Thru	32	56	1482	494		8	63	1640	547	
SB Right	90	15	486	486		29	7	217	217	
EB Left	7	19	486	267	*	39	28	768	423	
EB Thru	17	20	525	302		67	45	1226	803	*
EB Right	3	3	80	N/A		18	14	380	N/A	
WB Left	9	4	115	63		7	2	64	35	*
WB Thru	127	25	765	382	*	80	14	435	217	
WB Right (free)	0	11	272	N/A		0	13	333	N/A	

	AM PEAK	PM PEAK	Approach	RTOR (
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	<u>PM PEAK</u>
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
-			Number of Phases	3	3
SB Left	1	1	Phasing Code	0	0
SB Left-Thru	0	0	•		
SB Thru	3	3	Capacity Codes	0	0
SB Right-Thru	0	0	. ,		
SB Right	1	1			
Ü			=======================================	:======:	=====
EB Left	2	2	Critical Movement Analysis: F	Results Sumn	nary
EB Left-Thru	0	0	=======================================		=====
EB Left-Thru EB Thru	0 1	0 1	=======================================	AM PEAK	===== PM PEAK
	0 1 1	0 1 1	East/West Critical Volumes	AM PEAK 649	===== PM PEAK 838
EB Thru	0 1 1 0	1	East/West Critical Volumes North/South Critical Volumes		
EB Thru EB Right-Thru	1 1	1 1		649	838
EB Thru EB Right-Thru	1 1	1 1	North/South Critical Volumes	649 1,079	838 928
EB Thru EB Right-Thru EB Right	1 1 0	1 1 0	North/South Critical Volumes Sum of Critical Volumes	649 1,079 1,728	838 928 1,767
EB Thru EB Right-Thru EB Right WB Left	1 1 0	1 1 0	North/South Critical Volumes Sum of Critical Volumes	649 1,079 1,728	838 928 1,767
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 1 0 2 0	1 1 0 2 0	North/South Critical Volumes Sum of Critical Volumes Capacity	649 1,079 1,728 1,425	838 928 1,767 1,425
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 1 0 2 0 2	1 1 0 2 0 2	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	649 1,079 1,728 1,425	838 928 1,767 1,425

Future Conditions (2006), Without Project

Project: Jefferson MTA Bus Maintenance Facility

Intersection: 1 Jefferson Boulevard and La Cienega Boulevard

Scenario: Future Conditions (2006), With Project

		AM Peak	Hour Traffic \	olumes/			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	166	0	166	166		73	0	73	73	
NB Thru	2835	0	2835	991	*	2325	0	2325	854	*
NB Right	138	0	138	N/A		238	0	238	N/A	
SB Left	88	0	88	88	*	74	0	74	74	*
SB Thru	1482	0	1482	494		1640	0	1640	547	
SB Right	486	51	537	537		217	71	288	288	
EB Left	486	20	506	278	*	768	11	779	429	
EB Thru	525	3	528	304		1226	2	1228	804	*
EB Right	80	0	80	N/A		380	0	380	N/A	
WB Left	115	0	115	63		64	0	64	35	*
WB Thru	765	2	767	383	*	435	1	436	218	
WB Right (free)	272	0	272	N/A		333	0	333	N/A	

	AM PEAK	PM PEAK	Approach	RTOR	Codes
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	3	3
SB Left	1	1	Phasing Code	0	0
SB Left-Thru	0	0			
SB Thru	3	3	Capacity Codes	0	0
SB Right-Thru	0	0			
SB Right	1	1			
			=======================================	========	======
EB Left	•	_	Cuitinal Massacrat Assalsas		
LD LOIL	2	2	Critical Movement Analysi	s: Results Sun	nmary
EB Left-Thru	0	0	======================================		nmary ======
	_		-		nmary ====== <u>PM PEAK</u>
EB Left-Thru	_	0	-	========	======
EB Left-Thru EB Thru	0	0 1		AM PEAK	PM PEAK
EB Left-Thru EB Thru EB Right-Thru	0 1 1	0 1 1	East/West Critical Volumes	AM PEAK 661	PM PEAK 839
EB Left-Thru EB Thru EB Right-Thru	0 1 1	0 1 1	East/West Critical Volumes North/South Critical Volumes	AM PEAK 661 1,079	PM PEAK 839 928
EB Left-Thru EB Thru EB Right-Thru EB Right	0 1 1 0	0 1 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 661 1,079 1,740	PM PEAK 839 928 1,768
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 1 1 0	0 1 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 661 1,079 1,740	PM PEAK 839 928 1,768
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 1 1 0 2	0 1 1 0 2	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 661 1,079 1,740 1,425	PM PEAK 839 928 1,768 1,425
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Left-Thru WB Thru	0 1 1 0 2 0 2	0 1 1 0 2 0 2	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 661 1,079 1,740 1,425	PM PEAK 839 928 1,768 1,425
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	0 1 1 0 2 0 2	0 1 1 0 2 0 2	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC CMA Value	AM PEAK 661 1,079 1,740 1,425 1.221 1.151	PM PEAK 839 928 1,768 1,425 1.240 1.170

Future Conditions (2006), With Project

Project: Jefferson MTA Bus Maintenance Facility

Intersection: 2 Jefferson Boulevard and Rodeo Road/Higuera Street

Scenario: **Existing Conditions**

	AM Peak	Hour Traffic	Volumes	PM Peak Hour Traffic Volumes			
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	
NB Left	78	78	*	48	48		
NB Thru	533	267		616	308	*	
NB Right (free)	0	391		0	634		
SB Left	156	156		419	419	*	
SB Thru	752	376	*	636	318		
SB Right	75	75		30	30		
EB Left	6	6		36	36		
EB Thru	86	43	*	352	176	*	
EB Right	11	11		69	69		
WB Left	947	521		587	323		
WB Thru	968	968	*	469	469	*	
WB Right	56	56		38	38		

	AM PEAK	PM PEAK	Approach	RTOR	Codes
Movement	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	1	1			
SB Left	1	1	Number of Phases	3	3
SB Left-Thru	0	0	Phasing Code	1	1
SB Thru	2	2			
SB Right-Thru	0	0	Capacity Codes	0	0
SB Right	1	1			
-					======
EB Left	1	1	Critical Movement Analysi	s: Results Su	mmary
EB Left-Thru	0	0	=======================================		
EB Thru	2	2		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	0	0	East/West Critical Volumes	1,011	645
EB Right	1	1	North/South Critical Volumes	454	727
			Sum of Critical Volumes	1,465	1,372
WB Left	2	2	Capacity	1,425	1,425
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	1.028	0.963
WB Right-Thru	0	0	ATSAC CMA Value	0.958	0.893
WB Right	1	1	Intersection Level of Service	E	D
			=======================================	========	======

INTERSECTION CMA WORKSHEET Project: Jefferson MTA Bus Maintenance Facility

Intersection: 2 Jefferson Boulevard and Rodeo Road/Higuera Street

Scenario: Future Conditions (2006), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic	Volumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	3	81	81	*	0	2	50	50	
NB Thru	28	22	583	291		110	25	751	375	*
NB Right (free)	33	16	0	407		135	26	0	660	
SB Left	0	6	162	162		0	17	436	436	*
SB Thru	200	30	982	491	*	89	26	751	375	
SB Right	0	3	78	78		0	1	31	31	
EB Left	0	0	6	6		0	1	37	37	
EB Thru	0	3	89	45	*	0	14	366	183	*
EB Right	0	0	11	11		0	3	72	72	
WB Left	99	38	1084	596		42	24	653	359	
WB Thru	0	39	1007	1007	*	0	19	488	488	*
WB Right	0	2	58	58		0	2	40	40	

	AM PEAK	PM PEAK	Approach	RTOR (
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	<u>PM PEAK</u>
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	1	1			
-			Number of Phases	3	3
SB Left	1	1	Phasing Code	1	1
SB Left-Thru	0	0	-		
SB Thru	2	2	Capacity Codes	0	0
SB Right-Thru	0	0			
SB Right	1	1			
ŭ			=======================================	========	=====
EB Left	1	1	Critical Movement Analysis: F	Results Sumn	nary
					=====
EB Left-Thru	0	0		=======	
EB Left-Thru EB Thru	0 2	0 2		AM PEAK	PM PEAK
	•	•	East/West Critical Volumes	AM PEAK 1,052	PM PEAK 671
EB Thru	2	2	East/West Critical Volumes North/South Critical Volumes		
EB Thru EB Right-Thru	2 0	2		1,052	671 811
EB Thru EB Right-Thru	2 0	2	North/South Critical Volumes	1,052 572	671 811
EB Thru EB Right-Thru EB Right	2 0 1	2 0 1	North/South Critical Volumes Sum of Critical Volumes	1,052 572 1,624	671 811 1,482
EB Thru EB Right-Thru EB Right WB Left	2 0 1	2 0 1	North/South Critical Volumes Sum of Critical Volumes	1,052 572 1,624	671 811 1,482
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	2 0 1	2 0 1	North/South Critical Volumes Sum of Critical Volumes Capacity	1,052 572 1,624 1,425	671 811 1,482 1,425
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	2 0 1 2 0 1	2 0 1 2 0 1	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	1,052 572 1,624 1,425	671 811 1,482 1,425

Future Conditions (2006), Without Project

INTERSECTION CMA WORKSHEET Project: Jefferson MTA Bus Maintenance Facility

Intersection: 2 Jefferson Boulevard and Rodeo Road/Higuera Street

Scenario: Future Conditions (2006), With Project

		AM Peak	Hour Traffic V	olumes/			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>
NB Left	81	0	81	81	*	50	0	50	50	
NB Thru	583	3	586	293		751	1	752	376	*
NB Right (free)) 0	0	0	407		0	0	0	660	
SB Left	162	11	173	173		436	9	445	445	*
SB Thru	982	6	988	494	*	751	4	755	377	
SB Right	78	0	78	78		31	0	31	31	
ED	•	•				07	•	07	0.7	
EB Left	6	0	6	6		37	0	37	37	
EB Thru	89	0	89	45	*	366	0	366	183	*
EB Right	11	0	11	11		72	0	72	72	
WB Left	1084	0	1084	596		653	0	653	359	
WB Thru	1007	0	1007	1007	*	488	0	488	488	*
WB Right	58	9	67	67		40	4	44	44	
WERIGHT	50	ð	07	07		40	4	44	44	

	AM PEAK	PM PEAK	Approach	RTOR	Codes
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	1	1			
			Number of Phases	3	3
SB Left	1	1	Phasing Code	1	1
SB Left-Thru	0	0			
SB Thru	2	2	Capacity Codes	0	0
SB Right-Thru	0	0			
SB Right	1	1			
			=======================================	========	======
EB Left	1	1	Critical Movement Analysi	======= s: Results Sun	nmary
EB Left EB Left-Thru	1 0	1 0	Critical Movement Analysi	======= s: Results Sun ======	====== nmary ======
	1 0 2	•	Critical Movement Analysi	s: Results Sun	====== nmary ====== <u>PM PEAK</u>
EB Left-Thru	ŭ	0	Critical Movement Analysi	========	======
EB Left-Thru EB Thru	2	0 2	=======================================	<u>AM PEAK</u>	PM PEAK
EB Left-Thru EB Thru EB Right-Thru	2	0 2 0	East/West Critical Volumes	AM PEAK 1,052	PM PEAK 671
EB Left-Thru EB Thru EB Right-Thru	2	0 2 0	East/West Critical Volumes North/South Critical Volumes	AM PEAK 1,052 575	PM PEAK 671 821
EB Left-Thru EB Thru EB Right-Thru EB Right	2 0 1	0 2 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 1,052 575 1,627	PM PEAK 671 821 1,492
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	2 0 1	0 2 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 1,052 575 1,627	PM PEAK 671 821 1,492
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	2 0 1 2 0 1	0 2 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 1,052 575 1,627 1,425	PM PEAK 671 821 1,492 1,425
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	2 0 1 2 0 1	0 2 0 1 2 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 1,052 575 1,627 1,425	PM PEAK 671 821 1,492 1,425

Future Conditions (2006), With Project

Project: Jefferson MTA Bus Maintenance Facility

Intersection: 3 Jefferson Boulevard and National Boulevard

Scenario: **Existing Conditions**

	AM Peak Hour Traffic Volumes			PM Peak Hour Traffic Volumes				
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>		
NB Left	0	N/A		0	N/A			
NB Thru	0	N/A		0	N/A			
NB Right	567	284		904	452	*		
SB Left	0	N/A		0	N/A			
SB Thru	0	N/A		0	N/A			
SB Right	0	N/A		0	N/A			
EB Left	0	N/A		0	N/A			
EB Thru	287	217	*	932	645	*		
EB Right	147	N/A		357	N/A			
WB Left	851	528	*	543	276			
WB Thru	734	528		286	276			
WB Right	0	N/A		0	N/A			

	AM PEAK	PM PEAK	Approach	RTOR	Codes
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
SB Left	0	0	Number of Phases	2	2
SB Left-Thru	0	0	Phasing Code	0	0
SB Thru	0	0			
SB Right-Thru	0	0	Capacity Codes	0	0
SB Right	0	0			
		_			======
EB Left	0	0	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	0	0	=======================================	=======	======
EB Thru	1	1		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	1	1	East/West Critical Volumes	745	645
EB Right	0	0	North/South Critical Volumes	-	452
			Sum of Critical Volumes	745	1,097
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	1	1	•		
WB Thru	1	1	Intersection CMA Value	0.497	0.731
WB Right-Thru	0	0	ATSAC CMA Value	0.427	0.661
WB Right	0	0	Intersection Level of Service	Α	В

INTERSECTION CMA WORKSHEET Project: Jefferson MTA Bus Maintenance Facility

Intersection:3Jefferson Boulevard and National BoulevardScenario:Future Conditions (2006), Without Project

	AM Peak Hour Traffic Volumes						PM Peak Hour Traffic Volumes				
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	
NB Left	0	0	0	N/A		0	0	0	N/A		
NB Thru	0	0	0	N/A		0	0	0	N/A		
NB Right	15	23	605	302		52	37	993	496	*	
SB Left	0	0	0	N/A		0	0	0	N/A		
SB Thru	0	0	0	N/A		0	0	0	N/A		
SB Right	0	0	0	N/A		0	0	0	N/A		
EB Left	0	0	0	N/A		0	0	0	N/A		
EB Thru	17	12	316	260	*	92	38	1062	723	*	
EB Right	52	6	205	N/A		12	14	383	N/A		
WB Left	147	34	1032	629	*	77	22	642	324		
WB Thru	90	30	854	629		32	12	330	324		
WB Right	0	0	0	N/A		0	0	0	N/A		

	-	-		-	-
	AM PEAK PM PEAK		Approach	RTOR (Codes
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	2	2	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	Phasing Code	0	0
SB Left-Thru	0	0			
SB Thru	0	0	Capacity Codes	0	0
SB Right-Thru	0	0			
SB Right	0	0			
			=======================================	========	=====
EB Left	0	0	Critical Movement Analysis: F	Results Sumn	nary
EB Left-Thru	0	0	=======================================	=======	=====
EB Thru	1	1		AM PEAK	PM PEAK
EB Right-Thru	1	1	East/West Critical Volumes	889	723
EB Right	0	0	North/South Critical Volumes	-	496
			Sum of Critical Volumes	889	1,219
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	1	1			
WB Thru	1	1	Intersection CMA Value	0.593	0.813
WB Right-Thru	0	0	ATSAC CMA Value	0.523	0.743
WB Right	0	0	Intersection Level of Service	Α	С

Future Conditions (2006), Without Project

INTERSECTION CMA WORKSHEET Project: Jefferson MTA Bus Maintenance Facility

Intersection: 3 Jefferson Boulevard and National Boulevard Scenario: Future Conditions (2006), With Project

	AM Peak Hour Traffic Volumes					PM Peak Hour Traffic Volumes						
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>		
NB Left	0	0	0	N/A		0	0	0	N/A			
NB Thru	0	0	0	N/A		0	0	0	N/A			
NB Right	605	23	628	314		993	13	1006	503	*		
SB Left	0	0	0	N/A		0	0	0	N/A			
SB Thru	0	0	0	N/A		0	0	0	N/A			
SB Right	0	0	0	N/A		0	0	0	N/A			
EB Left	0	0	0	N/A		0	0	0	N/A			
EB Thru	316	0	316	261	*	1062	0	1062	723	*		
EB Right	205	2	207	N/A		383	1	384	N/A			
WB Left	1032	53	1085	646	*	642	72	714	348			
WB Thru	854	0	854	646		330	0	330	348			
WB Right (free)) 0	0	0	N/A		0	0	0	N/A			

	AM PEAK PM PEAK		Approach	RTOR Codes			
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK		
NB Left	0	0	NorthBound	0	0		
NB Left-Thru	0	0	SouthBound	0	0		
NB Thru	2	2	EastBound	0	0		
NB Right-Thru	0	0	WestBound	0	0		
NB Right	0	0					
			Number of Phases	2	2		
SB Left	0	0	Phasing Code	0	0		
SB Left-Thru	0	0					
SB Thru	0	0	Capacity Codes	0	0		
SB Right-Thru	0	0					
SB Right	0	0					
			=======================================	========	======		
EB Left	0	0	Critical Movement Analysi	s: Results Sun	===== nmary		
EB Left EB Left-Thru	0 0	0 0	Critical Movement Analysi	s: Results Sun	nmary		
			Critical Movement Analysi	======== s: Results Sun ======= <u>AM PEAK</u>	nmary PM PEAK		
EB Left-Thru			Critical Movement Analysi	========	======		
EB Left-Thru EB Thru			=======================================	<u> AM PEAK</u>	PM PEAK		
EB Left-Thru EB Thru EB Right-Thru	0 1 1	0 1 1	East/West Critical Volumes	<u> AM PEAK</u>	PM PEAK 723		
EB Left-Thru EB Thru EB Right-Thru	0 1 1	0 1 1	East/West Critical Volumes North/South Critical Volumes	AM PEAK 908	PM PEAK 723 503		
EB Left-Thru EB Thru EB Right-Thru EB Right	0 1 1	0 1 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 908 - 908	PM PEAK 723 503 1,226		
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 1 1	0 1 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 908 - 908	PM PEAK 723 503 1,226		
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 1 1 0	0 1 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 908 - 908 1,500	PM PEAK 723 503 1,226 1,500		
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 1 1 0	0 1 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 908 - 908 1,500	PM PEAK 723 503 1,226 1,500		

Future Conditions (2006), With Project

SUNSET AVENUE PROJECT

F2 - TRAFFIC IMPACT ANALYSIS FOR A MIXED-USE RESIDENTIAL
& COMMERCIAL DEVELOPMENT,
OVERLAND TRAFFIC CONSULTANTS, INC.,
JULY 2004.

TRAFFIC IMPACT ANALYSIS FOR A MIXED-USE RESIDENTIAL & COMMERCIAL DEVELOPMENT

Located at 100 East Sunset Avenue in the City of Los Angeles

Prepared for: RAD Management, LLC

Prepared by:
Overland Traffic Consultants, Inc.
25876 The Old Road #307
Santa Clarita, California 91381
(661) 799-8423

TRAFFIC IMPACT ANALYSIS FOR A MIXED – USE RESIDENTIAL & COMMERCIAL DEVELOPMENT

Located at 100 East Sunset Avenue In the City of Los Angeles

Prepared for: RAD Management, LLC

Prepared by:

Overland Traffic Consultants, Inc. 25876 The Old Road # 307 Santa Clarita, California 91381 (661) 799 – 8423

July 2004

EXECUTIVE SUMMARY

This report documents the results of a study evaluating potential traffic impacts created by the redevelopment of the existing MTA bus maintenance facility, as shown in the following aerial photograph. The project being proposed is the construction of a multifamily residential housing development of approximately 225 condominiums/lofts with 10,000 square feet of commercial retail.

Vehicular access to the site for the residents is located off Sunset Avenue approximately 100 feet west of Main Street. This access will provide for a residential entrance from Main Street only with egress to both Main Street and Pacific Avenue. The non-residential traffic (commercial and visitors) will be provided an entrance/exit on Main Street located approximately mid-block. The Main Street access will be a right-turn ingress/egress only driveway; no left-turns would be permitted at this location.

It is estimated that the redevelopment project would generate 2,326 daily vehicle trips with 185 morning and 203 afternoon peak hour trips. After accounting for the removal of the existing use and pass-by traffic discounts, the net change in site generated traffic added to the surrounding streets is estimated at 1,168 daily trips, 107 morning trips and 174 afternoon peak hour trips.

The focus of this traffic study is to evaluate the potential traffic impact created by the change in land use at nearby intersections selected for review by the City of Los Angeles Department of Transportation. The study intersections were determined based on the traffic assignment and the estimated amount of project generated peak hour traffic that would have the potential to create significant traffic impacts. Intersections with low amounts of project traffic not exceeding the traffic impact thresholds were not included in this analysis.

Using criteria established by the City of Los Angeles and Santa Monica (for those intersections located in Santa Monica), it has been determined that the change in traffic patterns associated with the redevelopment project may significantly impact the traffic

flow at two intersections during the weekday peak hour traffic flow prior to the implementation of traffic mitigation measures.

The two intersections expected to be impacted by the project during the weekday peak hours are: Main Street and Rose Avenue, and Main Street and Sunset Avenue. Listed below are the recommended traffic mitigation measures for each intersection:

- Right-turn Restrictions The proposed Main Street non-residential access will be restricted to right-turns only (i.e., no left-turn ingress or egress will be permitted at this driveway.
- 2. Main Street and Rose Avenue Pursuant to the Venice Community Plan Transportation Program, it is recommended that the project implement the improvement listed for the Main Street and Rose Avenue intersection (Chapter III page 30): which is to restripe the westbound Rose Avenue approach to provide an exclusive left-turn. Implementation of this improvement would require the removal of approximately four on-street parking spaces on Rose Avenue east of Main Street.
- 3. Main Street and Sunset Avenue Remove parking on the west side of Main Street north of Sunset Avenue for the installation of a southbound right-turn only lane at Sunset Avenue. Restripe the westbound Sunset Avenue approach to provide an exclusive right-turn lane. Construct the west leg of Sunset Avenue (project side) to include an exclusive right-turn lane and a through/left-turn lane. Implementation of this improvement would require the removal of approximately three on-street parking spaces on the west side of Main Street north of Sunset Avenue.

Summer Traffic Analysis

An analysis of summer traffic conditions has been conducted based on new traffic data collected in June 2004. Results of the project's summer traffic impacts indicate the project will have a significant impact at one intersection (Rose Avenue and Lincoln Boulevard). Possible traffic mitigation for the project's summer traffic impact include participation in the implementation of new transit programs such as the proposed Metro Rapid transit program for the Lincoln Boulevard corridor.

Recommend Beach Access Improvements

It is recommended that the project upgrade the existing pedestrian crossings located across Main Street at Sunset Avenue and across Pacific Avenue at Sunset Avenue with flashing markers/signage, i.e., "Smart Crosswalks". This improvement will enhance the pedestrian beach access for the new and existing residents.

Highway Dedications and Street Standards

A part from the project application process, the City of Los Angeles will review the adjacent street standards and may require additional street dedications and improvements. Below are the adjacent streets standards and current conditions.

Main Street and Pacific Avenue are both designated Secondary Highways. The standard for a secondary highway is 90 feet of right-of-way consisting of a 70 foot wide street with 10 foot sidewalks on each side. The half street dedication and street improvement requirements are therefore 45 feet of right-of-way with a 35 foot wide street and 10 foot sidewalks on each side.

A recent land survey shows that Main Street is currently developed with a total right-of-way of 90 feet (50 feet east side and 40 feet west side). The street is developed to approximately 56 feet in width consisting of 28 feet for each half street. The west sidewalk is 12 feet is width. Therefore, the City could ask for a 2-foot street widening reducing the 12-foot sidewalk to 10 feet in width along the project Main Street frontage.

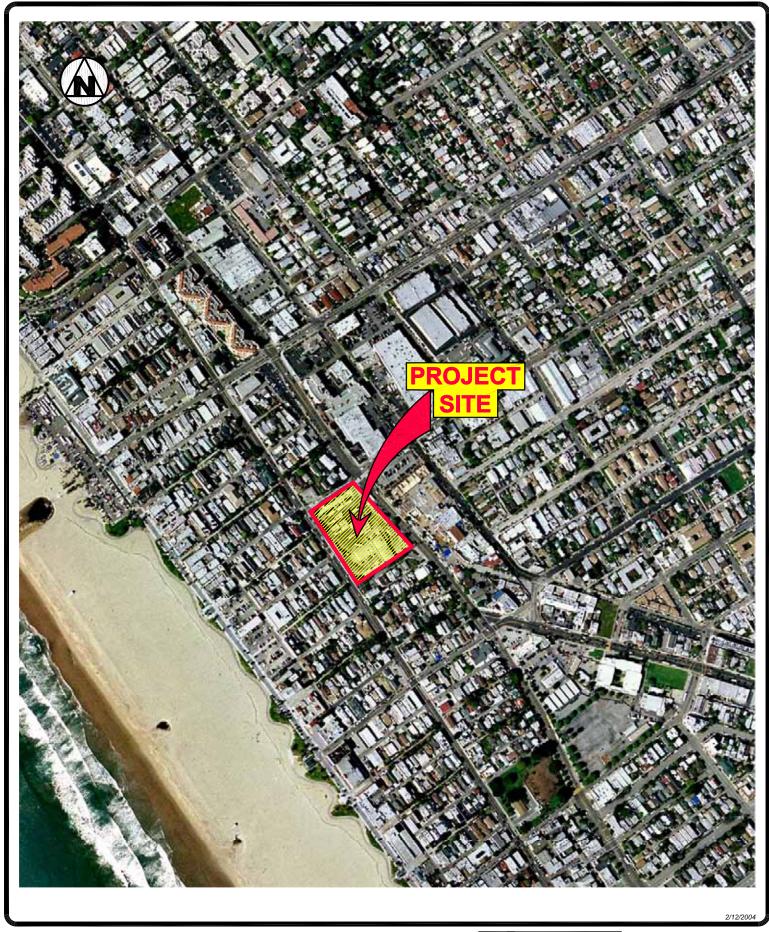
Pacific Avenue is developed to a 55-foot right-of-way with a 44-foot roadway with 5.5 foot sidewalks on each side. The half street dimensions are 27.5 feet of dedication with RAD Sunset

Page iii

July 2004

Traffic Impact Study

Executive Summary


a 22-foot roadway. The project proposes to maintain the current street dimensions on Pacific Avenue and provide a 17.5 foot dedication. The City could ask for a 13-foot street widening on Pacific Avenue along the project frontage.

Sunset Avenue and Thornton Place are both designated local streets. A local street standard specifies a 60-foot right-of-way with a 36-foot wide roadway and 12-foot sidewalks on each side.

Sunset Avenue is developed with a 24-foot road with a 6-foot sidewalk on the north side for a total dedicated right-of-way of 30-feet. The dedicated right-of-way on Thornton Place varies from 16 to 20 feet in width. The roadway is unimproved and does not connect to Pacific Avenue. The dedicated centerlines of these roadways are assumed to be on center. Therefore, the City could ask for dedication and improvements on both local streets to complete a 30-foot ½ right-of-way and 18-foot ½ roadway.

The project proposes to dedicate 16 feet along the Sunset Avenue frontage to provide a 40 wide street with a 6 foot sidewalk easement along the south side for pedestrian facilities. The 40-foot side street is to provide additional angled parking along the south side of Sunset Avenue west of the proposed project driveway on Sunset Avenue. It is currently proposed that Thornton Place be retained in its current configuration and usage.

There may be exceptions to the highway standards and criteria contained in the Circulation Element of the General Plan and the City's Standard Street Dimensions as listed above where environmental issues, planning practices and community desires warrant alternate standards. Several exceptions as described above will be requested by the project during the environmental review process.

Overland Traffic Consultants, Inc.

TABLE OF CONTENTS

Chapter 1 - Introduction	1
Chapter 2 - Project Description	3
Chapter 3 - Environmental Setting	6
Land Use	6
Transportation Network	6
Transit Information	10
Chapter 4 - Project Traffic Characteristics	11
Project Traffic Generation	11
Traffic Distribution and Assignment of Project Traffic	13
Chapter 5 - Traffic Conditions Analysis	19
Analysis of Existing Traffic Conditions	19
Analysis of Future Traffic Conditions	27
Impacts on Regional Transportation System	43
Construction Impacts	43
Chapter 6 – Mitigation Measures	48
Appendix A – Community Plan Land Use Information Appendix B – Circulation Maps, Street Standards & Street Plans Appendix C – Transit Routes Appendix D – Summer Traffic Conditions Appendix E – Traffic Assignment Data Appendix F – Traffic Volume Data	
Appendix G – Level of Service Worksheets	

Overland Traffic Consultants, Inc.

LIST OF FIGURES

Figure 1 Project Location	2
Figure 2 Project Site Plan	4
Figure 3 Study Intersections Characteristics	7
Figure 4 Project Traffic Distribution	14
Figure 5 Project Traffic Volume	15
Figure 6 Net Project Traffic Volume	17
Figure 7 Existing Traffic Volume - AM Peak Hour	23
Figure 8 Existing Traffic Volume - PM Peak Hour	25
Figure 9 Location of Related Projects	30
Figure 10 Traffic Volume (Without Project) - AM Peak Hour	32
Figure 11 Traffic Volume (Without Project) - PM Peak Hour	34
Figure 12 Traffic Volume (With Project) - AM Peak Hour	39
Figure 13 Traffic Volume (With Project) - PM Peak Hour	41

Overland Traffic Consultants, Inc.

LIST OF TABLES

Project Trip Generation Rates	13
Estimated Project Traffic Generation	12
Level of Service Definitions	20
Existing Traffic Conditions Summary	22
Listing of Related Projects	28
Estimated Traffic Generation for Other Projects	29
Future Traffic Conditions Without Project	31
Future Traffic Conditions With Project	38
Future Traffic Conditions With Project Mitigation	49

CHAPTER 1 INTRODUCTION

The applicant, RAD Management plans to construct a mixed - use development consisting of approximately 225 condominiums/lofts and 10,000 square feet of commercial retail in the Venice community of Los Angeles. The project site is located at the block bounded by Sunset Avenue on the north, Pacific Avenue on the west, Thornton Place on the south and Main Street on the east as shown on Figure 1. Currently the site is occupied by the MTA Division 6 bus maintenance facility. The property has been an operating bus facility since 1930 with Transportation and Maintenance functions housed in a single 22,000 square foot structure.

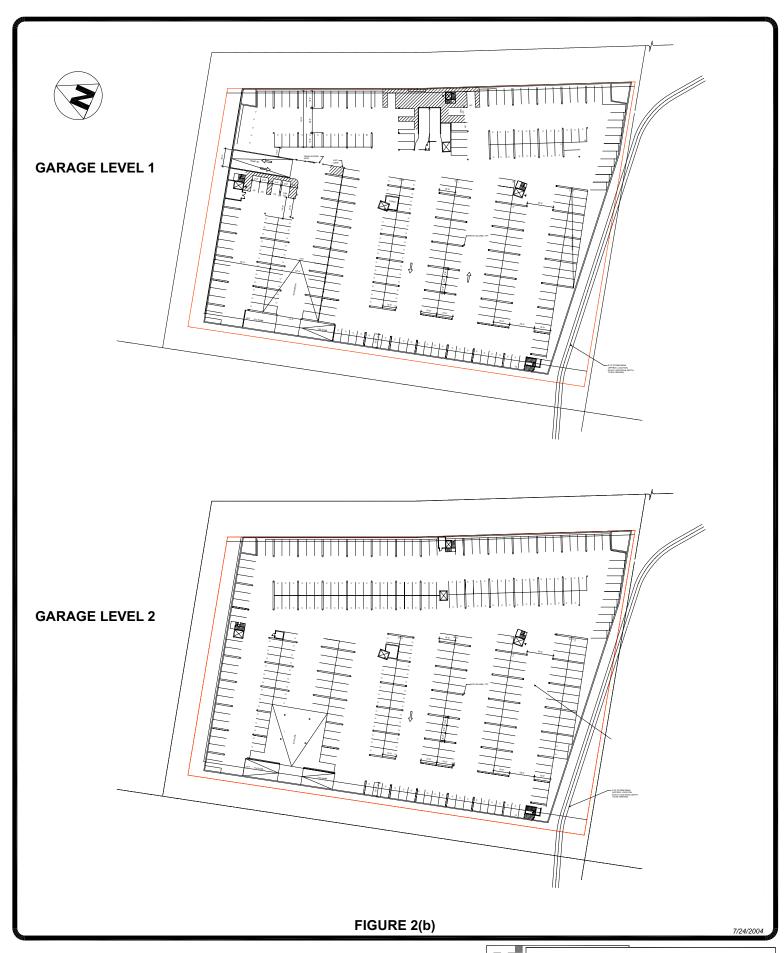
An evaluation of the potential traffic impact created by the proposed project has been conducted as part of the project's environmental review. This traffic study was prepared using procedures adopted by the City of Los Angeles and the City of Santa Monica to evaluate the traffic impact of the redevelopment project. Existing and future traffic flows in the vicinity of the project site have been analyzed to estimate the project's traffic impact to the surrounding area. The following 13 intersections have been selected by the City of Los Angeles Department of Transportation for this traffic impact study.

- 1. Main Street and Ocean Park Boulevard (City of Santa Monica);
- Main Street and Rose Boulevard;
- 3. Main Street and Sunset Avenue;
- 4. Main Street and Thornton Place;
- 5. Main Street and Abbot Kinney Boulevard;
- 6. Abbot Kinney Boulevard and Venice Boulevard;
- 7. Neilson Way and Ocean Park Boulevard (City of Santa Monica):
- 8. Pacific Avenue and Rose Avenue;
- Pacific Avenue and Sunset Avenue;
- 10. Pacific Avenue and Windward Avenue;
- 11. Pacific Avenue and Venice Boulevard (N);
- 12. Pacific Avenue and Venice Boulevard (S); and
- 13. Rose Avenue and Lincoln Boulevard.

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

CHAPTER 2

PROJECT DESCRIPTION


The project consists of constructing approximately 225 condominiums and 10,000 square feet of commercial retail. Currently, the commercial component consists of a 1,000 square foot coffee shop, approximately 2,000 square feet of retail space and a 7,000 square foot spa/health club. Project parking is planned in a subterranean garage with a maximum of two parking levels with separate access for the residential and non-residential uses. Site access for the residential component is being considered on Sunset Avenue. The commercial access is proposed on Main Street. Site access on Pacific Avenue is not allowed in the Venice Specific Plan and therefore has not been considered. Conceptual vehicular access plans have been designed based on input received from the City of Los Angeles Department of Transportation and community comments.

It is proposed that the a new driveway on Sunset Avenue for the residential component of the project be constructed approximately 100 feet west of Main Street. This driveway will provide an entrance and exit to Main Street and an exit to Pacific Avenue. Traffic flow will remain one-way westbound to Pacific Avenue west of the proposed Sunset Avenue residential driveway.

A second entrance/exit for the non-residential is planned on Main Street approximately mid-block and is restricted to right-turn ingress and egress only. The conceptual site plan is illustrated in Figure 2(a) and the garage levels are illustrated in Figure 2(b).

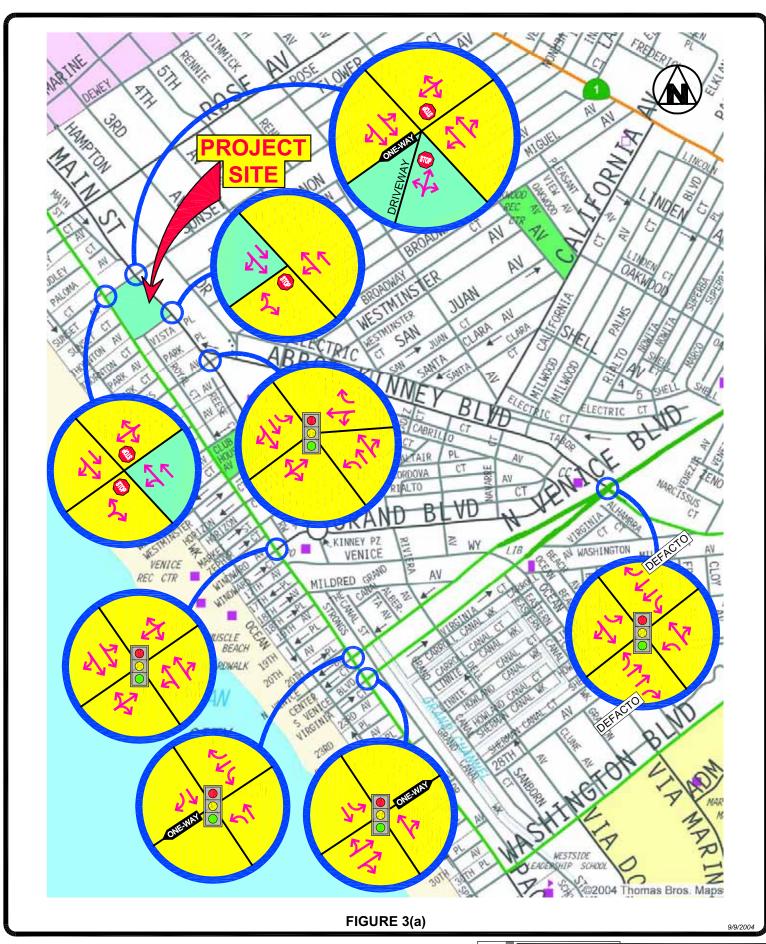
25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

CONCEPT GARAGE PARKING LAYOUT

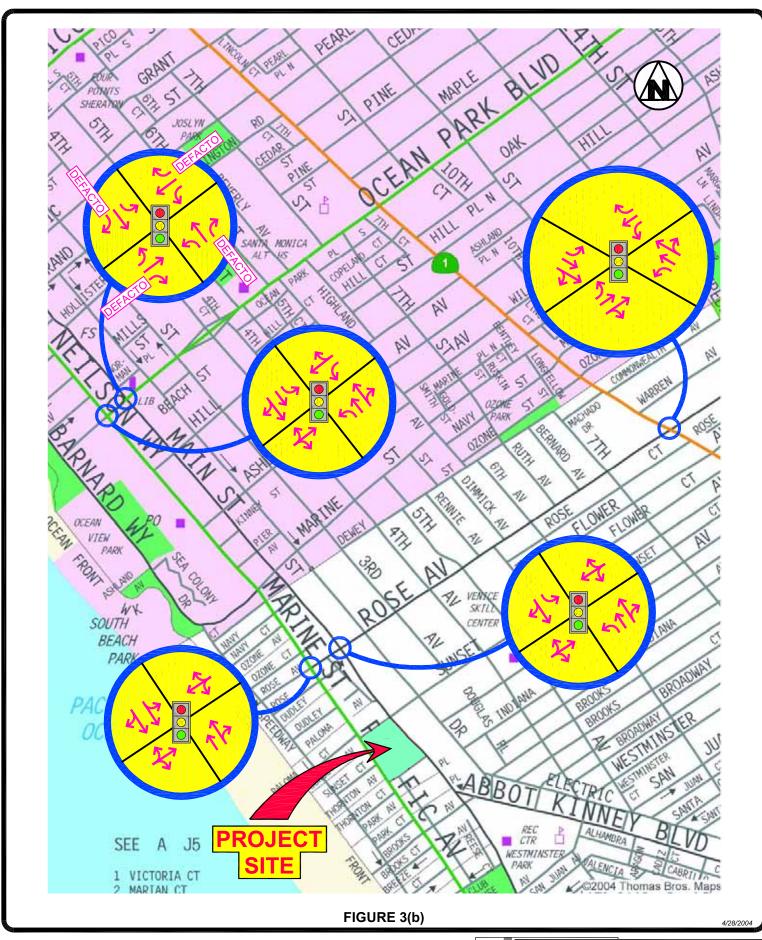
Overland Traffic Consultants, Inc.

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

CHAPTER 3


ENVIRONMENTAL SETTING

Land Use


The project is located in the Venice community plan area in the western portion of the City of Los Angeles. The land use within the plan area (2,061 acres) is approximately 0.7 percent of the land in the City of Los Angeles. The predominant land use in the community is residential with the majority of the multi-family located west of Lincoln Boulevard and south of Washington Boulevard within the Marina Peninsula. Most of the low density residential is located east of Lincoln Boulevard, in the Oxford Triangle and in the western portion of the Southeast Venice sub area. Approximately 7 percent of the land is designated for commercial use of which the majority is small scale and serves the local population. The more intense commercial is located along Lincoln Boulevard. Of the community's total area, 3 percent is designated for manufacturing and industrial uses of which the majority is located along Venice Boulevard. The Community land use and Specific Plan maps for the study area are provided in Appendix A.

Transportation Network

In addition to collecting traffic volume data, field surveys were conducted to determine the roadway and intersection geometry and traffic signal operations. All of the intersections studied are controlled by traffic signals, except the intersections of Sunset Avenue/Main Street, Sunset Avenue/Pacific Avenue, and the intersection of Main Street and Thornton Place which are controlled by stop signs. The nearest regional facility serving the site is the Marina Freeway (State Highway 90) which is located on the east end of Marina del Rey approximately 1.25 mile east of the project site. This east - west freeway/expressway provides direct access to Lincoln Boulevard and provides 2 - 3 lanes in each direction. Located to the north approximately 1.5 miles is the Santa Monica Freeway (Interstate10). Figure 3 illustrates the study locations, type of traffic control and lane configurations.

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

The community plan street designations, street standards and street plans are contained in Appendix B. A brief description of the adjacent roadways is provided below.

Main Street is a designated secondary highway. The roadway is constructed to a width of 56 feet curb to curb on 90 feet of right of way. Two lanes in each direction are provided on Main Street with and on-street metered parking. The standards for a Secondary Highway are a 70-foot roadway and 10-foot sidewalks on each side on 90 feet of right-of-way. However, the roadway centerline is off-set with a 40-foot right-of-way on the west side with a 28-foot ½ roadway. Therefore, the City could ask for a 2-foot widening along the project Main Street frontage. Peak hour traffic is approximately 900 vehicles per hour northbound in the morning and southbound in the afternoon.

Sunset Avenue is a one-way westbound local street. However, at the intersection of Main Street and Sunset Avenue the MTA bus maintenance driveway is situated so that traffic does exit on to Main Street. The roadway is approximately 24 feet in width with parking on the north side. A 6 ± sidewalk exists on the north side but no sidewalk exists on the south side of Sunset Avenue.

Pacific Avenue is designated a modified secondary highway. The roadway is constructed to a width of 44 feet curb to curb on 55 feet of right of way. Two lanes in each direction are provided on Pacific Avenue between 8 AM and 8 PM after 8 PM street parking is provided until 8AM and only one lane in each direction is provided for traffic flow. Peak hour traffic is approximately 1,300 vehicles per hour northbound in the morning and southbound in the afternoon.

Thornton Place is designated a local street but unimproved. The roadway functions as a local alley connecting to other alleys serving the residential neighborhood to the south. Thornton Place is not constructed to Pacific Avenue. The roadway is approximately 16 to 20 feet in width.

Transit Information

Public transportation in the study area is provided by the Metropolitan Transportation Authority (MTA) and the City of Santa Monica. MTA provides routes 33 and 333 (limited) from downtown Santa Monica, along Main Street and Venice Boulevard to the Patsaouras Transit Plaza in downtown Los Angeles. A bus stop is provided at Main Street and Sunset Avenue adjacent to the project site. City of Santa Monica provides Route 1 along Main Street and Route 2 along Pacific Avenue form downtown Santa Monica to Windward Avenue. The transit lines are illustrated in Appendix C.

CHAPTER 4

PROJECT TRAFFIC CHARACTERISTICS

Project Traffic Generation

Traffic-generating characteristics of residential and non-residential land uses have been studied by the Institute of Transportation Engineers (ITE). The results of the traffic generation studies have been published in <u>Trip Generation</u>, 6th <u>Edition</u> handbook. This publication of traffic generation data has become the industry standard for estimating traffic generation for different land uses. The Coastal Corridor Specific Plan also provides trip generation data to be used for projects located within the Specific Plan area. This impact study utilizes both the ITE and Coastal Corridor Specific plan trip generation rates for estimating the traffic generated by the existing and proposed uses at the site.

These trip generation studies indicate that the uses associated with the proposed project generally exhibit the trip-making characteristics per 1,000 square feet of floor area for non-residential uses and per dwelling unit for residential uses as shown by the trip rates in Table 1. On the basis of these traffic generation rates, estimates of the project's driveway traffic were calculated. As shown in Table 2, the proposed project could be expected to generate an average of 2,326 vehicle trips per weekday with 185 morning peak hour trips and 203 afternoon peak hour trips.

For traffic impact purposes, reductions to the project traffic generation have been made to account for the removal of the existing use and for pass-by traffic according to LADOT guidelines. The pass-by trip is not a new trip added to the street by the commercial uses and therefore is not considered as part of the project traffic impact. After these traffic adjustments, it has been estimated that the net traffic added to the streets is 1,168 daily trips with 107 morning trips and 174 afternoon trips, as shown in Table 2. Weekend estimates of project traffic and a discussion of potential weekend traffic impacts are provided in Appendix D.

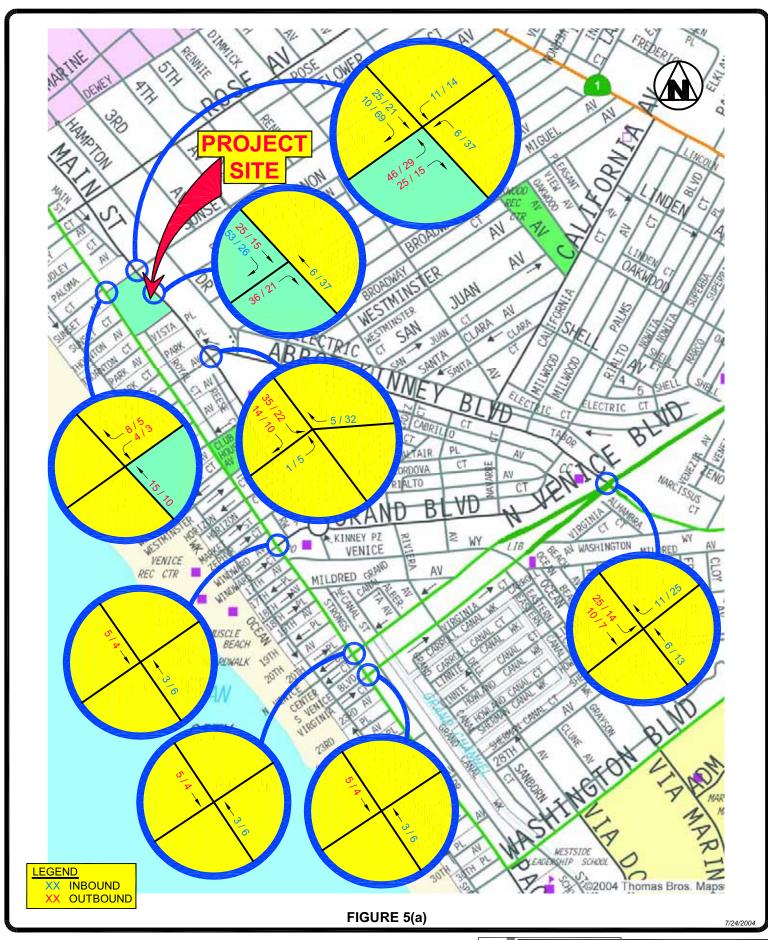
Table 1
Project Trip Generation Rates
(ITE 6th Edition & Coastal)

			AM Peak Hour			PM Peak Hour			
Land Use	ITE Code	<u>Daily</u>	<u>Total</u>	<u>In</u>	<u>Out</u>	<u>Total</u>	<u>In</u>	<u>Out</u>	
Condos (live/work)	230	5.86	0.44	0.07	0.37	0.70	0.47	0.23	
Specialty Retail	814	40.67	1.22	0.74	0.48	5.00	2.15	2.85	
Coffee Shop	833	716	43.87	26.32	17.55	9.6	4.90	4.70	
Health club	493	30	5.68	3.41	2.27	3.60	2.20	1.40	

^{*} PM rates per Coastal Specific Plan & 6h Edition split, SANDAG for health club daily & DOT for AM

Table 2
Estimated Project Traffic Generation

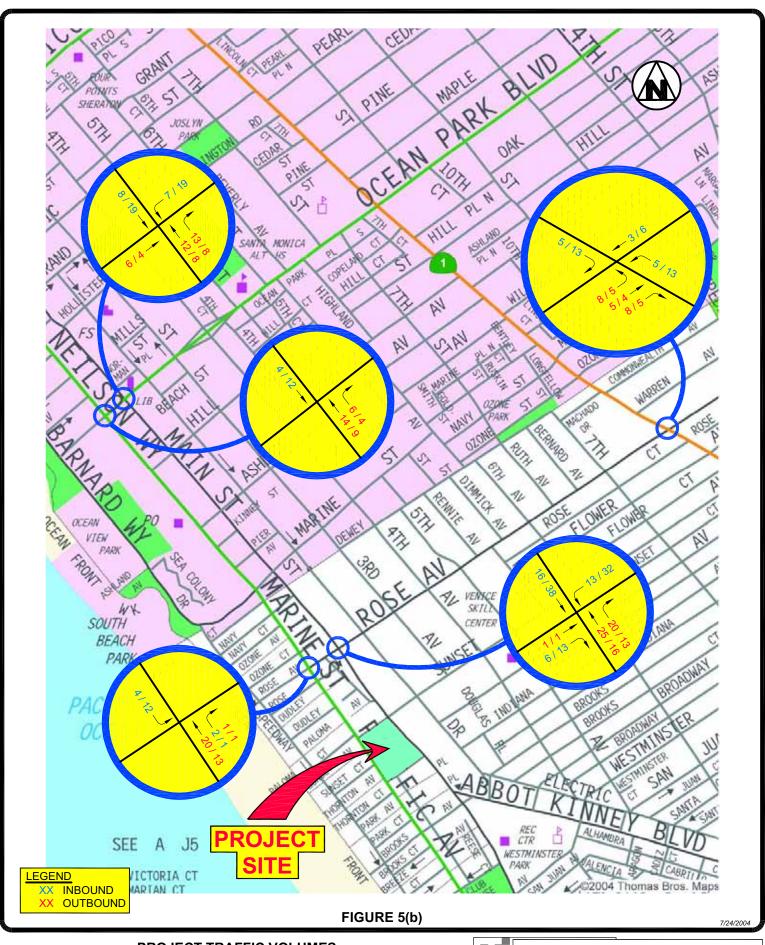
	Daily	AM F	Peak H	<u>lour</u>	PM	Peak H	lour
Proposed Land Use	<u>Traffic</u>	<u>Total</u>	<u>In</u>	<u>Out</u>	<u>Total</u>	<u>In</u>	<u>Out</u>
225 Units	1,319	99	16	83	158	106	52
2,000 s.f. retail	81	2	1	1	10	4	6
1,000 s.f. coffee shop	716	44	26	18	10	5	5
7,000 s.f. spa	210	40	24	16	25	15	10
Driveway Traffic	2,326	185	67	118	203	130	73
Less pass-by							
retail (10%)	- 8	-	-	-	- 1	-	- 1
coffee shop (50%)	-358	- 22	-13	- 9	- 5	- 3	- 2
health club (20%)	- 42	- 8	- 5	- 3	- 5	- 3	- 2
With pass-by	1,918	155	49	106	192	124	68
Less MTA Bus Facility	750 est.	48	15	33	18	11	7
Net New Traffic	1,168	107	34	73	174	113	61



Trip Distribution and Assignment of Project Traffic

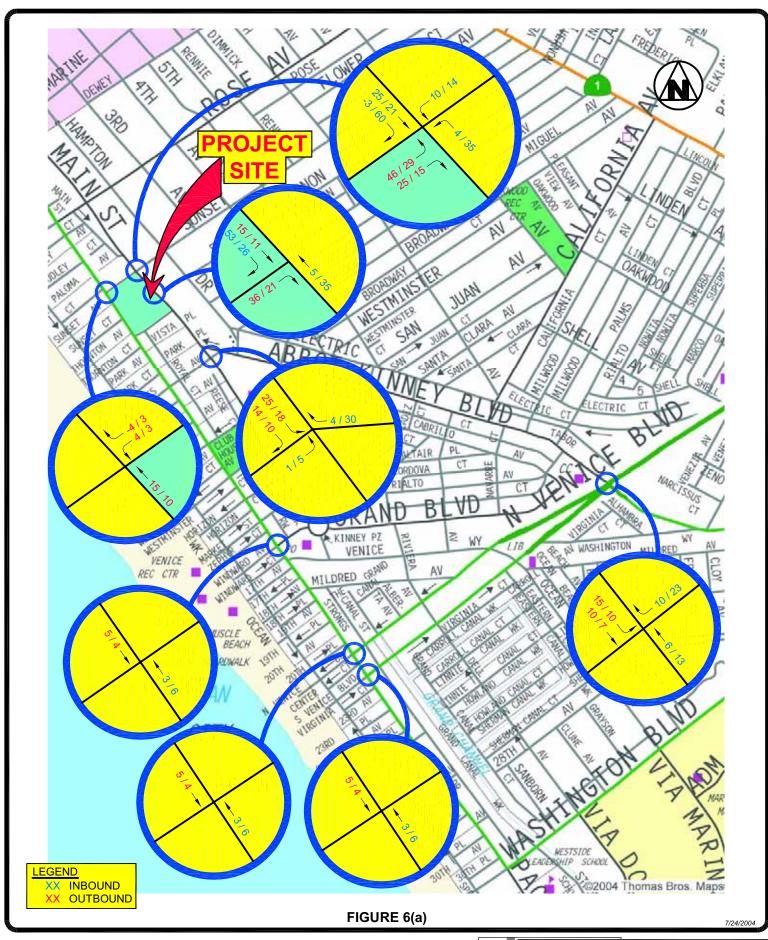
A primary factor affecting trip direction is the spatial distribution of population and employment centers which would generate project trip origins and destinations. The estimated project directional traffic distribution is also based the study area roadway network, existing traffic flow and site access. Figure 4 illustrated the estimated traffic distribution percentages for the project site as approved by the City of Los Angeles Department of Transportation. The assignment of the project traffic to the study intersections was calculated by multiplying the traffic estimates by intersection percentages for each project component. Traffic assignment percentages for the existing use and proposed residential and non-residential uses are contained in Appendix E. This assignment of site generated traffic at each intersection provides the level of detail necessary to analyze the potential traffic impacts created by the redevelopment project at all the study locations. Figure 5 depicts the project traffic prior to the adjustments for the existing site traffic credits. The net new traffic generated by the project used for the traffic impact analysis is illustrated in Figure 6.

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

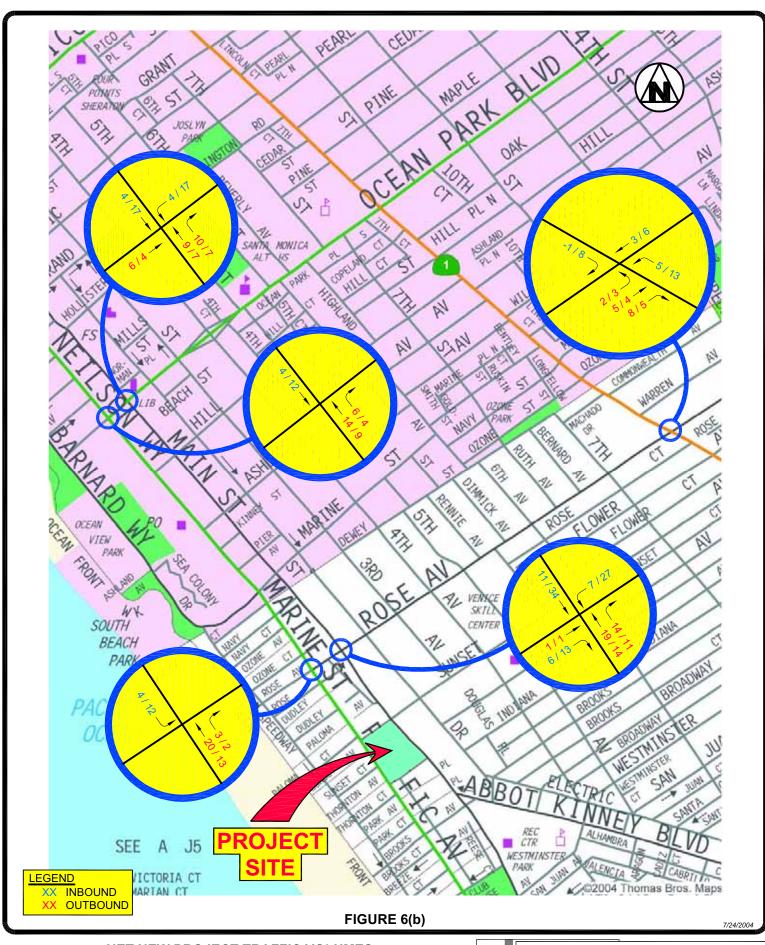


PROJECT TRAFFIC SUNSET AVENUE & MAIN STREET ACCESS AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.


25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

PROJECT TRAFFIC VOLUMES
SUNSET AVENUE & MAIN STREET ACCESS
AM / PM PEAK HOUR


Overland Traffic Consultants, Inc.

NET NEW PROJECT TRAFFIC SUNSET AVENUE & MAIN STREET ACCESS AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.

NET NEW PROJECT TRAFFIC VOLUMES SUNSET AVENUE & MAIN STREET ACCESS AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.

CHAPTER 5

TRAFFIC CONDITIONS ANALYSIS

Analysis of Existing Traffic Conditions

The traffic conditions analysis was conducted using the Critical Movement Analysis (CMA) method for the study intersections located in the City of Los Angeles. For the two intersections located in the City of Santa Monica, the Highway Capacity Manual (HCM) procedures were used to analyze traffic conditions. New peak hour traffic counts (see Appendix F) were collected along with current intersection geometrics and traffic controls to determine the intersection's typical weekday peak hour operating condition.

The CMA procedure uses a ratio of the traffic volume to the intersection capacity to define the proportion of an hour necessary to accommodate all the traffic moving through the intersection. The CMA procedure adds the highest combination of conflicting traffic volume (V) at an intersection and divides the sum by the intersection capacity value for a V/C ratio. Intersection capacity (C) represents the maximum volume of vehicles which has a reasonable expectation of passing through an intersection in one hour under typical traffic flow conditions. V/C ratios provide an ideal means for quantifying intersection operating characteristics for planning purposes. For example, if an intersection has a V/C value of 0.70, the intersection is operating at 70% capacity with 30% unused capacity.

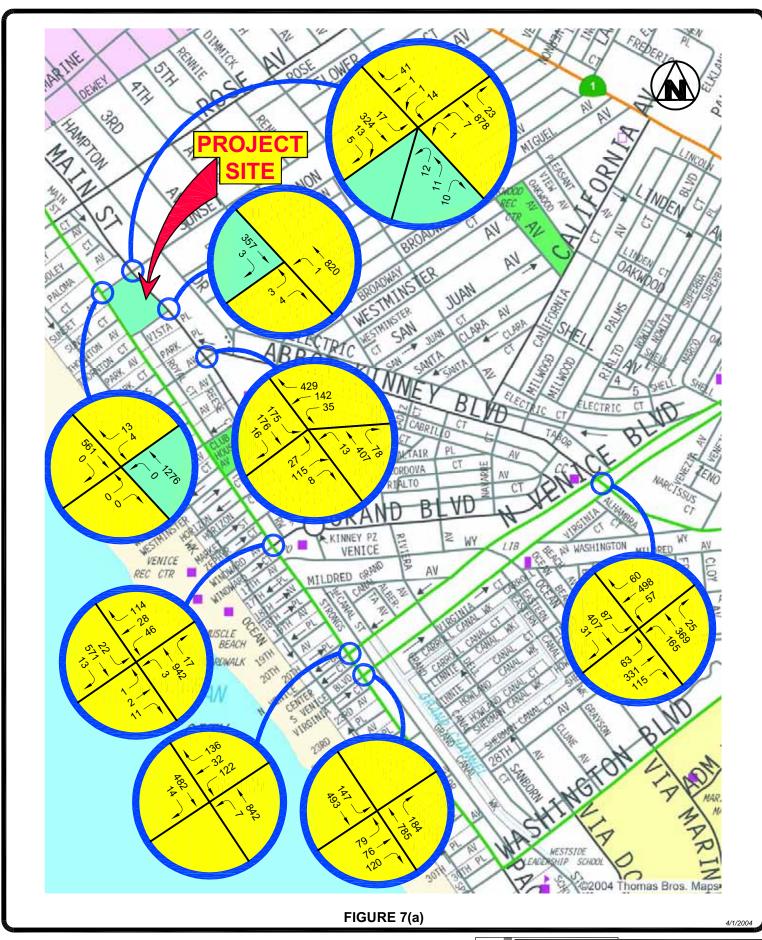
Once the volume-to-capacity ratio has been calculated, operating characteristics are assigned a level of service grade (A through F) to estimate the level of congestion and stability of the traffic flow. The term "Level of Service" (LOS) is used by traffic engineers to describe the quality of traffic flow. Definitions of the LOS grades are shown in Table 3.

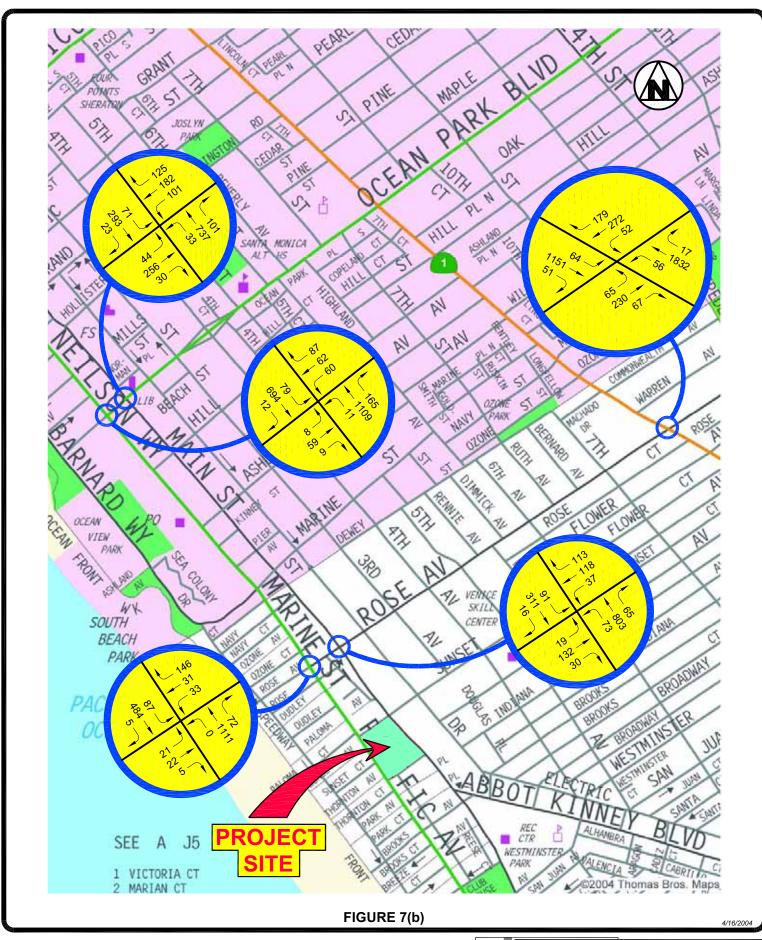
Table 3 V/C Level of Service Definitions

Level of Service	<u>Definition</u>	Equivalent V/C
Α	EXCELLENT - Free flow conditions with low traffic density.	0.00 - 0.60
В	<u>VERY GOOD</u> - A stable flow of traffic.	0.61 - 0.70
С	GOOD - Light congestion but stable, occasional backups behind left-turning vehicles.	0.71 - 0.80
D	FAIR - Approaching instability, drivers are restricted in freely changing lanes. Vehicles may be required to wait through more than one cycle.	0.81 - 0.90
E	POOR - At or near capacity with some long lines for left-turning vehicles. Blockage of intersection may occur if traffic signal does not provide for protected turning movements.	0.91 - 1.00
F	<u>FAILURE</u> - Jammed conditions with stoppages of long duration and long queues.	> 1.00

For the two intersections in the City of Santa Monica, an operational analysis has been conducted using the Santa Monica procedures which are based on the <u>Highway Capacity Manual</u>, (HCM). This procedure calculates the vehicle delays at signalized intersections based on the total elapsed time including initial deceleration, queue moveup time, stopped delay and final acceleration delay. Using this procedure the LOS is evaluated on the basis of the total delay per vehicle (in seconds per vehicle) as shown below:

LOS	Control Delay per Vehicle (s/veh)
Α	≤10
В	> 10 – 20
С	> 20 – 35
D	> 35 – 55
E	> 55 – 80
F	> 80

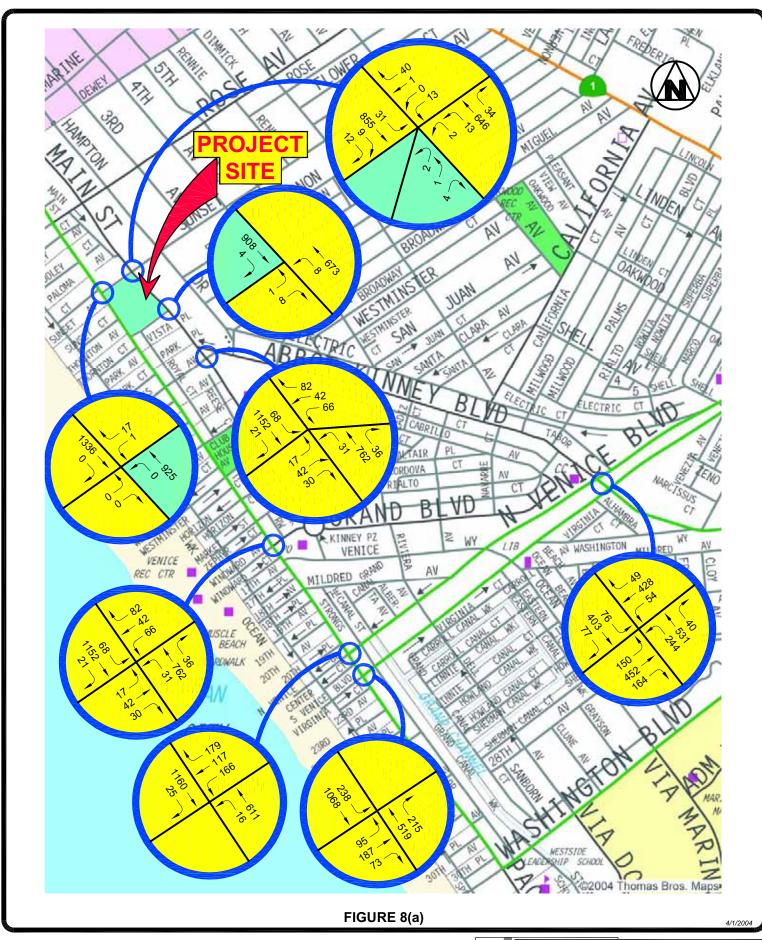

The HCM procedures estimate the average number of seconds of delay experienced by motorists traveling through the intersections. Using these procedures, the threshold of significance used by the City of Santa Monica is based on the amount of change in average vehicular delay incurred by vehicles through the intersection (as opposed to the change in the volume/capacity ratio used by the City of Los Angeles to quantify the level of service of an intersection).


By applying these procedures to the study intersections, the ICU values (and delay for the Santa Monica intersections) along with the corresponding Levels of Service (LOS) for existing traffic conditions were determined with the results provided in Table 4. As shown, all the study intersections are operating at acceptable levels of service without any significant traffic delays. Supporting capacity worksheets are contained in Appendix G of this report.

Traffic volume data used in the following peak hour intersectional analysis were based on traffic counts conducted by The Traffic Solution, an independent traffic data collection company. Traffic counts were conducted by counting the number of vehicles at each of the 13 study intersections making each movement. The peak hour volume for each intersection was then determined by finding the four highest consecutive 15-minute volumes for all movements. Existing peak hour traffic volume at each study intersection is illustrated in Figure 7 for the morning rush hour and Figure 8 for the afternoon rush hour.

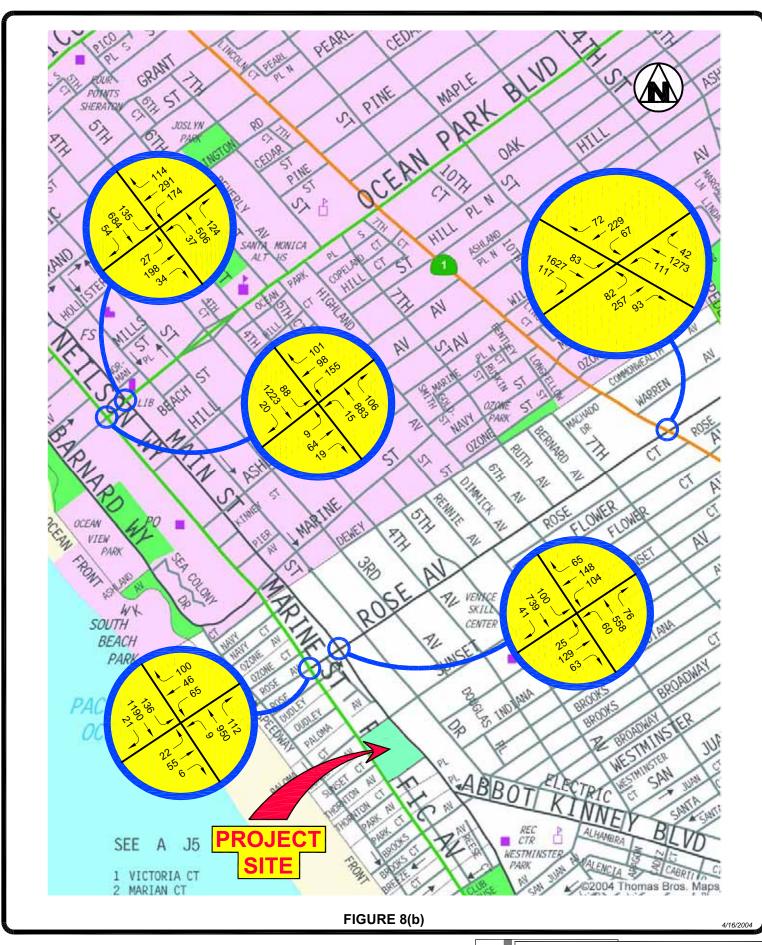
Table 4
Level of Service for Existing Conditions

		AM Peak H	<u>our</u>	PM Peak Hour	
<u>No.</u>	<u>Intersection</u>	<u>V/C</u>	<u>LOS</u>	<u>V/C</u>	<u>LOS</u>
2.	Main Street & Rose Ave.	0.441	Α	0.688	В
3.	Main Street & Sunset Ave.	0.450	Α	0.436	Α
4.	Main Street & Thornton Pl.	0.348	Α	0.394	Α
5.	Main Street & Abbot Kinney Blvd.	0.482	Α	0.395	Α
6.	Abbot Kinney Blvd. & Venice Blvd.	0.510	Α	0.625	В
8.	Pacific Ave. & Rose Ave.	0.506	Α	0.510	Α
9.	Pacific Ave. & Sunset Ave.	0.546	Α	0.572	Α
10.	Pacific Ave. & Windward Ave.	0.361	Α	0.472	Α
11.	Pacific Ave. & Venice Blvd. (N)	0.552	Α	0.803	D
12.	Pacific Ave. & Venice Blvd. (S)	0.736	С	0.730	С
13.	Rose Ave. & Lincoln Blvd.	0.784	С	0.763	С
	Santa Monica Intersections	Delay (sec.)	<u>LOS</u>	Delay (sec.)	<u>LOS</u>
1.	Main Street & Ocean Park Blvd.	14.1	В	14.1	В
7.	Neilson Way & Ocean Park Blvd.	7.3	Α	9.4	Α



EXISTING (2004) TRAFFIC VOLUMES

AM PEAK HOUR


Overland Traffic Consultants, Inc.

EXISTING (2004) TRAFFIC VOLUMES PM PEAK HOUR

Overland Traffic Consultants, Inc.

EXISTING (2004) TRAFFIC VOLUMES PM PEAK HOUR

Overland Traffic Consultants, Inc.

Analysis of Future Traffic Conditions

Future traffic volume projections have been developed to analyze the traffic conditions after completion of other planned land developments including the proposed project. Pursuant to the City of Los Angeles traffic impact guidelines, the following steps have been taken to develop the future traffic volume estimate:

- (a) Existing traffic + ambient growth (1 % per year) to 2009;
- (b) Traffic in (a) + related projects (without project scenario);
- (c) Traffic in (b) with the proposed project traffic (with project scenario);
- (d) Traffic in (c) + the proposed traffic mitigation, if necessary.

The future cumulative analysis includes other development projects located within the study area that are either under construction or planned. As part of this analysis, development lists were obtained from the City of Los Angles Department of Transportation and the City of Santa Monica Planning Department web site. These lists were reviewed and checked in the field to identify those projects that could produce additional traffic at the study intersections by the future study year. It should be noted that this project, or any actions taken by the City regarding this project, does not have a direct bearing on these other proposed related projects. The descriptions of the 21 related projects are listed in Table 5 with its location illustrated on Figure 9.

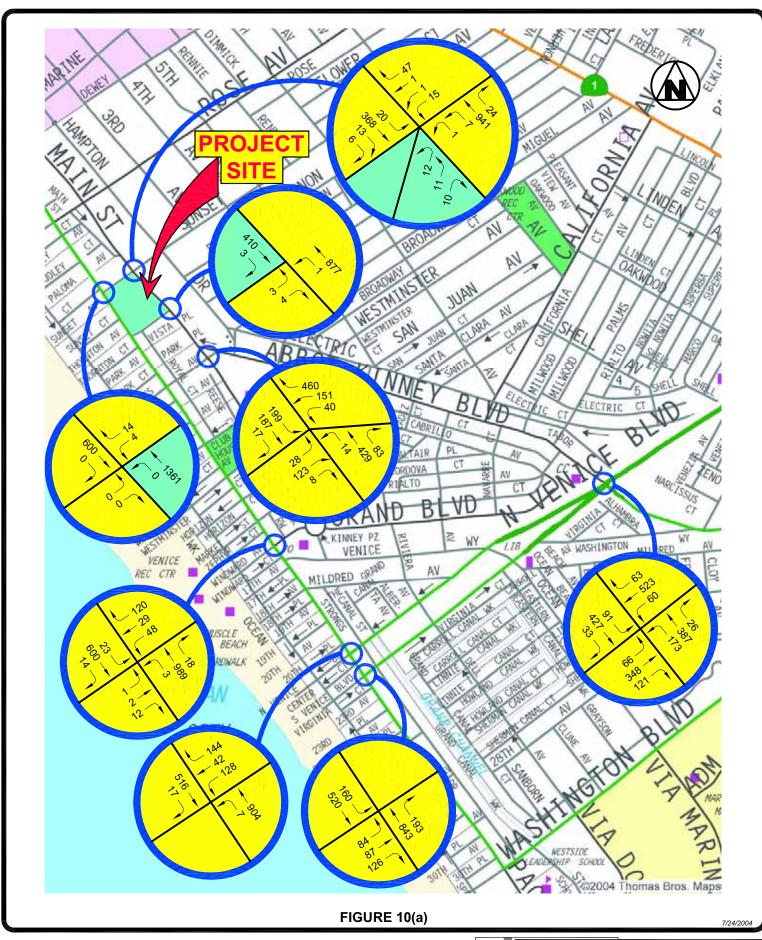
To evaluate future traffic conditions with the related projects, estimates of the peak hour trips generated by the other developments are shown in Table 6. The cumulative traffic impact of future traffic growth has been calculated by adding the existing traffic volume, the ambient growth factor and traffic from these other development projects. Estimated traffic conditions created by the ambient traffic growth plus other development projects are shown in Table 7. Future traffic volume estimated for the peak hours without the project are illustrated in Figures 10 and 11 for the morning and afternoon peak hours.

Overland Traffic Consultants, Inc.

Table 5 Listing of Related Projects

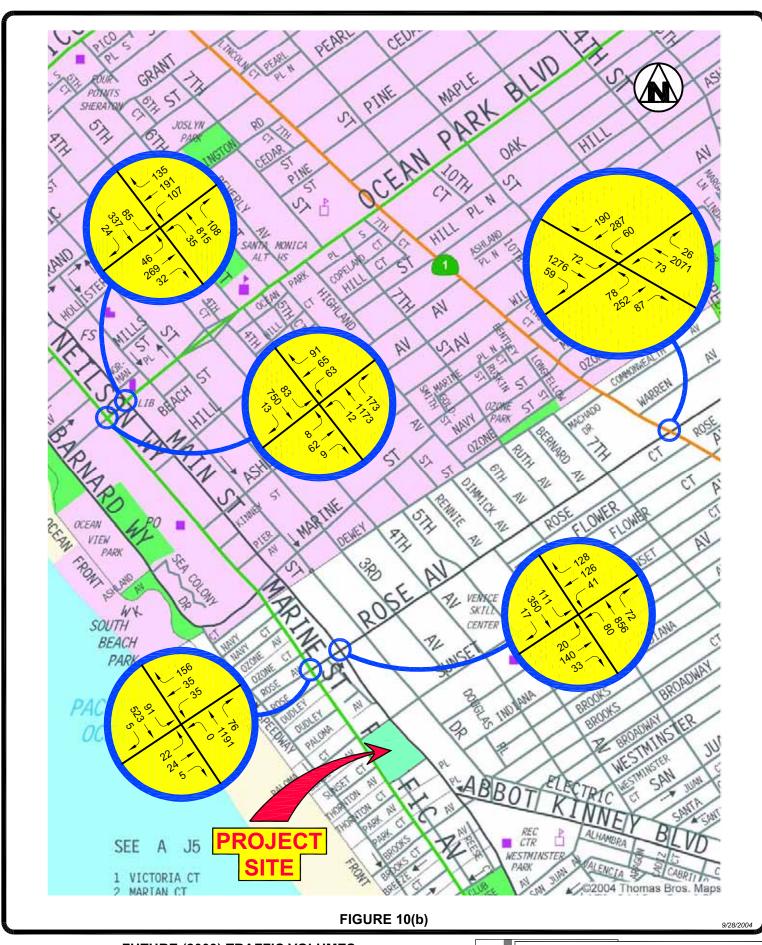
<u>No</u> .	<u>Project</u>	Listing of Related Pro <u>Size</u>	ojects <u>Location</u>
1.	Mixed - Use	123 townhomes & 6,000 sf	SWC Washington Bd. & Via Dolce
		office less 88,216 sf office	
2.	Mixed – use	•	E/S Via Marina S/O Marquesas Way
	Second Generation	288 Room Hotel	
		125 Boat Slips	
_		2 Acre Park	
3.	Mixed – use	960 Apartments	E/S Via Marina S/O Panay Way
	Second Generation	241 Senior Apts.	
		4,000 s.f. retail	
		6,000 s.f. commercial	
	N 4' 1	439 Boat Slips	D 100 D 144
4.	Mixed – use	100 Apartments	Parcel 20 Panay Way
_	N 4' 1	6,885 s.f. commercial	4040 D : 4 Ot 4
5.	Mixed -use	80 lofts & 40,000 sf storage	1046 Princeton Street
c	A so a whose a so ha	less 32,000 sf storage	Princeton St. and Carter Ave.
6. 7.	Apartments Retail/Restaurant	300 dwelling units 42,270 s.f. retail	4141 Lincoln Blvd.
1.	Retail/Restaurant	•	4141 LINCOIN BIVO.
8.	Office	9,200 s.f. restaurant 15,180 s.f.	2100 Abbot Kinney Blvd.
9.		pumps and 720 sf mini mart	
10.	Mixed -use	197,000 s.f. retail	1430 Lincoln Blvd.
	Wilhou Goo	280 unit apartments	1 100 Emodin Biva.
11.	Condominiums	35 units	s/o 615 Hampton Dr.
12.	Art Lofts	51 dwelling units	615 Hampton Drive
13.	Mixed - use	9,000 s.f. retail	212 Marine Street
		24 condominiums	
14.	Apartments	44 units	2209 Main Street
15.	Mixed - use	6,553 s.f. retail	2021 - 29 Main Street
		26 apartments	
16.	Mixed - use	11,549 s.f. retail	2012 - 24 Main Street
47	0 1 1 1	107 apartments	105 D 15 01 1
17.	Condominiums	9 units	125 Pacific Street
18.	Civic Center Garage		1685 Main Street
40	DANDII I (885 parking spaces	4700 M : 01 1
19.	RAND Headquarters		1700 Main Street
20	Dlava Vieta	existing 295,000 s.f.	leffereen hd & Lincoln Dd
20. 21.	Playa Vista Pioneer Bakery	Phases 1 & 2 70 condominiums	Jefferson bd. & Lincoln Bd. 512 Rose Avenue
۷۱.	Fluited Dakery	3,953 s.f. restaurant	312 Nose Avenue
		1,726 s.f. bakery/retail	

Overland Traffic Consultants, Inc.

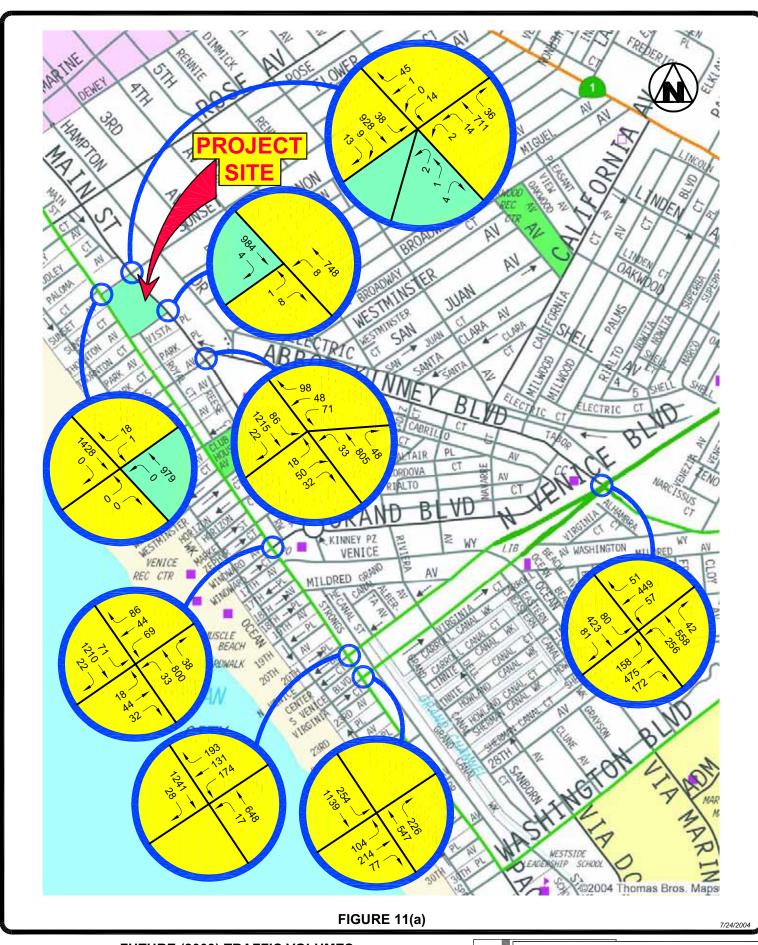

Table 6
Estimated Traffic Generation for Other Projects

		Daily	<u>AM F</u>	AM Peak Hour		Peak Hour
<u>No.</u>	Related Project	<u>Traffic</u>	<u>In</u>	<u>Out</u>	<u>In</u>	<u>Out</u>
1.	Mixed - use	- 337	- 123	27	19	- 163
2.	Mixed - use	2,630	79	150	132	89
3.	Mixed - use	2,411	39	154	120	55
4.	Mixed – use	614	14	37	35	27
5.	Mixed – use	550	8	35	34	17
6.	Apartments	1,989	24	129	125	61
7.	Retail dealership	975	-	-	49	33
8.	Office	312	37	5	7	36
9.	Gas station with mart	977	30	30	40	40
10.	Mixed – use	12,398	169	213	636	613
11.	Condominiums	205	3	12	16	8
12.	Condominiums	299	4	18	24	12
13.	Mixed – use	500	5	11	17	13
14.	Apartments	292	4	19	18	9
15.	Mixed – use	450	6	14	23	18
16.	Mixed – use	1,240	17	51	66	46
17.	Condominiums	53	1	3	3	2
18.	Retail	508	9	6	14	18
19.	RAND Corp.	80	2	18	2	8
20.	Playa Vista Phase I The Village at Playa Vista	44,050 24,220	2,970 577	1,400 1,049	1,750 1,275	2,950 1,027
21.	Mixed – Use less existing	1,208 316	40 20	45 8	61 11	46 17

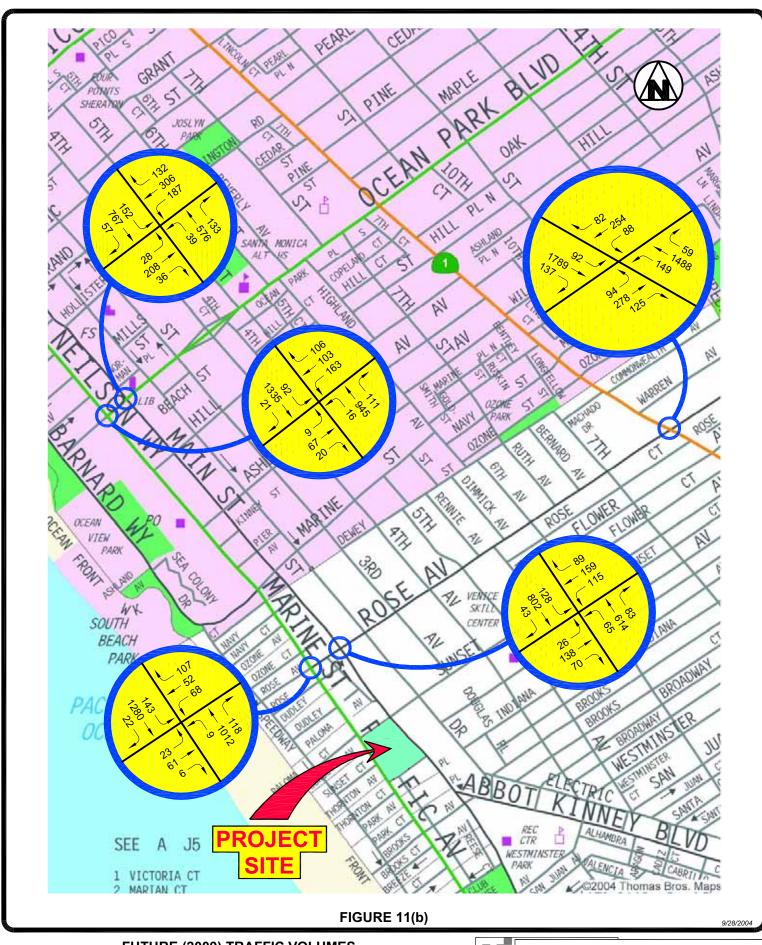
Table 7
Future Traffic Conditions Without Project


<u>No</u>	. Intersection	Peak <u>Hour</u>	Exis	sting LOS	<u>Future</u> V/C	Withou LOS	t Project Growth
2.	Main Street & Rose Ave.	AM PM	0.441 0.688	A B	0.493 0.767	A C	+ 0.052 + 0.079
3.	Main Street & Sunset Ave.	AM PM	0.460 0.438	A A	0.495 0.477	A A	+ 0.035 + 0.039
4.	Main Street & Thornton Place	AM PM	0.348 0.394	A A	0.372 0.427	A A	+ 0.024 + 0.033
5.	Main Street & Abbot Kinney Blvd.	AM PM	0.482 0.395	A A	0.529 0.425	A A	+ 0.047 + 0.030
6.	Abbot Kinney Blvd. & Venice Blvd.	AM PM	0.510 0.625	A B	0.541 0.662	A B	+ 0.031 + 0.037
8.	Pacific Ave. & Rose Ave.	AM PM	0.506 0.510	A A	0.548 0.555	A A	+ 0.042 + 0.045
9.	Pacific Ave. & Sunset Ave.	AM PM	0.546 0.572	A A	0.582 0.611	A B	+ 0.036 + 0.039
10.	Pacific Ave. & Windward Ave.	AM PM	0.361 0.472	A A	0.384 0.501	A A	+ 0.023 + 0.029
11.	Pacific Ave. & Venice Blvd. (N)	AM PM	0.552 0.803	A D	0.599 0.867	A D	+ 0.047 + 0.064
12.	Pacific Ave. & Venice Blvd. (S)	AM PM	0.736 0.730	C C	0.797 0.791	C C	+ 0.061 + 0.061
13.	Rose Ave. & Lincoln Blvd.	AM PM	0.784 0.763	C C	0.890 0.873	D D	+ 0.106 + 0.110
Santa	Monica Delay Procedures		<u>Delay</u>	<u>LOS</u>	<u>Delay</u>	<u>LOS</u>	<u>Growth</u>
1.	Main Street & Ocean Park Blvd.	AM PM	14.1 14.1	B B	16.9 16.7	B B	+ 2.8 + 2.6
7.	Neilson Way & Ocean Park Blvd.	AM PM	7.3 9.4	A A	7.7 10.0	A B	+ 0.4 + 0.6

FUTURE (2009) TRAFFIC VOLUMES
WITHOUT PROJECT
AM PEAK HOUR


Overland Traffic Consultants, Inc.

FUTURE (2009) TRAFFIC VOLUMES WITHOUT PROJECT AM PEAK HOUR


Overland Traffic Consultants, Inc.

FUTURE (2009) TRAFFIC VOLUMES
WITHOUT PROJECT
PM PEAK HOUR

Overland Traffic Consultants, Inc.

FUTURE (2009) TRAFFIC VOLUMES WITHOUT PROJECT PM PEAK HOUR

Overland Traffic Consultants, Inc.

It should be noted that the impact analysis does not consider any changes to the existing intersection configuration (i.e., future roadway improvements). However, the Marina bypass is being studied to provide direct access to the Marina to mitigate Second Generation Development currently being proposed in the Marina

Traffic conditions after completion of the redevelopment project have been calculated by adding the project volume to the without traffic volume estimates. The traffic impact of the added project traffic at the study intersections is shown in the table below using the "without project" estimates as the baseline.

Comparing the changes in the traffic conditions between the without and with project scenarios provides the necessary information to determine if the project creates a significant impact on the study intersections. According to the standards adopted by LADOT for the Coastal Corridor, a traffic impact is considered significant if the related increase in the V/C value equals or exceeds the thresholds shown in the table below:

City of Los Angeles Criterion:

<u>LOS</u>	Final V/C Value	Increase in V/C Value
A - C	0.00 - 0.79	+ 0.04
D	0.80 - 0.89	+ 0.02
E-F	≥ 0.90	+ 0.01 or more

The City of Santa Monica evaluates the traffic impact based on the increase in average vehicle delay using the Highway Capacity Manual operational analysis methodology. The significance criterion is summarized below for arterial intersections.

City of Santa Monica Significant Traffic Impact Criterion:

Future Base Scenario

If LOS = A, B or C And is an arterial intersection

If LOS = D
And is an arterial intersection

If LOS = E
And is an arterial intersection

If LOS = F
And is an arterial intersection

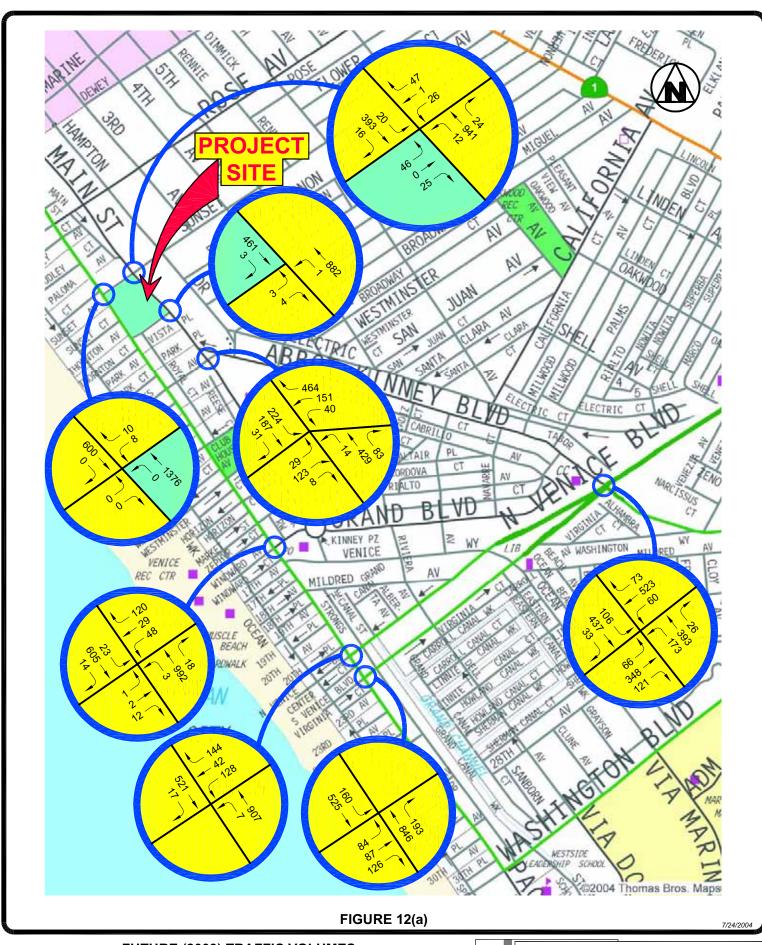
Future Plus Project Scenario

Significant Impact if:
Average vehicle delay is ≥ 15 seconds
Or
LOS becomes D, E or F

Significant Impact if:
Average vehicle delay is ≥ 15 seconds
Or
LOS becomes E or F

Significant Impact if:
Any net increase in average seconds of
delay per vehicle

Significant Impact if: HCM V/C ratio net increase is ≥ 0.005


Table 8 shows the results of the impact analysis with the Sunset Avenue residential access and the Main Street non-residential access. As shown, 2 intersections located in the City of Los Angeles would be significantly impacted by project traffic. Those intersections are:

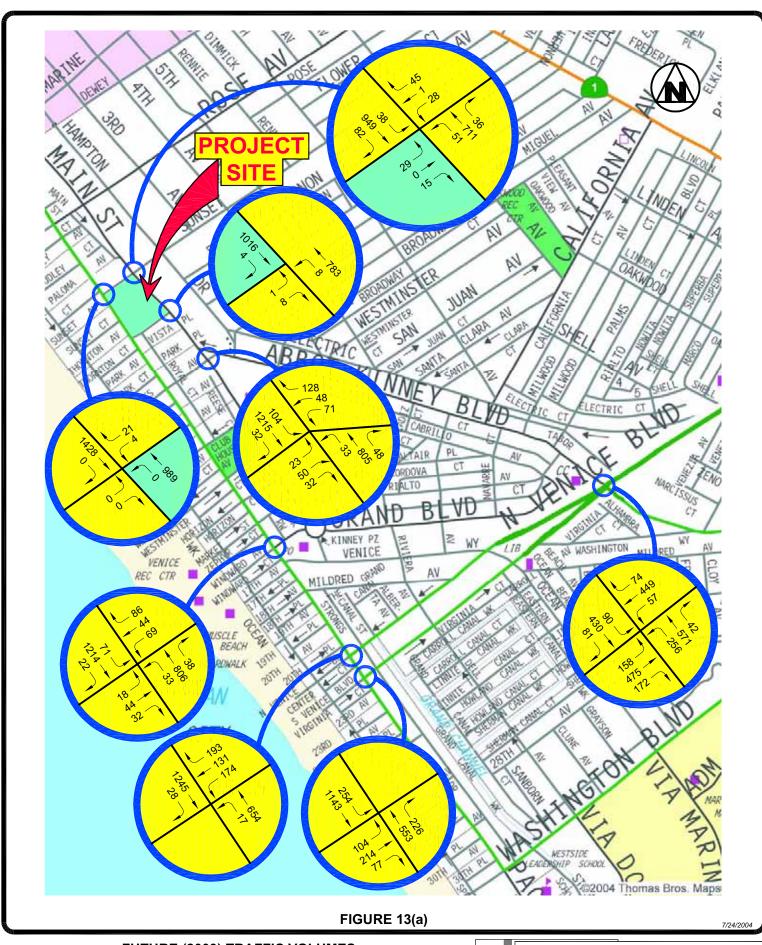
- 1. Main Street and Rose Avenue;
- 2. Main Street and Sunset Avenue;

Future cumulative "with project" traffic volumes for the Sunset/Main access plan are shown in Figures 12 and 13 for the morning and afternoon peak hours, respectively.

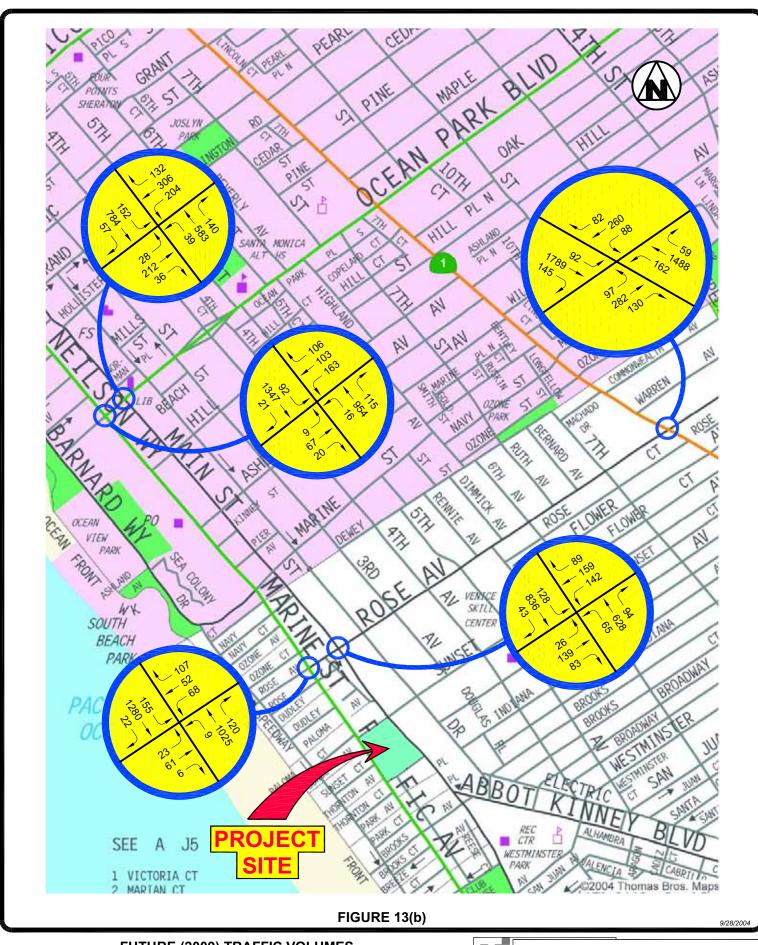
Table 8
Future Traffic Conditions With Project (Sunset & Main Access)


<u>No</u>	. Intersection	Peak <u>Hour</u>	Future <u>V/C</u>	Without LOS	<u>Future</u> <u>V/C</u>	e With P LOS	<u>Project</u> <u>Impact</u>
2.	Main Street & Rose Ave.	AM PM	0.493 0.767	A C	0.508 0.807	A D	+ 0.015 + 0.040*
3.	Main Street & Sunset Ave.	AM PM	0.495 0.477	A A	0.524 0.573	A A	+ 0.029 + 0.096*
4.	Main Street & Thornton Place	AM PM	0.372 0.427	A A	0.374 0.440	A A	+ 0.002 + 0.013
5.	Main Street & Abbot Kinney Blvd.	AM PM	0.529 0.425	A A	0.549 0.438	A A	+ 0.020 + 0.013
6.	Abbot Kinney Blvd. & Venice Blvd.	AM PM	0.541 0.662	A B	0.547 0.666	A B	+ 0.006 + 0.004
8.	Pacific Ave. & Rose Ave.	AM PM	0.548 0.555	A A	0.558 0.559	A A	+ 0.010 + 0.004
9.	Pacific Ave. & Sunset Ave.	AM PM	0.582 0.611	A B	0.588 0.616	A B	+ 0.006 + 0.005
10.	Pacific Ave. & Windward Ave.	AM PM	0.384 0.501	A A	0.385 0.502	A A	+ 0.001 + 0.001
11.	Pacific Ave. & Venice Blvd. (N)	AM PM	0.599 0.867	A D	0.601 0.870	B D	+ 0.002 + 0.003
12.	Pacific Ave. & Venice Blvd. (S)	AM PM	0.797 0.791	C C	0.799 0.794	C C	+ 0.002 + 0.003
13.	Rose Ave. & Lincoln Blvd.	AM PM	0.890 0.873	D D	0.894 0.891	D D	+ 0.004 + 0.018
Santa	Monica Delay Procedures		<u>Delay</u>	<u>LOS</u>	<u>Delay</u>	<u>LOS</u>	<u>Impact</u>
1.	Main Street & Ocean Park Blvd.	AM PM	16.9 16.7	B B	17.5 18.2	B B	+ 0.6 + 1.5
7.	Neilson Way & Ocean Park Blvd.	AM PM	7.7 10.0	A B	7.8 10.1	A B	+ 0.1 + 0.1

FUTURE (2009) TRAFFIC VOLUMES WITH PROJECT (SUNSET / MAIN) AM PEAK HOUR


Overland Traffic Consultants, Inc.

FUTURE (2009) TRAFFIC VOLUMES WITH PROJECT (SUNSET / MAIN) AM PEAK HOUR


Overland Traffic Consultants, Inc.

FUTURE (2009) TRAFFIC VOLUMES WITH PROJECT (SUNSET / MAIN) PM PEAK HOUR

Overland Traffic Consultants, Inc.

FUTURE (2009) TRAFFIC VOLUMES WITH PROJECT (SUNSET / MAIN) PM PEAK HOUR

Overland Traffic Consultants, Inc.

Impacts on Regional Transportation System

The Congestion Management program (CMP) was adopted to track regional traffic growth, building permits and transportation improvements. The CMP designated a transportation network including all state highways and some arterials within the County to be monitored by local jurisdictions. If the LOS standard deteriorates on the CMP network, then local jurisdictions must prepare a deficiency plan to be in conformance with the CMP program. Local jurisdictions found to be in nonconformance with the CMP risk the loss of state gas tax funding. Current changes to the CMP program being considered by local officials include adding a countywide trip fee to mitigate regional cumulative impacts.

For purposes of the CMP LOS analysis, a substantial change in freeway segments are defined as an increase or decrease of 0.10 in the demand to capacity ratio and a change in LOS. A CMP traffic impact analysis is required if a project will add 150 or more trips to a freeway segment in either direction during either the AM or PM weekday peak hour. The nearest CMP monitoring location is Lincoln Boulevard and Venice Boulevard. The traffic study shows that significant traffic impacts would not be exceeded at this location. Neither of the Venice Boulevard or Lincoln Boulevard arterial segments carry more than the 50 peak hour project trip limit. As shown in Figure 6, the proposed project does not exceed the CMP traffic limits. Therefore, no additional CMP analysis is necessary.

Construction Impacts

Neither the Los Angeles Department of Transportation, nor the L.A CEQA Thresholds Guide has established a significance threshold for traffic impacts resulting from construction activity. For purposes of this Traffic Report a short-term significant impact on traffic due to construction is conservatively identified if:

- Haul trucks and staging activities associated with excavation would cause substantial inconvenience to travelers, residents and commercial interests in the project area for a period of at least several months;
- The trips generated due to construction activities would exceed the thresholds established for project operations, as may be adjusted by LADOT to account for

the relative short-term nature of construction activities as compared to the longterm impacts associated with indefinite project operations.

Construction of the project will require environmental clean up, demolition of all existing structures, grading, and construction of the new mixed-use development. Traffic during construction activities would be generated by construction equipment, crew vehicles, haul trucks and vehicles delivering building materials. The number of construction workers and construction equipment would vary throughout the construction process in order to maintain a reasonable schedule of completion.

The site preparation work is estimated to take approximately 2 months with site grading/excavation lasting 3 months in duration. The construction of the parking garage will take approximately 4 months to complete. Upon completion of the garage, additional parking for construction activities will be available for the construction of the residential and commercial uses which will take approximately 15 months to complete.

Construction workers would normally arrive at the project site and depart during nonpeak hours, and therefore would not add substantially to the trips occurring during the peak hours. Total trip generation and related impacts would be considerably less than the impacts than would occur during project operations. Impacts from construction vehicles would be less than significant.

The amount of export material at the site for the construction of the mixed-use project is estimated at 125,000 cubic yards. During the early stages of the grading operation it is estimated that moving this amount of material will generate up to approximately 100 truckloads per day, or 200 directional daily trips. This level of truck activity would generated approximately 13 peak hour truckloads an equivalent of 26 truck trips during each hour of an 8 hour work day.

During excavation, conflicts between truck haul activities and street traffic, and pedestrian travel could occur due to site constraints related to the project's location, with nearby neighborhoods and certain roadway limitations. Because potential conflicts would occur for an estimated 100 truckloads (200 trips) per day, and related conflicts

would occur over a period estimated at three to five months, a substantial inconvenience may occur for travelers, residents and commercial uses in the area unless measures are taken to control such activity. Therefore, the project's construction impacts on traffic due to excavation on traffic are considered a short-term potentially significant short-term impact, prior to mitigation. Mitigation measures are proposed to reduce the potential impact to less than significant levels.

Staging of the haul trucks during excavation shall occur on a designated major arterial street or off-street parking lot were the potential for residential parking and traffic impacts are less than significant. Off-site trucks will then be call to the construction site for loading operations. No detours around the construction site are expected, however, flagmen would be used to control traffic movement during the ingress and egress of trucks and heavy equipment. Based on preliminary proposals, the haul route identified for the site excavation and soil movement would direct traffic to travel north on Main Street, east on Rose Avenue and south on Lincoln Boulevard to the Marina Freeway. Return trips are anticipated to travel the same route.

All delivery trucks would be brought onto the project site and be stored within the perimeter fence of the construction site. Staging will not be allowed on neighborhood residential streets. Staging of construction vehicles on Main Street is not recommended due to lost parking and traffic flow considerations. Any staging on Main Street shall be very limited and allowed only on special occasions and pre-approved by the City via a street use permit.

Construction hours and days are planned to occur from 7 am to 3 pm, Monday through Friday with overtime hours and some weekends as required. Since the majority of construction workers trips would occur outside of the morning and afternoon peak hours and would be substantially less than the traffic generated by the occupied project analyzed in this report as stated previously, therefore construction impacts from this particular type of construction employee traffic activity would be less than significant.

Construction workers will not be allowed to park on the residential neighborhood streets, off-site parking areas, such as the public parking lot located 1 block north of the site shall be used for construction worker parking. Such off-site parking areas shall be located within walking distance of the project site or shuttles services will be provided by the project applicant between the off-site parking areas and the project site.

The project developer will be required to submit formal construction staging and traffic control plans for review and approval by the local agency prior to the issuance of any construction permits. A Work Area Traffic Control Plan will be developed for use during the entire construction period. This plan will also incorporate safety measures around the construction site to reduce the risk to pedestrian traffic near the work area. The Work Area Traffic Control Plan will identify all traffic control measures, signs, delineators and work instructions to be implemented by the construction contractor through the duration of demolition and construction activity.

The proposed mitigation measures listed below are recommended to minimize the potential conflicts between construction activities, street traffic and pedestrians. Mitigation measures may also include access restrictions, covered sidewalks, and designating alternative pedestrian routes.

Prior to the issuance of construction permits the developer shall prepare Work Area Traffic Control Plans that at a minimum should include:

- Identification of a designated haul route to be used by construction trucks;
- Provide an estimate of the number to trucks trips and anticipated trips;
- Identification of traffic control procedures, emergency access provisions, and construction alternative crew parking locations;
- Identification of the on-site location of vehicle and equipment staging;
- Provide a schedule of construction activities;
- Limitations on any potential lane closures to off-peak travel periods;
- Scheduling the delivery of construction materials during non-peak travel periods, to the extent possible;
- Coordinating deliveries to reduce the potential of trucks waiting to unload building materials;
- Prohibiting parking by construction workers on neighborhood streets as determined in conjunction with the City.

In summary, the project's construction impacts on traffic due to excavation on traffic are considered a short-term potentially significant short-term impact, prior to mitigation.

Mitigation measures are proposed to reduce the potential impact to less than significant levels.

CHAPTER 6

MITIGATION MEASURES

The analysis contained in this study has determined that the added traffic volume generated by the mixed use project may significantly impact the traffic flow at two intersections prior to the implementation of traffic mitigation measures. The two intersections expected to be impacted by the project alternative with Sunset Avenue and Main Street access are: Main Street and Rose Avenue, and Main Street and Sunset Avenue. Listed below are the recommended traffic mitigation measures for each project alternative:

- Right-turn Restrictions The proposed Main Street non-residential access will be restricted to right-turns only (i.e., no left-turn ingress or egress will be permitted at this driveway).
- 2. Main Street and Rose Avenue Pursuant to the Venice Community Plan Transportation Program, it is recommended that the project implement the improvement listed for Main Street and Rose Avenue (Chapter III page 30) which is to restripe the westbound Rose Avenue approach to provide an exclusive left-turn lane. Implementation of this improvement would require the removal of approximately four on-street parking spaces on Rose Avenue east of Main Street.
- 3. Main Street and Sunset Avenue Remove parking on the west side of Main Street north of Sunset Avenue for the installation of a southbound right-turn only lane at Sunset Avenue. Restripe the westbound Sunset Avenue approach to provide an exclusive right-turn lane. Construct the west leg of Sunset Avenue (project side) to include an exclusive right-turn lane and a through/left-turn lane. Implementation of this improvement would require the removal of approximately three on-street parking spaces on the west side of Main Street north of Sunset Avenue.

The Sunset/Main access project's traffic impacts will be fully mitigated with the implementation of the traffic mitigation measures listed above as shown in Table 9.

Table 9
Future Traffic Conditions
with Sunset/Main Access + Mitigation

	No. Intersection	Peak <u>Hour</u>	Future W CMA	<u>Vithout</u> LOS	With Pro	oject + LOS	Mitigation Impact
2.	Main Street & Rose Avenue	AM PM	0.493 0.767	A C	0.477 0.773	A C	- 0.016 + 0.006
3.	Main Street & Sunset Avenue	AM PM	0.495 0.477	A A	0.501 0.514	A A	+ 0.006 + 0.037

Summer Traffic Analysis

An analysis of summer traffic conditions has been conducted based on new traffic data collected in June 2004 (see Appendix D). Results of the project's summer traffic impacts indicate the project will have a significant impact at one intersection (Rose Avenue and Lincoln Boulevard). Possible traffic mitigation for the project's summer traffic impact include participation in the implementation of new transit programs such as the summer weekend RAD Shuttle (currently operating as a pilot program) or the proposed Metro Rapid transit program for the Lincoln Boulevard corridor.

Recommend Beach Access Improvements

It is recommended that the project upgrade the existing pedestrian crossings located across Main Street at Sunset Avenue and across Pacific Avenue at Sunset Avenue with flashing markers/signage, i.e., "Smart Crosswalks". This improvement will enhance the pedestrian beach access for the new residents and existing community.

Highway Dedications and Street Standards

A part from the project application process, the City of Los Angeles will review the adjacent street standards and may require additional street dedications and improvements. Below are the adjacent streets standards and current conditions.

Main Street and Pacific Avenue are both designated Secondary Highways. The standard for a secondary highway is 90 feet of right-of-way consisting of a 70 foot wide street with 10 foot sidewalks on each side. The half street dedication and street improvement requirements are therefore 45 feet of right-of-way with a 35 foot wide street and 10 foot sidewalks on each side.

A recent land survey shows that Main Street is currently developed with a total right-of-way of 90 feet (50 feet east side and 40 feet west side). The street is developed to approximately 56 feet in width consisting of 28 feet for each half street. The west sidewalk is 12 feet is width. Therefore, the City could ask for a 2-foot street widening reducing the 12-foot sidewalk to 10 feet in width along the project Main Street frontage.

Pacific Avenue is developed to a 55-foot right-of-way with a 44-foot roadway with 5.5 foot sidewalks on each side. The half street dimensions are 27.5 feet of dedication with a 22-foot roadway. The project proposes to maintain the current street dimensions on Pacific Avenue and provide a 17.5 foot dedication. The City could ask for a 13-foot street widening on Pacific Avenue along the project frontage.

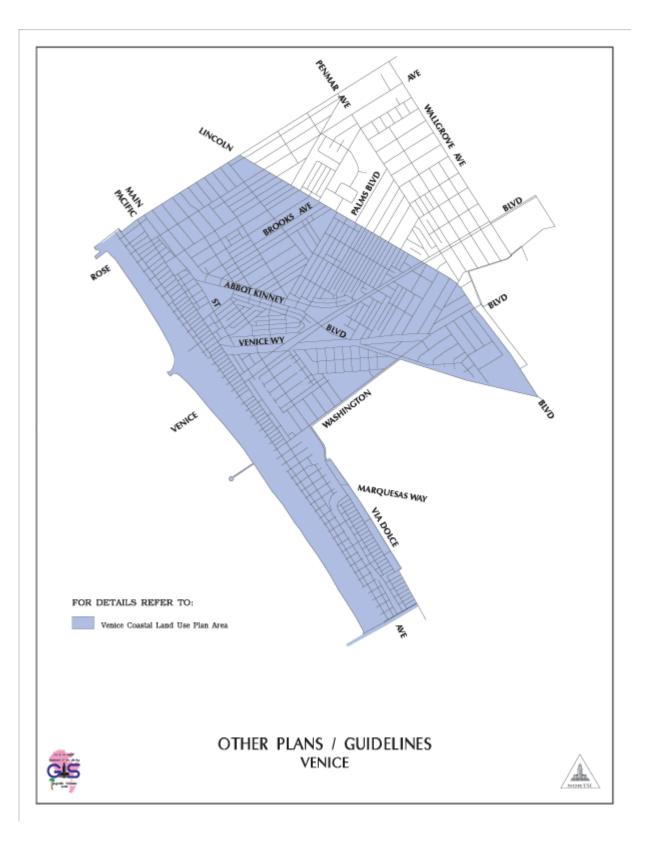
Sunset Avenue and Thornton Place are both designated local streets. A local street standard specifies a 60-foot right-of-way with a 36-foot wide roadway and 12-foot sidewalks on each side.

Sunset Avenue is developed with a 24-foot road with a 6-foot sidewalk on the north side for a total dedicated right-of-way of 30-feet. The dedicated right-of-way on Thornton Place varies from 16 to 20 feet in width. The roadway is unimproved and does not connect to Pacific Avenue. The dedicated centerlines of these roadways are assumed to be on center. Therefore, the City could ask for dedication/improvements on both local streets to complete a 30-foot ½ right-of-way and 18-foot ½ roadway.

The project proposes to dedicate 16 feet along the Sunset Avenue frontage to provide a 40 wide street with a 6 foot sidewalk easement along the south side for pedestrian facilities. The 40-foot street is to provide additional angled parking along the south side

of Sunset Avenue west of the proposed project driveway on Sunset Avenue. It is currently proposed that Thornton Place be retained in its current configuration.

There may be exceptions to the highway standards and criteria contained in the Circulation Element of the General Plan and the City's Standard Street Dimensions as listed above where environmental issues, planning practices and community desires warrant alternate standards. Several exceptions as described above will be requested by the project during the environmental review process.


APPENDIX A COMMUNITY PLAN LAND USE INFORMATION

GENERALIZED LAND USE VENICE

Venice Coastal Zone Specific Plan

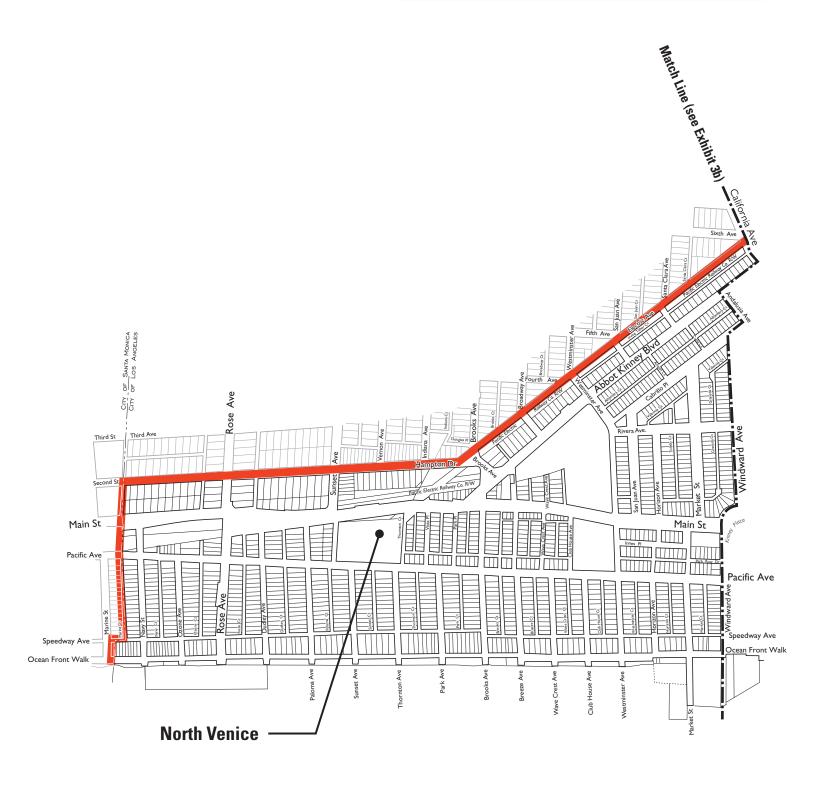
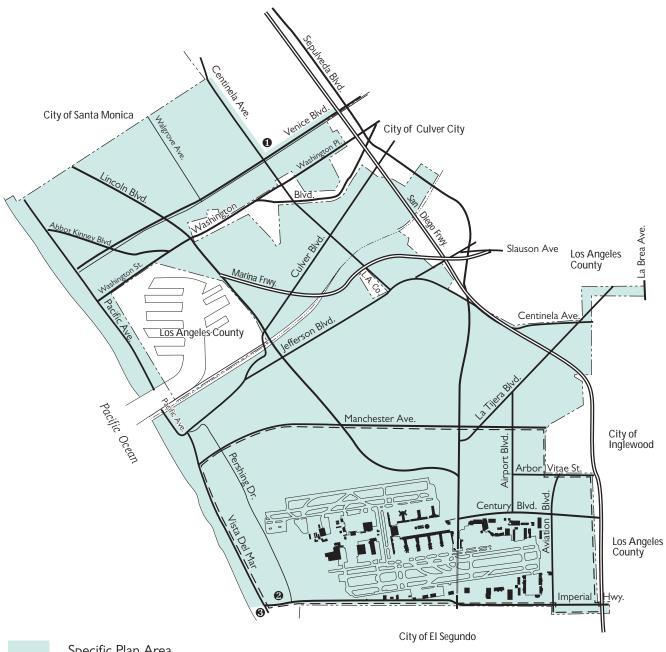



Exhibit 3a

Subarea: North Venice • Venice Canals

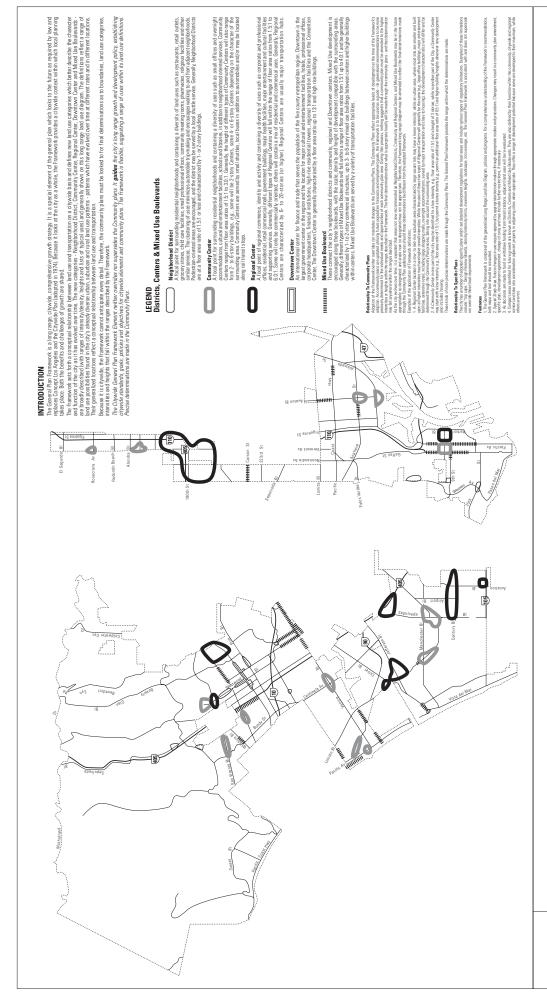
Coastal Transportation Corridor Specific Plan

Specific Plan Area

Airport Corridor Boundary

NOTES:

- 0 Includes frontages on both sides of Centinela Ave. from Santa Monica City Boundary line south to Venice Blvd. and both sides of Venice Blvd from Centinela Ave. east to the San Diego Frwy.
- 2 Includes only northerly frontage of Imperial Hwy. between Pershing Dr. and the westerly terminus of the Specific Plan area.
- Westerly prolongation of Imperial Hwy. to Pacific Ocean. 8



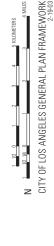
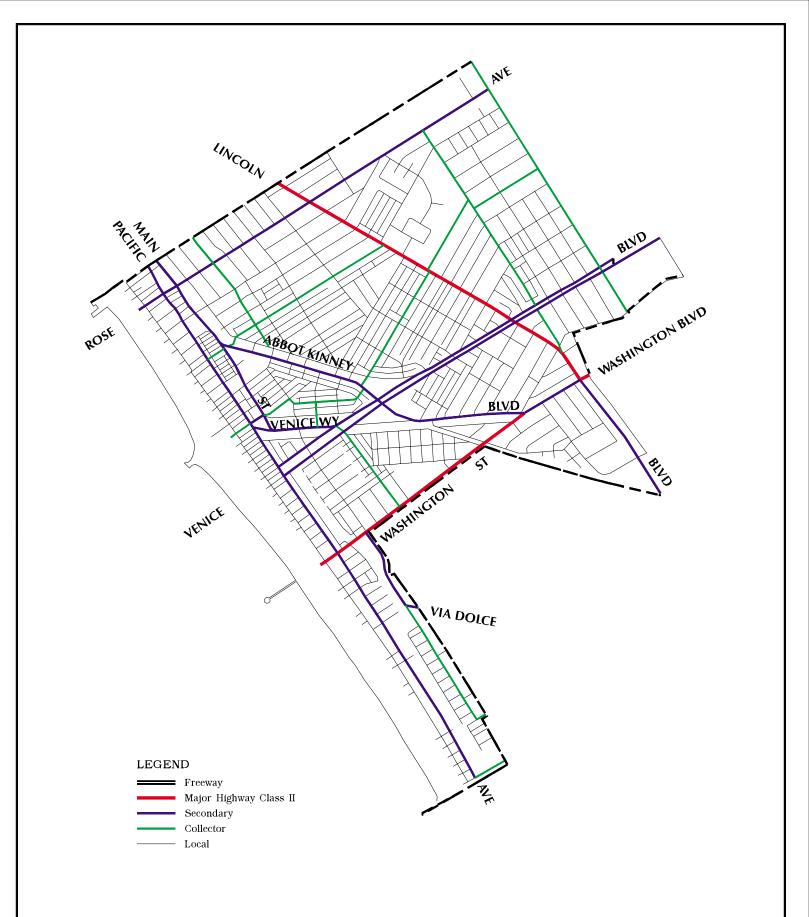


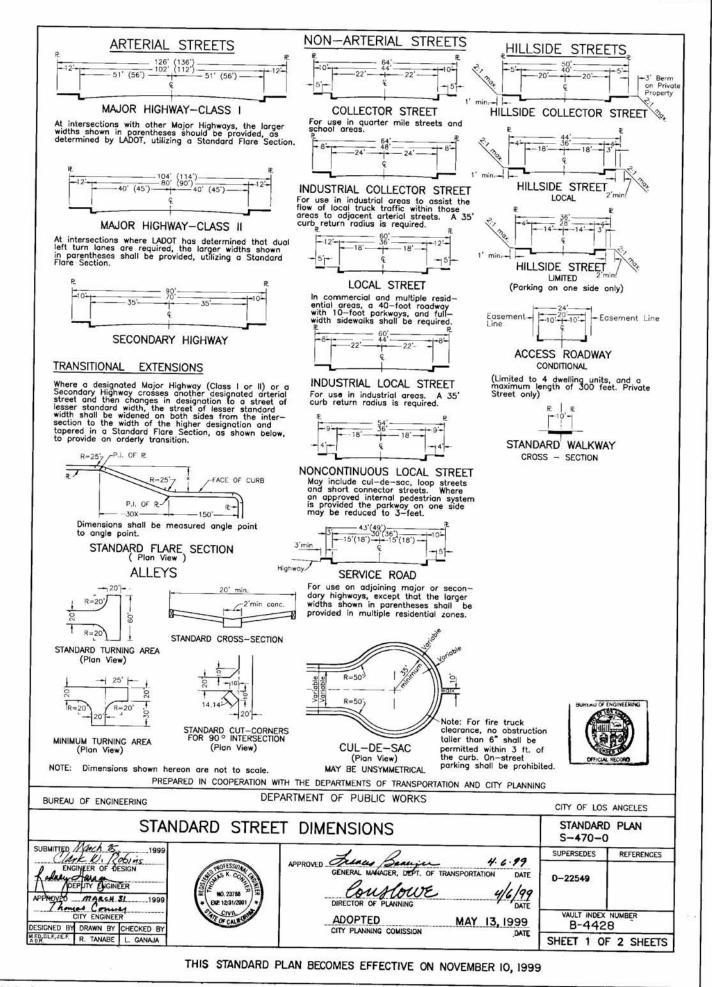
Figure 3-3

Long Range Land Use Diagram

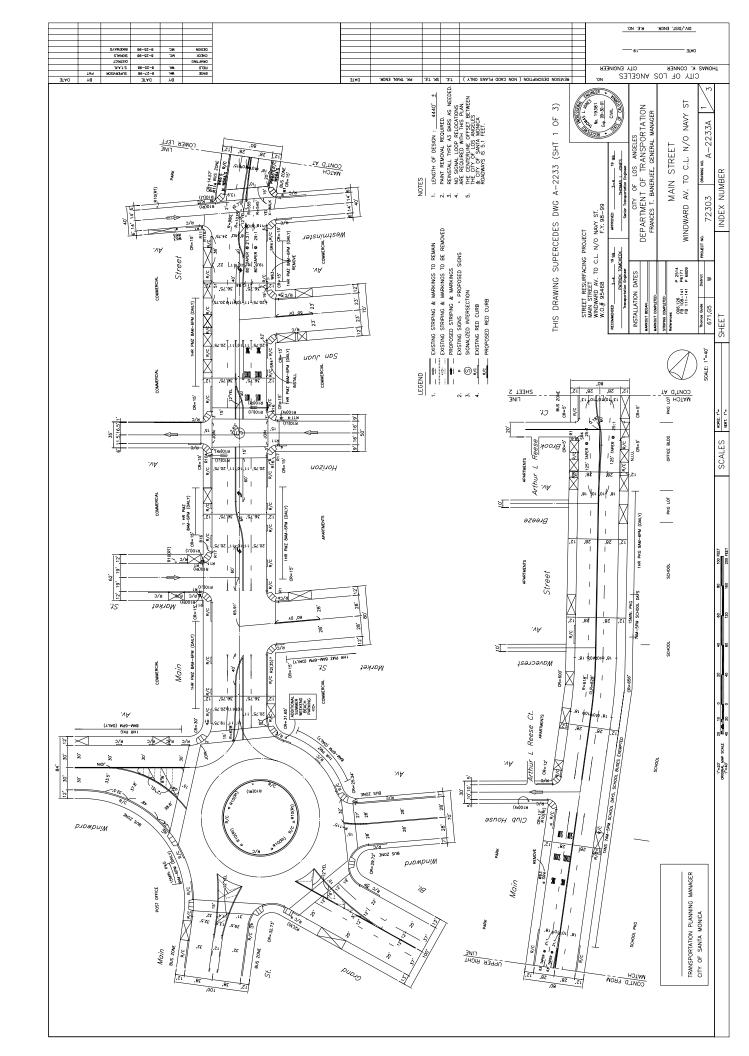

West/Coastal Los Angeles

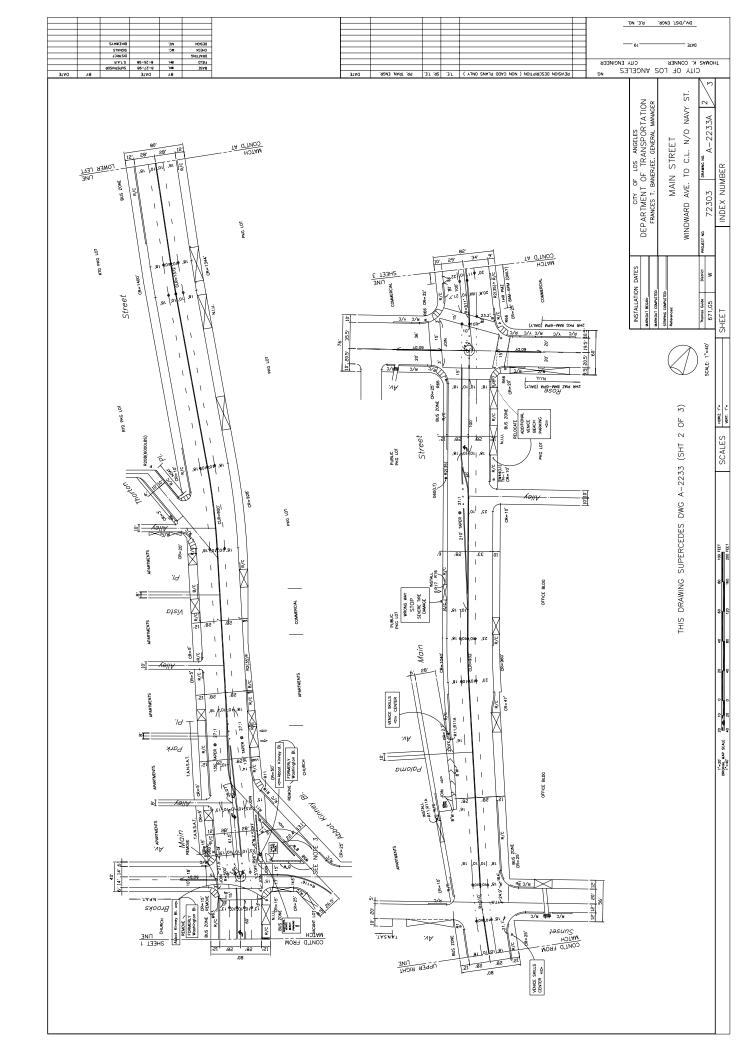
Close window to return to previous page

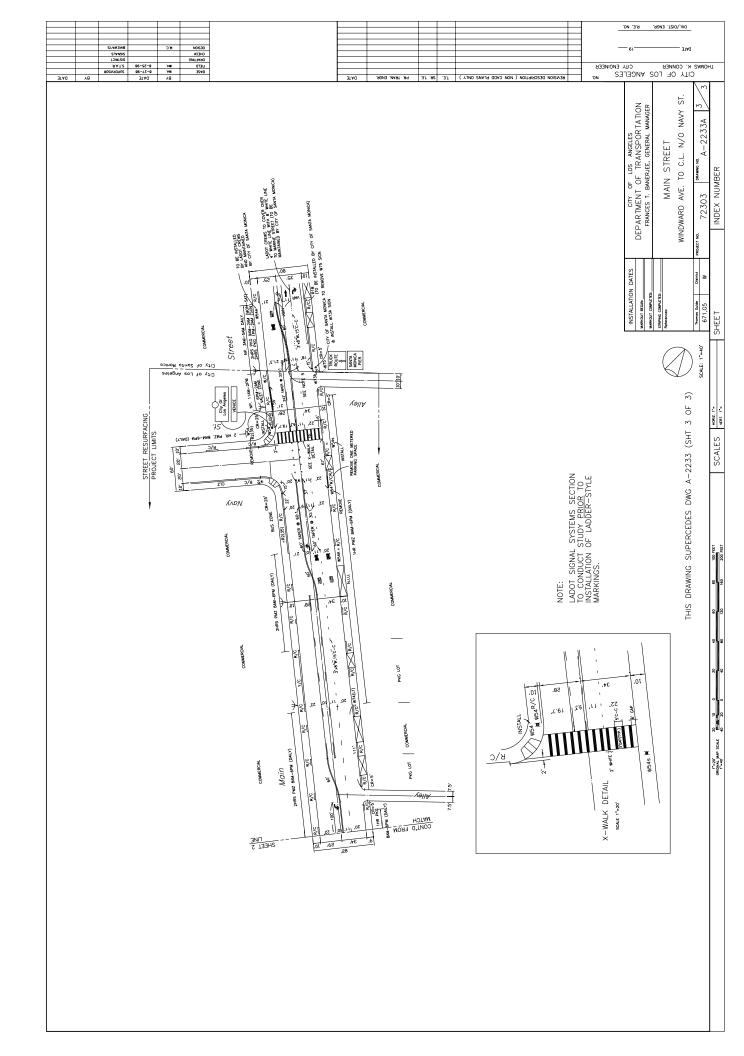
APPENDIX B

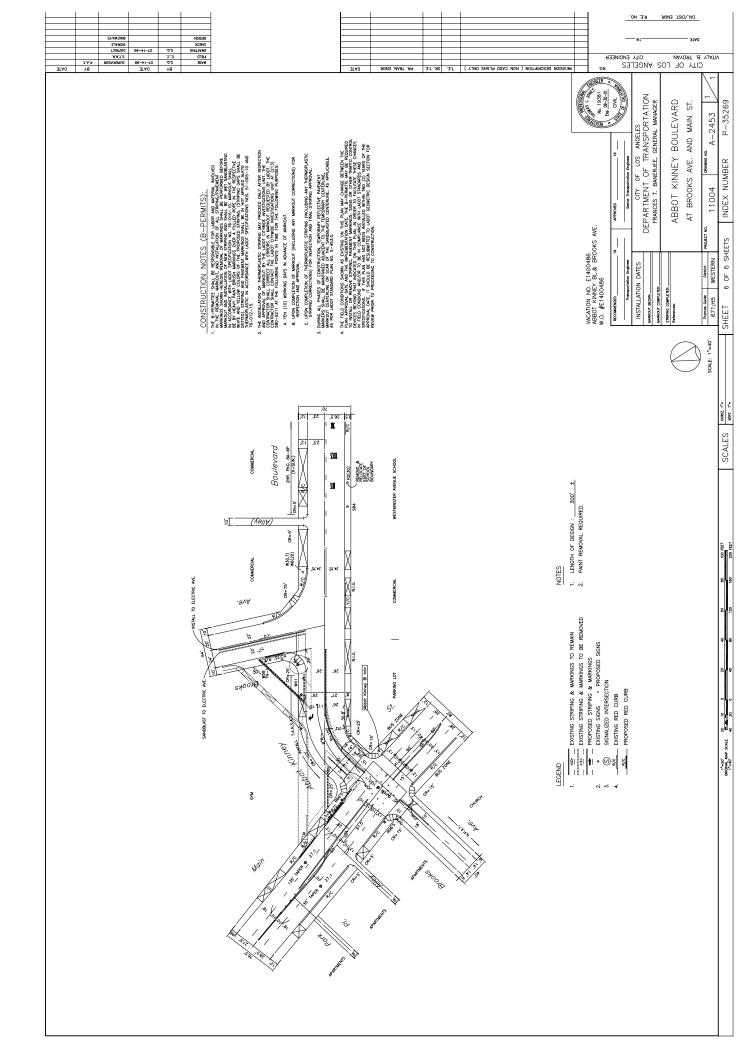

CIRCULATION MAPS, STREET STANDARDS & STREET PLANS

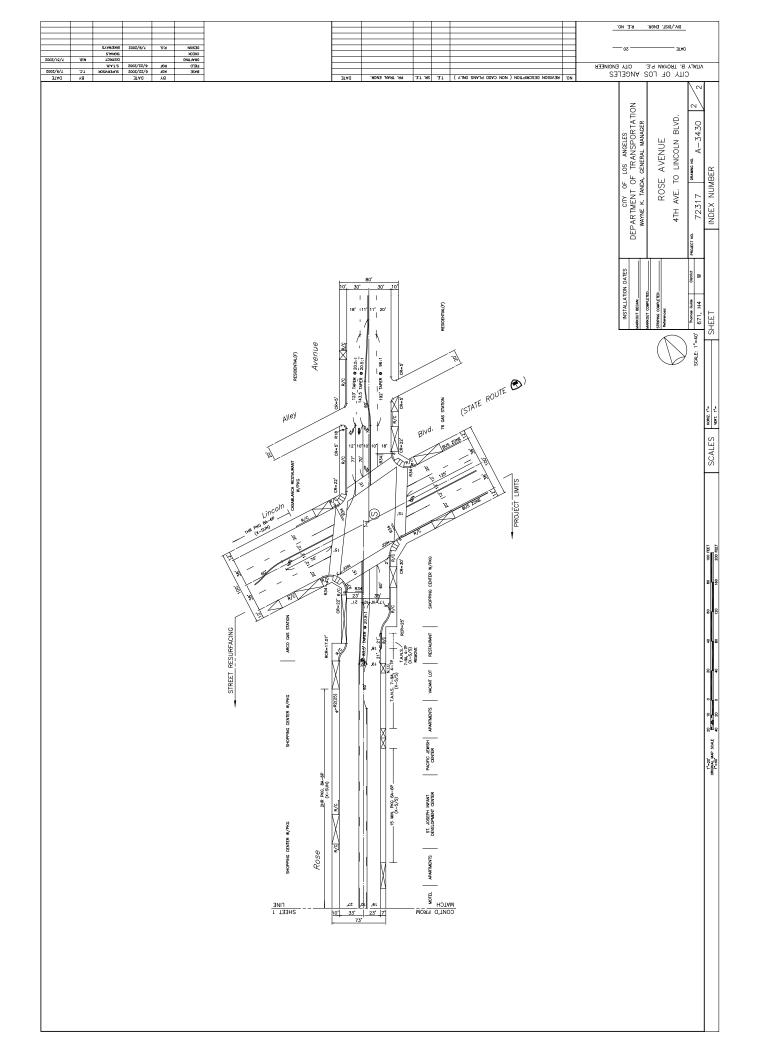
GENERALIZED CIRCULATION VENICE

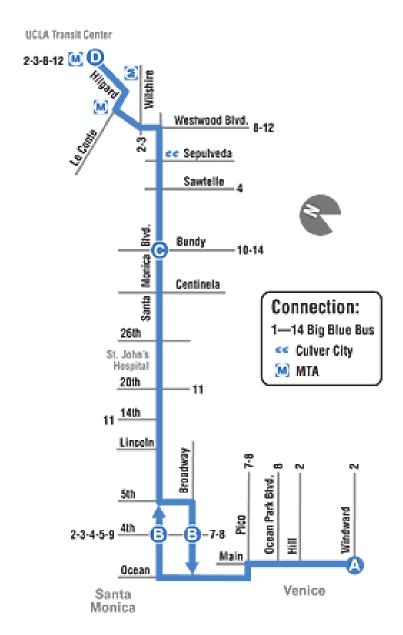





STANDARD STREET CONDITIONS

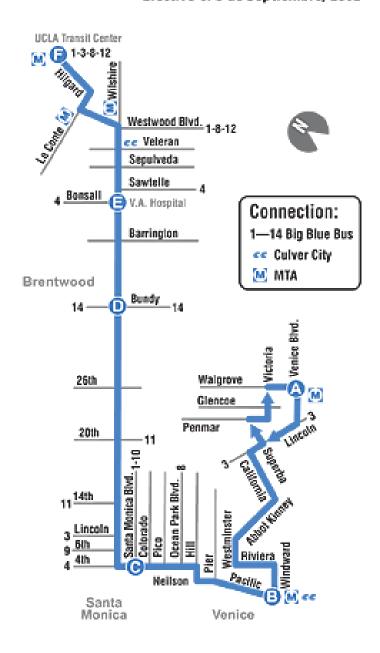

- 1. City Council may, by ordinance, adopt specific standards for individual streets which differ from these official standard street dimensions. Community Plans should be reviewed for designation of Pedestrian Priority Street Segments of arterial streets which would require wider sidewalks than those indicated on this Standard Plan.
- 2. Sidewalk widths for non-arterial streets shall be the minimum shown hereon. Greater widths, up to full width between curb and property line, with tree wells, shall be required where commercial and multiple residential frontage, schools, areas of heavy pedestrian traffic or other special circumstances indicate the need.
- 3. Except for special conditions or as otherwise provided, sidewalk shall be placed as close to the property line as possible.
- 4. Where sidewalk is constructed adjacent to the curb it shall have a minimum width of 10 feet inclusive of curb thickness except for hillside streets, noncontinuous local streets and industrial streets.
- 5. Where sidewalk is constructed on the fill or low side of a hillside street, a berm may be required on private property.
- 6. Easements may be required in addition to the widths shown hereon, where necessary for the installation of public utilities or for widened sidewalks (minimum 15—foot width) adjacent to transit stations.
- 7. Fifty—foot curb radii (instead of the standard 35' curb radii) shall be provided for cul—de—sacs in industrial areas.
- 8. Private street development should conform to the standard public street dimensions shown on this sheet, where appropriate. Variations may be approved on a case—by—case basis.
- For intersections of streets the following dedications shall apply:
 a. Intersections of arterial streets with any other street: 15'x15'
 cut corner OR 20' curved corner radius.
 - b. Intersections of non-arterial and/or hillside streets: 10'x10' cut corner OR 15' curved corner radius.
- 10. Hillside Collector Streets. In hillside areas where topography or other environmental considerations, documented to the satisfaction of the City Engineer, would render full street improvements infeasible, the roadway width of the hillside collector street may be reduced to no less than 32 feet, provided that parking is limited to one side only.

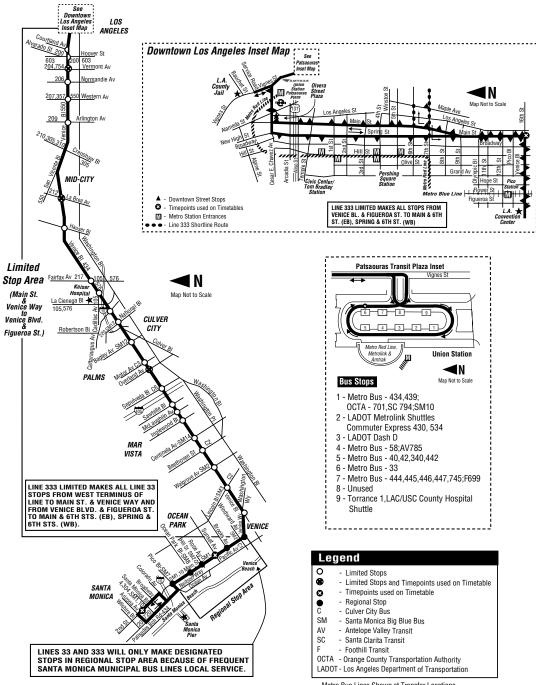




APPENDIX C

TRANSIT ROUTES




Effective September 8, 2002/ Efectivo el 8 de Septiembre, 2002

Effective September 8, 2002/ Efectivo el 8 de Septiembre, 2002

Metro Bus Lines Shown at Transfer Locations Subject to Change Without Notice

APPENDIX D

SUMMER TRAFFIC CONDITIONS

Estimated Saturday Traffic Generation

Traffic generation estimates for the proposed project have been calculated for the project's peak hour on a typical Saturday. Saturday traffic rates were selected for the project weekend analysis because they are slightly higher then traffic rates for a typical Sunday. This additional trip generation analysis was prepared using the same procedures used to calculate the weekday traffic estimates.

The Saturday trip generation data indicates that the uses associated with the proposed project generally exhibit the trip-making characteristics per 1,000 square feet of floor area for non-residential uses and per dwelling unit for residential uses as shown by the trip rates in Table D1 below. On the basis of these Saturday traffic generation rates, estimates of the project's driveway traffic were calculated.

As shown in Table D2 below, the proposed project generates slightly less weekend peak traffic than the weekday afternoon peak hour. The project may be expected to generate an average with 169 peak hour Saturday trips as compared to the estimated weekday 185 morning peak hour trips and 203 afternoon peak hour trips.

For traffic impact purposes, reductions to the project traffic generation have been made to account for the removal of the existing use and for pass-by traffic according to LADOT guidelines. After these traffic adjustments, it has been estimated that the net traffic added to the streets on a Saturday could be 147 peak hour trips on Saturday versus 107 morning trips and 174 afternoon weekday trips.

Table D1
Project Saturday Trip Generation Rates
(ITE 6th & 7th Edition)

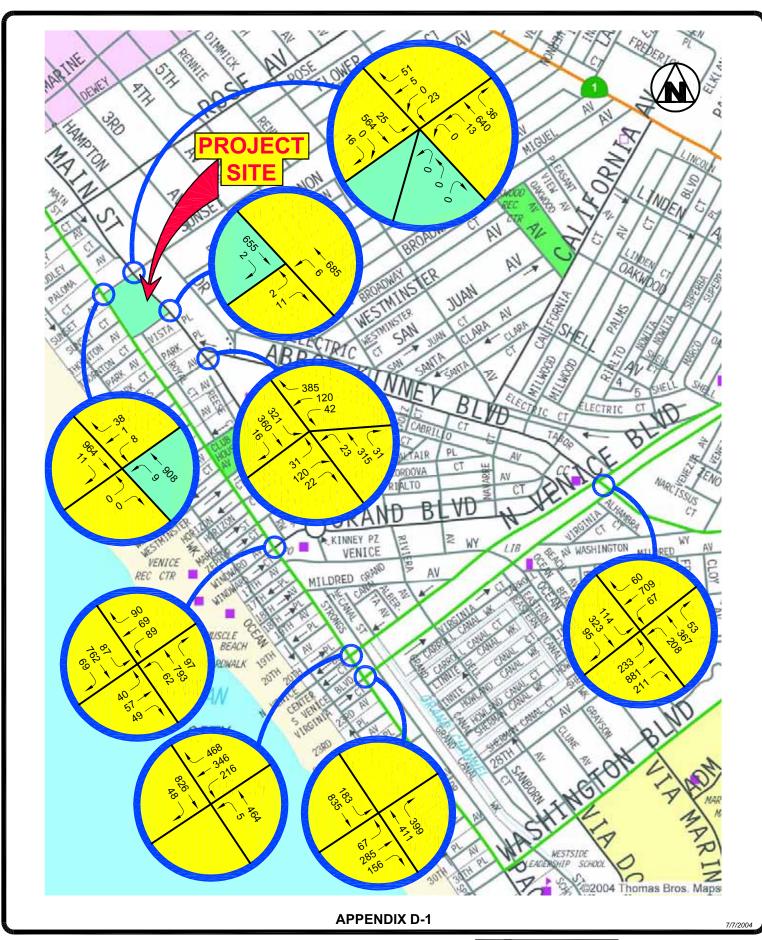
			<u>Peak Hour</u>			
Land Use	<u>ITE</u> <u>Code</u>	<u>Daily</u>	<u>Total</u>	<u>In</u>	<u>Out</u>	
Condos (live/work)	230	5.67	0.47	0.25	0.22	
Specialty Retail	814	42.04	4.2	2.10	2.10	
Coffee Shop	833	696	36.67	15.4	21.27	
Health club	493	20.87	2.6	1.59	1.01	

^{*} Rates per ITE 6th and 7th Edition

Table D2
Comparison of Saturday and Weekday Project Traffic Generation

	Saturday	Saturday Peak Hour		Week	<u>Veekday PM Peak Hour</u>		
Proposed Land Use	Traffic	<u>Total</u>	<u>In</u>	<u>Out</u>	Tota	<u>ll</u> <u>In</u>	<u>Out</u>
225 Units	1,276	106	56	50	158	106	52
2,000 s.f. retail	84	8	4	4	10	4	6
1,000 s.f. coffee shop	696	37	16	21	10	5	5
7,000 s.f. spa	146	18	11	7	25	15	<u> 10</u>
Driveway Traffic	2,202	169	87	82	203	130	73
Less pass-by							
retail (10%)	- 8	-	-	-	- 1	-	- 1
coffee shop (50%)	-348	- 18	- 8	- 10	- 5	- 3	- 2
health club (20%)	- 29	- 4	- 2	- 2	- 5	- 3	<u>- 2</u>
With pass-by	1,817	147	77	70	192	124	68
Less MTA Bus Facility	400 est.	(gat	es clo	sed)	18	11	<u>7</u>
Net New Traffic	1,417	147	77	70	174	113	61

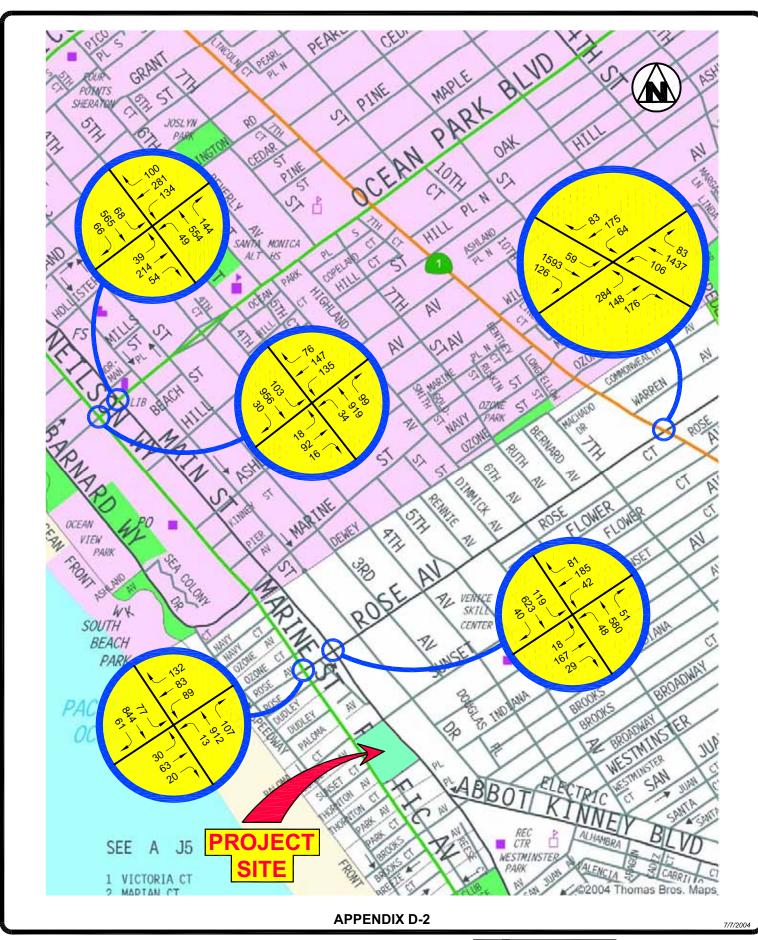
Estimated Saturday Traffic Impacts

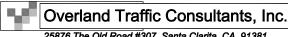

Using the same significant impact thresholds as in the weekday impact analysis, the results of the summer weekend traffic conditions are presented below. New traffic counts were conducted on the first two Saturdays in June between the hours of 12 noon to 4 PM for this weekend analysis. The highest hour of traffic volume at each study intersection was then used to calculate the level of service conditions as shown in Table D3 below.

A tabulation of all the intersection peak hour traffic counts was done to gage the differences between the weekday morning and afternoon with the weekend mid-day peak. This tabulation shows that the weekday afternoon traffic has the largest traffic volume passing through the study intersections with a total sum of 31,107 vehicles followed closely by the Saturday mid-day volume with 30,451 vehicles. The weekday morning peak hour traffic count totaled 25,657 vehicles.

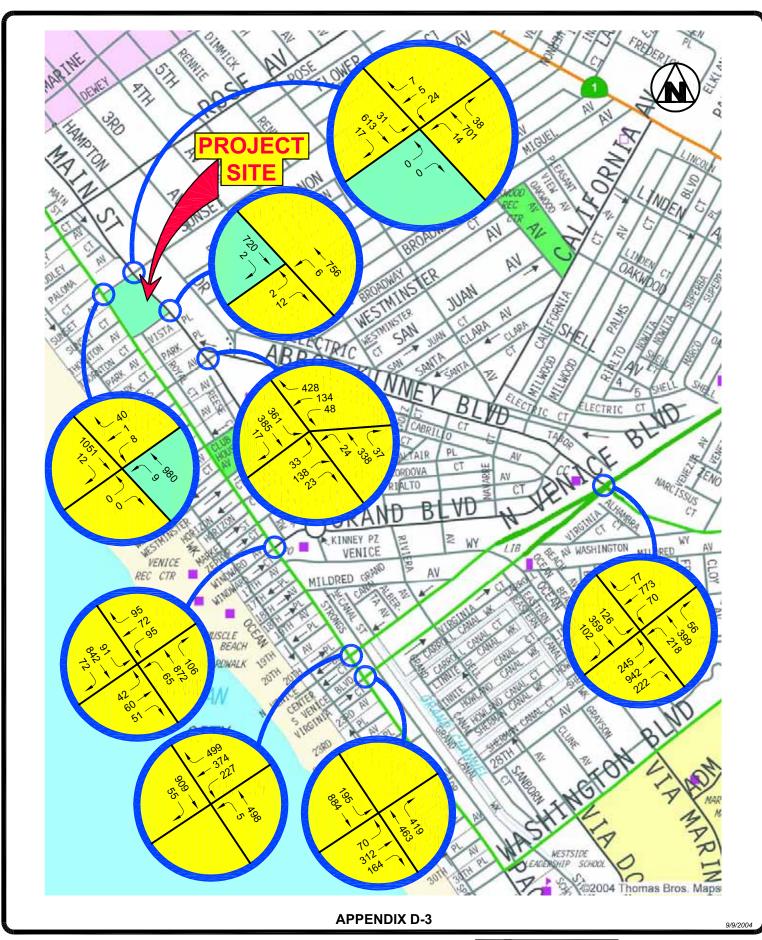
Weekend mid-day traffic conditions at the study intersections are shown below in Table D3. The peak hour data at each intersection for the Saturday mid-day peak is illustrated in figures D1 and D2.

Table D3
Level of Service for Existing Saturday Conditions


No.	<u>Intersection</u>	<u>V/C</u>	<u>LOS</u>
2.	Main Street & Rose Ave.	0.591	Α
3.	Main Street & Sunset Ave.	0.374	Α
4.	Main Street & Thornton Pl.	0.299	Α
5.	Main Street & Abbot Kinney Blvd.	0.507	Α
6.	Abbot Kinney Blvd. & Venice Blvd.	0.709	С
8.	Pacific Ave. & Rose Ave.	0.514	Α
9.	Pacific Ave. & Sunset Ave.	0.421	Α
10.	Pacific Ave. & Windward Ave.	0.467	Α
11.	Pacific Ave. & Venice Blvd. (N)	0.766	С
12.	Pacific Ave. & Venice Blvd. (S)	0.731	С
13.	Rose Ave. & Lincoln Blvd.	0.850	D
	Santa Monica Intersections	Delay (sec.)	<u>LOS</u>
1.	Main Street & Ocean Park Blvd.	12.7	В
7.	Neilson Way & Ocean Park Blvd.	9.6	Α

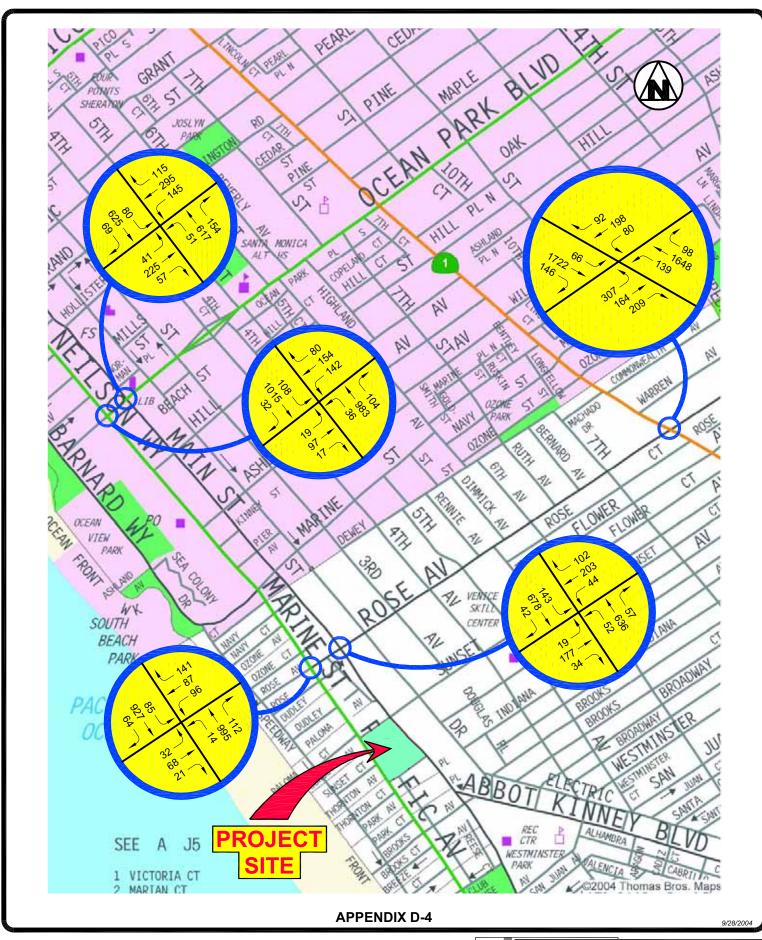

WEEKEND TRAFFIC VOLUMES SATURDAY PEAK HOUR

Overland Traffic Consultants, Inc.


WEEKEND TRAFFIC VOLUMES SATURDAY PEAK HOUR

Traffic estimates for the related projects were calculated for Saturday and added to the Saturday traffic counts inflated to the future 2009 study year. Table D4 shows the estimated Saturday peak hour traffic generated by the related projects. Figures D3 and D4 shown the estimated Saturday 2009 baseline traffic conditions without the project.

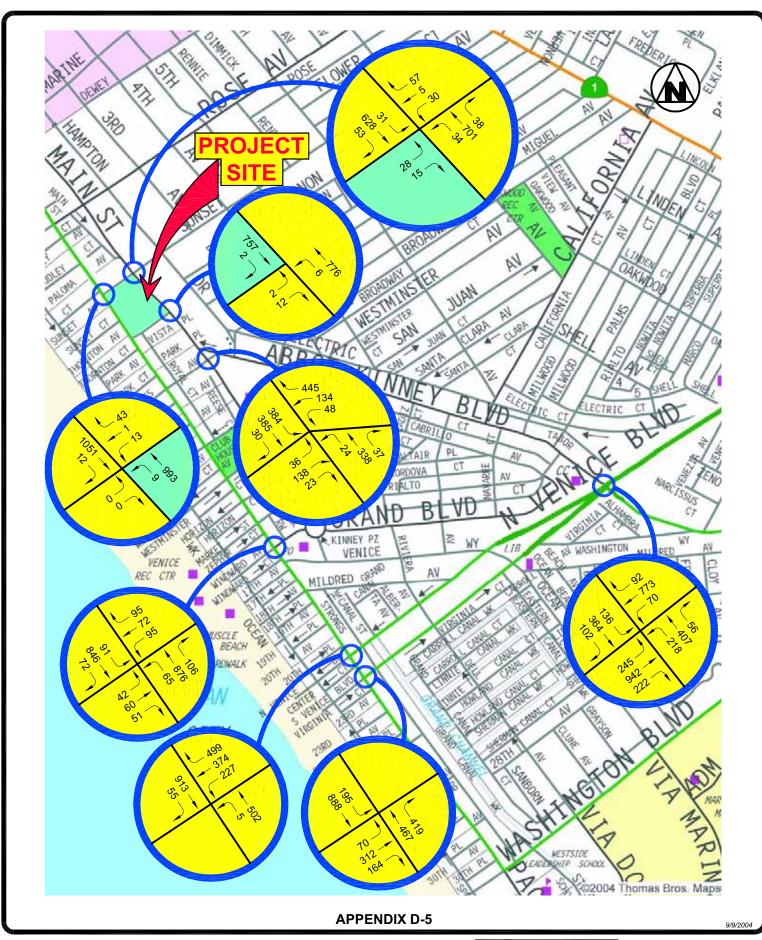
Table D4
Estimated Saturday Peak Hour Traffic Generation for Other Projects


		<u>Pea</u>	Peak Hour	
<u>No.</u>	Related Project	<u>In</u>	<u>Out</u>	
1.	Mixed - use	18	12	
2.	Mixed - use	285	202	
3.	Mixed - use	325	215	
4.	Mixed – use	33	21	
5.	Mixed – use	20	18	
6.	Apartments	95	61	
7.	Retail dealership	180	135	
8.	Office	3	3	
9.	Gas station with mart	40	40	
10.	Mixed – use	312	306	
11.	Condominiums	9	8	
12.	Condominiums	13	11	
13.	Mixed – use	17	16	
14.	Apartments	12	11	
15.	Mixed – use	16	15	
16.	Mixed – use	45	31	
17.	Condominiums	2	2	
18.	Retail	27	25	
19.	RAND Corp.	2	2	
20.	Playa Vista Phase I The Village at Playa Vista	2,187 4,860	1,646 4,688	
21.	Pioneer Mixed - Use	52	36	

SATURDAY MID-DAY TRAFFIC VOLUMES WITHOUT PROJECT

Overland Traffic Consultants, Inc.

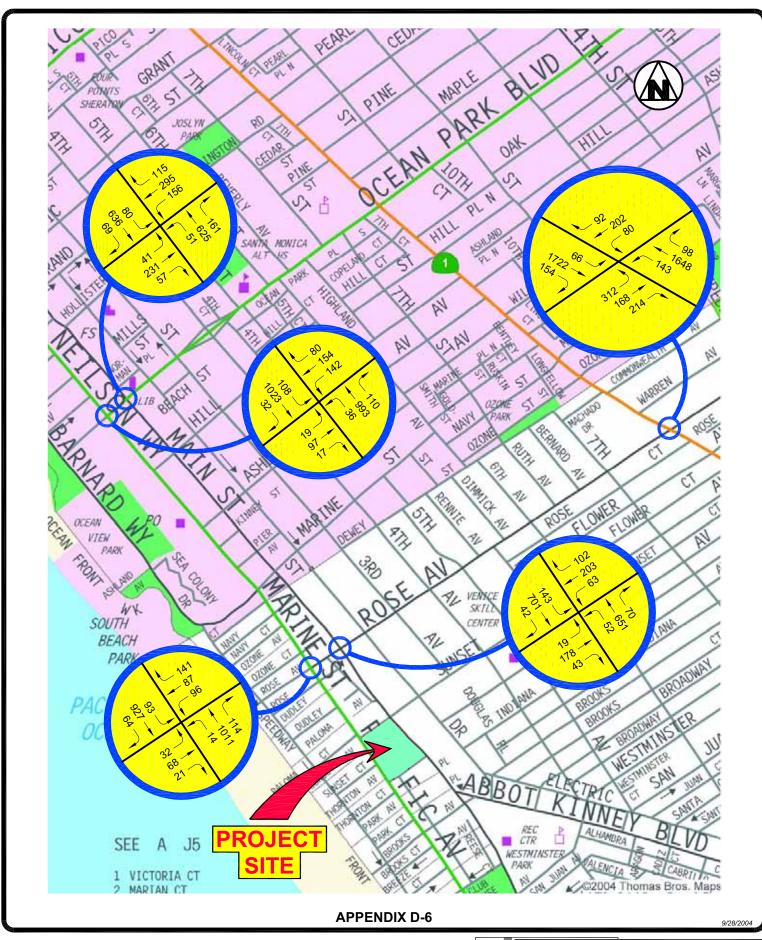
SATURDAY MID-DAY TRAFFIC VOLUMES
WITHOUT PROJECT



Overland Traffic Consultants, Inc.

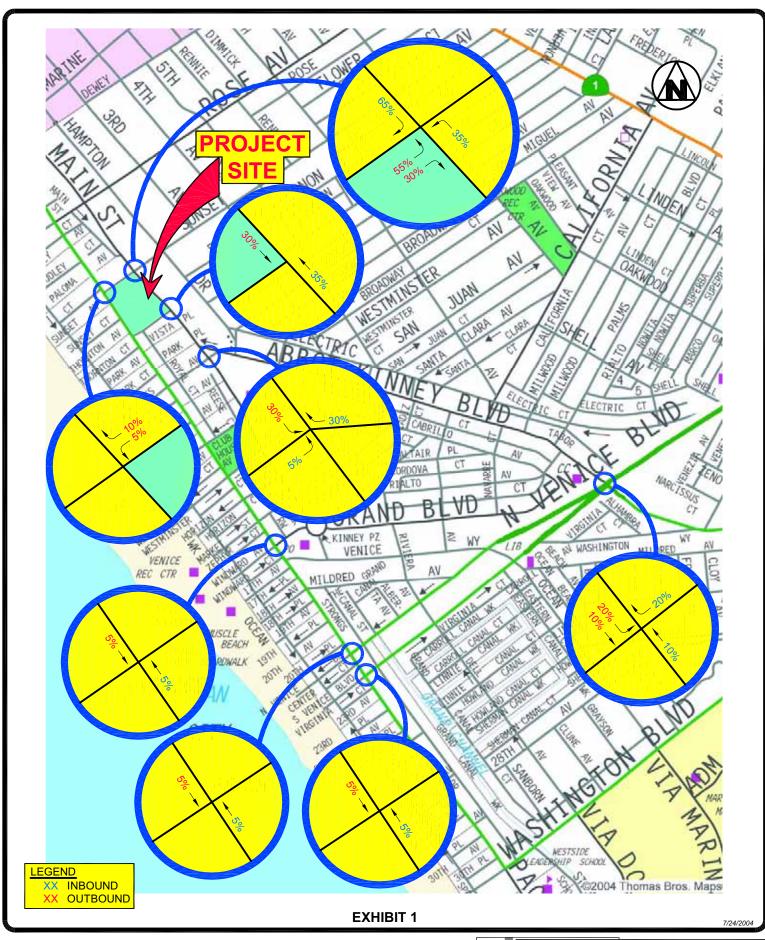
Lastly, the project's Saturday traffic flows have been added to the future without project traffic volume for the project weekend impact analysis. The results shown below indicate that the project will have a significant impact on summer traffic conditions at one intersection (Rose Avenue and Lincoln Boulevard). Possible traffic mitigation for the project's summer traffic impact include participation in the implementation of new transit programs such as the proposed Metro Rapid transit program for the Lincoln Boulevard corridor. Figures D5 and D6 shown the future with project traffic volumes used in this traffic impact analysis.

Table D5
Future Saturday Traffic Conditions With Project (Sunset & Main Access)

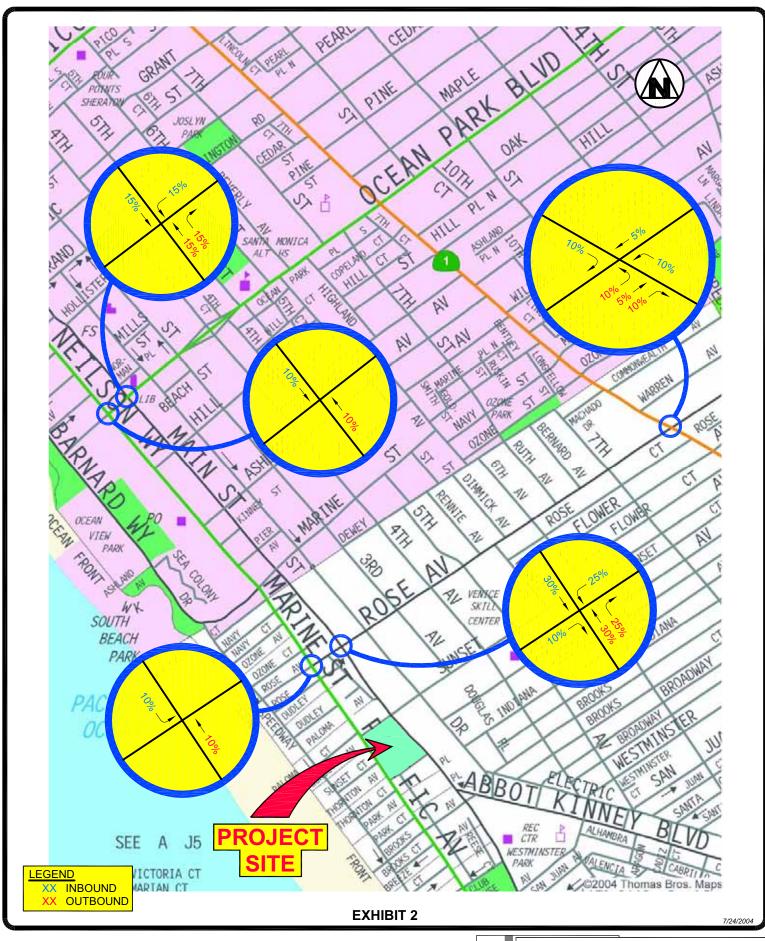

	, and could buy mains o	Future V	Vithout	Futur	e With F	Project
<u>No.</u>	<u>Intersection</u>	V/C	LOS	<u>V/C</u>	LOS	Impact
2.	Main Street & Rose Ave.	0.661	В	0.689	В	+ 0.028
3.	Main Street & Sunset Ave.	0.411	Α	0.448	Α	+ 0.037
4.	Main Street & Thornton Place	0.329	Α	0.337	Α	+ 0.008
5.	Main Street & Abbot Kinney Blvd.	0.573	Α	0.601	В	+ 0.028
6.	Abbot Kinney Blvd. & Venice Blvd.	0.774	С	0.777	С	+ 0.003
8.	Pacific Ave. & Rose Ave.	0.563	Α	0.574	Α	+ 0.011
9.	Pacific Ave. & Sunset Ave.	0.454	Α	0.466	Α	+ 0.012
10.	Pacific Ave. & Windward Ave.	0.511	Α	0.513	Α	+ 0.002
11.	Pacific Ave. & Venice Blvd. (N)	0.843	D	0.845	D	+ 0.002
12.	Pacific Ave. & Venice Blvd. (S)	0.800	С	0.803	D	+ 0.003
13.	Rose Ave. & Lincoln Blvd.	0.952	Е	0.963	Е	+ 0.011*
Santa	Monica Delay Procedures	<u>Delay</u>	<u>LOS</u>	<u>Delay</u>	<u>LOS</u>	<u>Impact</u>
1.	Main Street & Ocean Park Blvd.	13.7	В	14.1	В	+ 0.4
7.	Neilson Way & Ocean Park Blvd.	10.2	В	10.2	В	+ 0.0

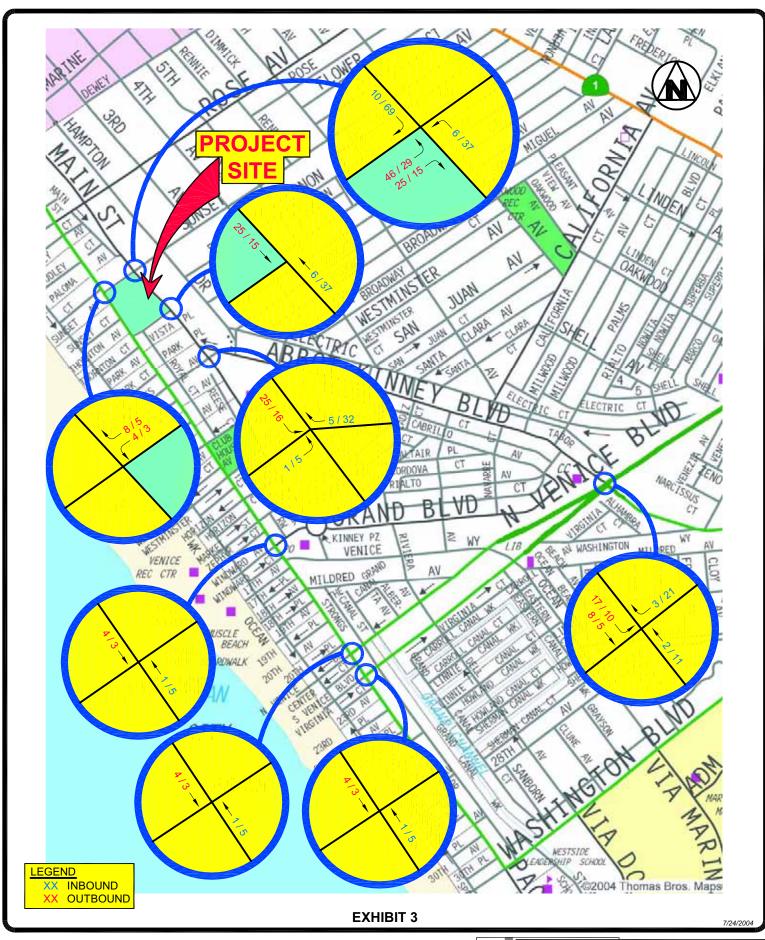
SATURDAY MID-DAY TRAFFIC VOLUMES WITH PROJECT

Overland Traffic Consultants, Inc.

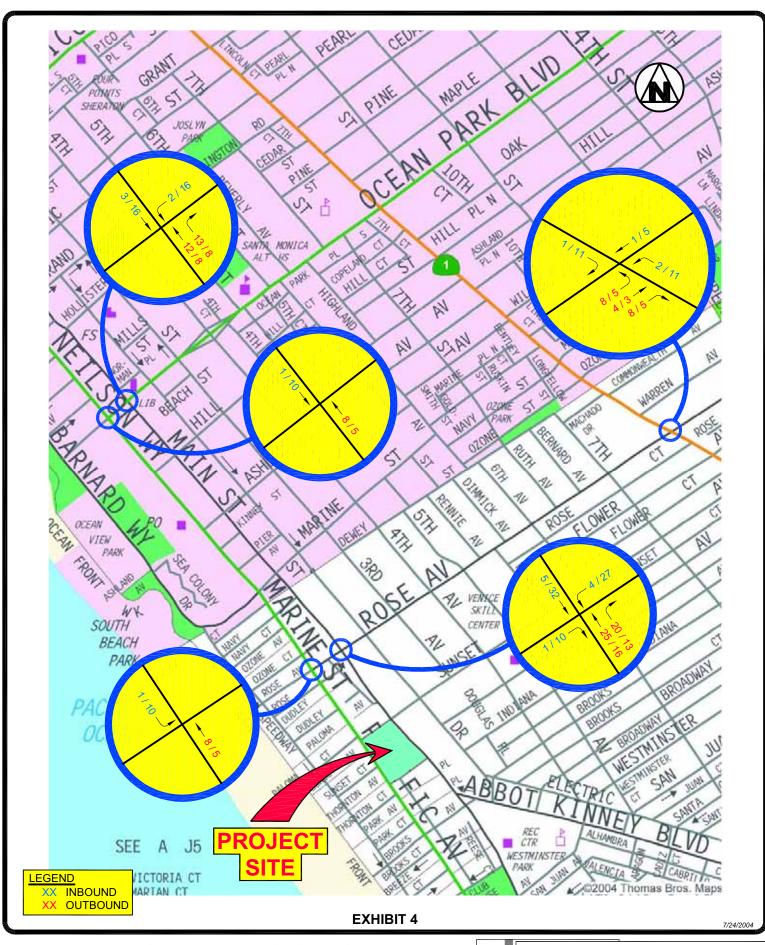

SATURDAY MID-DAY TRAFFIC VOLUMES WITH PROJECT

Overland Traffic Consultants, Inc.

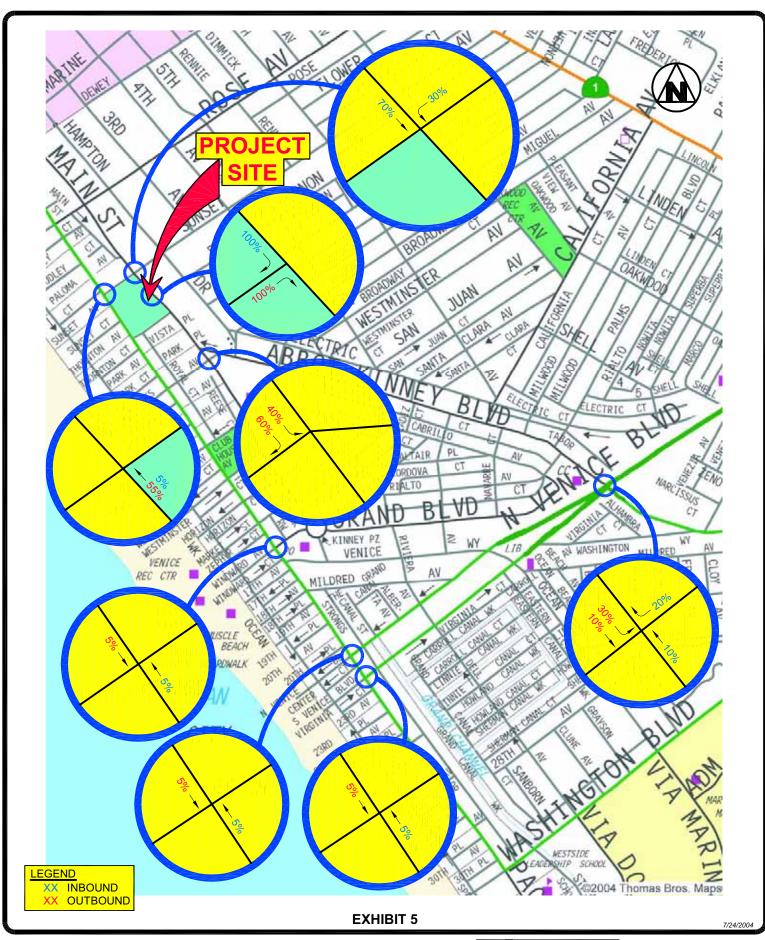

APPENDIX E


TRAFFIC ASSIGNMENT DATA

RESIDENTIAL TRAFFIC ASSIGNMENT PERCENTAGES

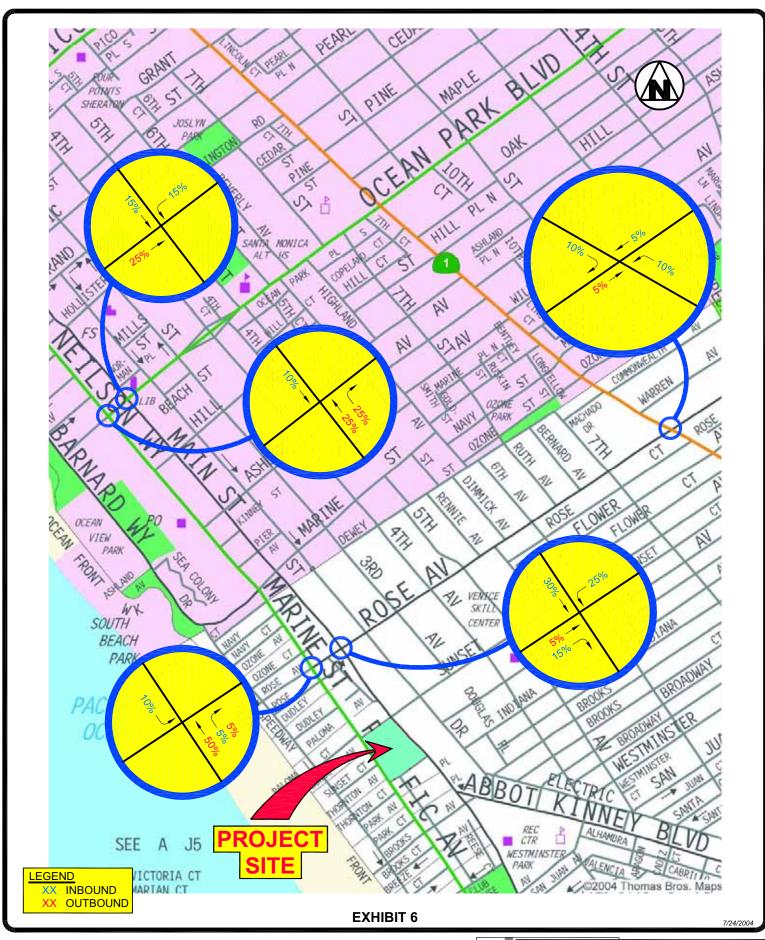


RESIDENTIAL TRAFFIC SUNSET AVENUE ACCESS AM / PM PEAK HOUR


Overland Traffic Consultants, Inc.

RESIDENTIAL TRAFFIC VOLUMES SUNSET AVENUE ACCESS AM / PM PEAK HOUR

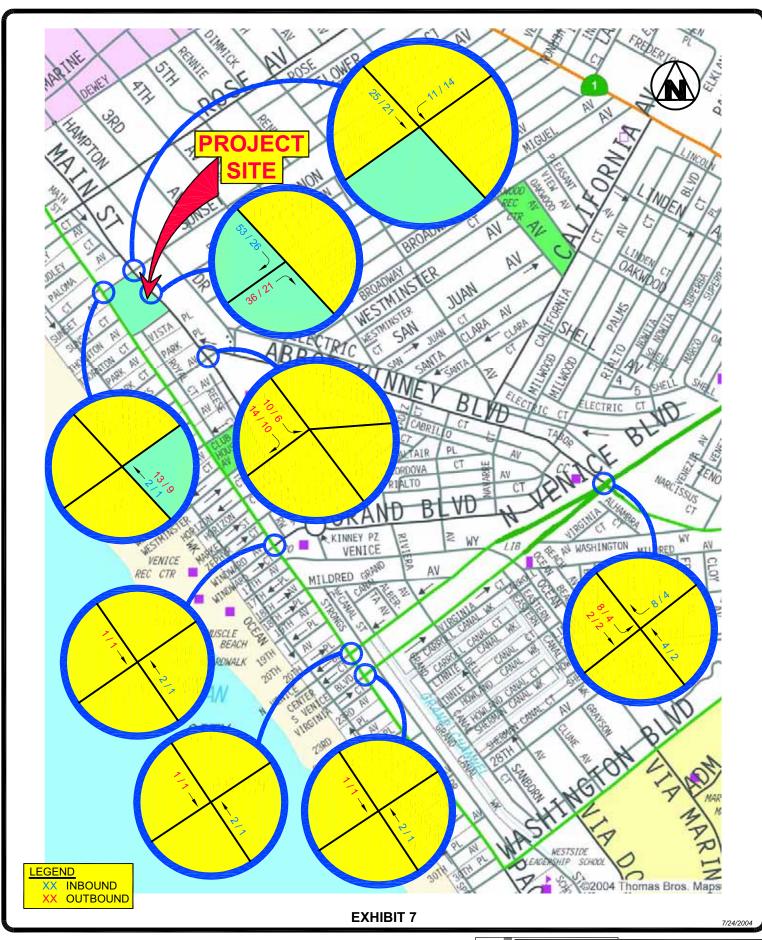
Overland Traffic Consultants, Inc.



NON-RESIDENTIAL TRAFFIC ASSIGNMENT PERCENTAGES MAIN STREET ACCESS

Overland Traffic Consultants, Inc.

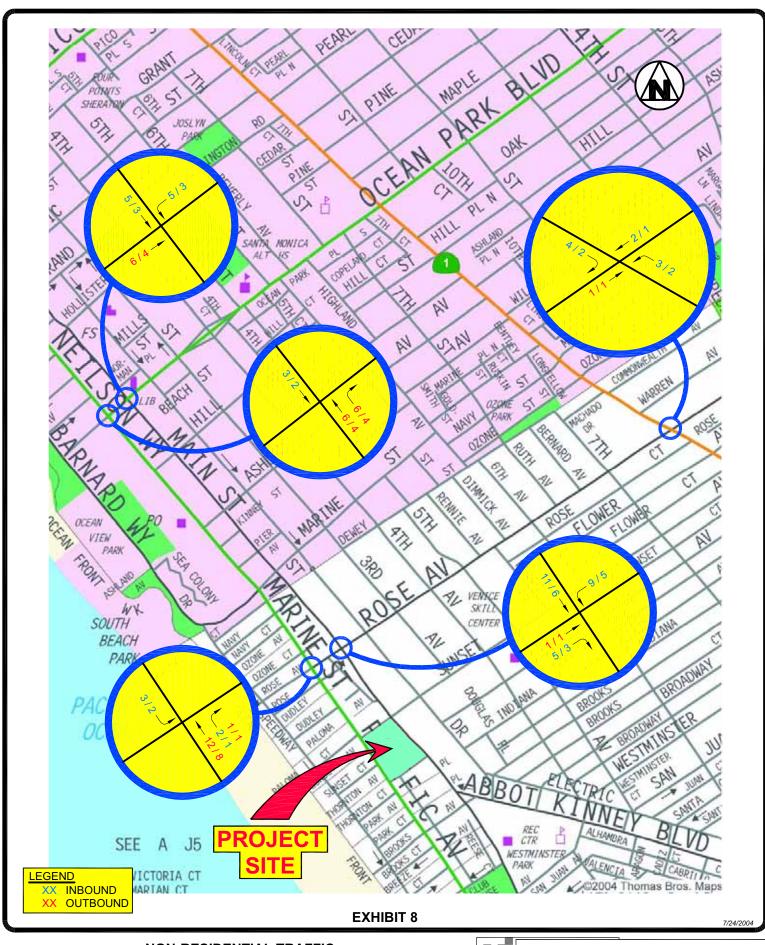
25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi



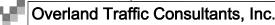
NON-RESIDENTIAL TRAFFIC ASSIGNMENT PERCENTAGES
MAIN STREET ACCESS

Overland Traffic Consultants, Inc.

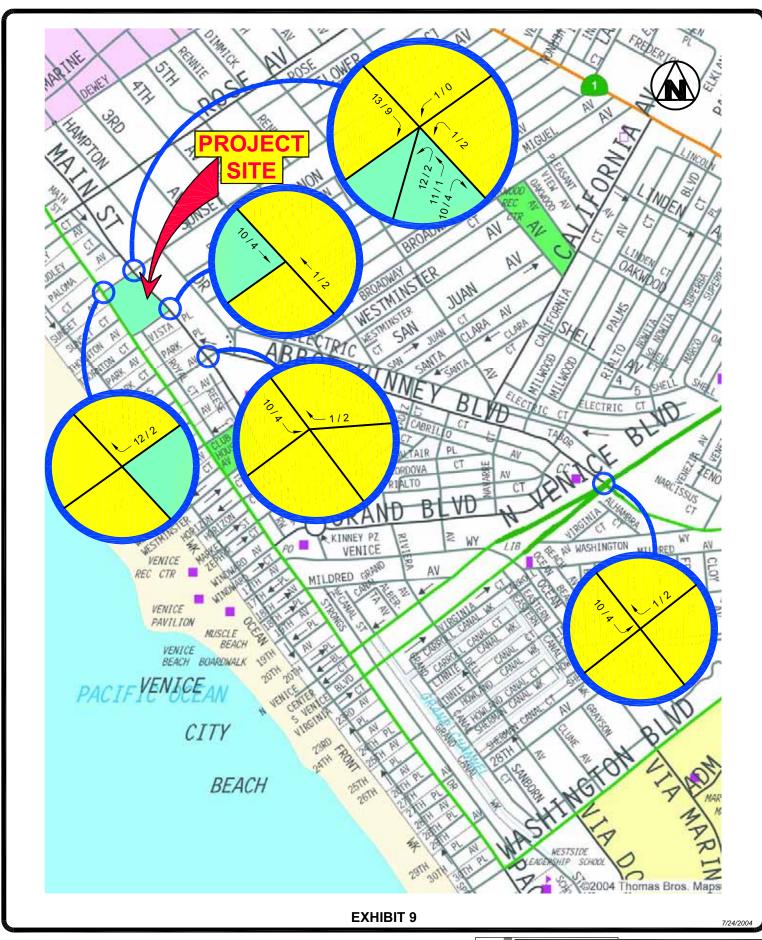
25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi



NON-RESIDENTIAL TRAFFIC MAIN STREET ACCESS AM / PM PEAK HOUR

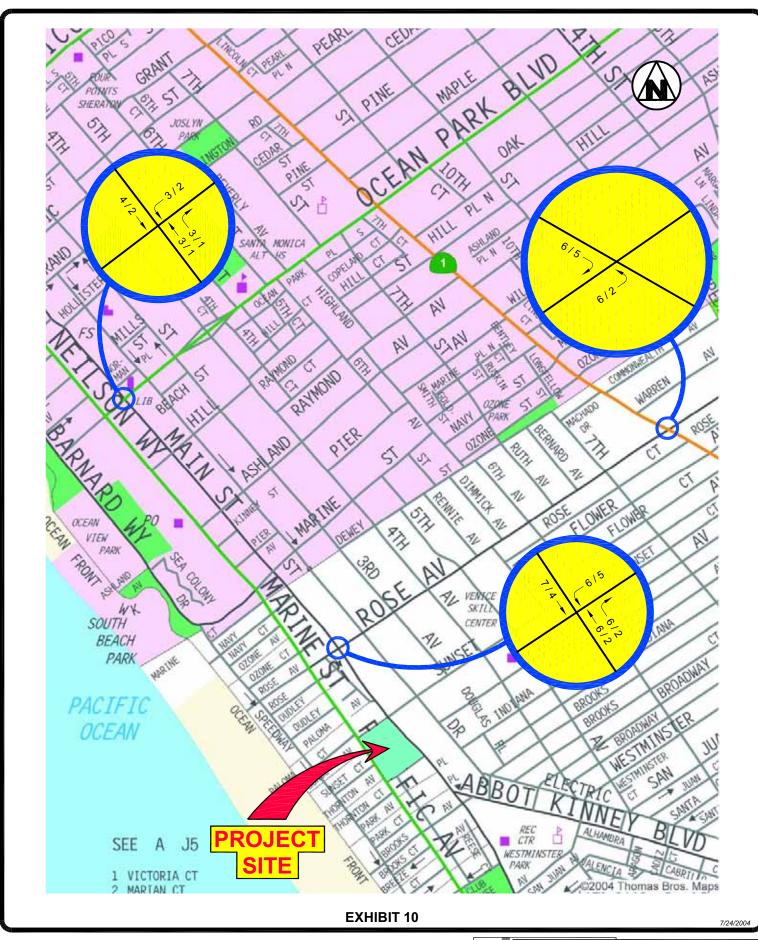


Overland Traffic Consultants, Inc.


25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

NON-RESIDENTIAL TRAFFIC MAIN STREET ACCESS AM / PM PEAK HOUR

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi



EXISTING TRAFFIC ASSIGNMENT AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

EXISTING TRAFFIC ASSIGNMENT AM / PM PEAK HOUR

Overland Traffic Consultants, Inc.

25876 The Old Road #307, Santa Clarita, CA 91381 (661)799-8423 v, (661)799-8456 f, OTC@overlandtraffic.coi

APPENDIX F

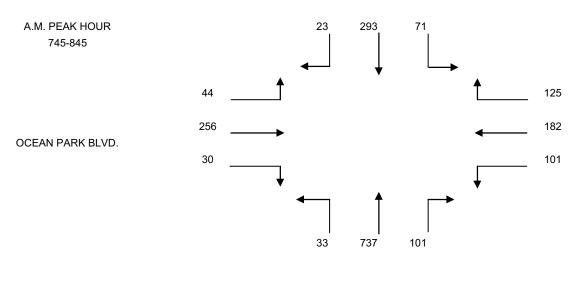
TRAFFIC VOLUME DATA

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM


INTERSECTION: N/S MAIN ST.

E/W OCEAN PARK BLVD.

FILE NUMBER: 1-AM

Ī	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
L	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	700-715	3	40	4	19	26	9	20	117	7	2	31	5
	715-730	5	34	5	33	25	19	14	115	9	7	30	7
	730-745	2	35	10	34	28	11	23	195	17	7	40	3
	745-800	6	51	16	33	42	23	35	188	10	8	58	8
	800-815	3	68	14	28	47	18	21	174	4	3	63	18
	818-830	7	87	20	31	47	18	19	175	9	2	65	4
	830-845	7	87	21	33	46	42	26	200	10	7	70	14
	845-900	8	71	14	35	58	36	23	133	8	4	61	9
_													
- 1	1 40110	1 4	2	2	1 4 1	_	c	7	0	0	40	44	40

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	16	160	35	119	121	62	92	615	43	24	159	23	1469
715-815	16	188	45	128	142	71	93	672	40	25	191	36	1647
730-830	18	241	60	126	164	70	98	732	40	20	226	33	1828
745-845	23	293	71	125	182	101	101	737	33	20	256	44	1986
800-900	25	313	69	127	198	114	89	682	31	16	259	45	1968

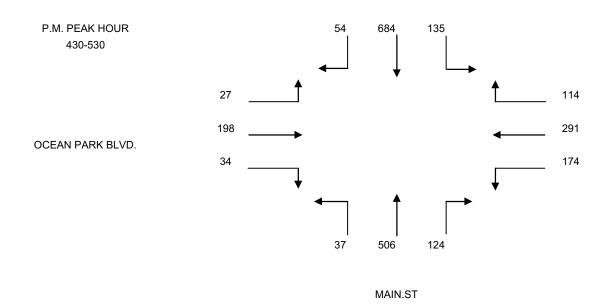
MAIN ST.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM


INTERSECTION: N/S MAIN.ST

E/W OCEAN PARK BLVD.

FILE NUMBER: 1-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
												_
400-415	15	159	34	22	57	49	27	134	6	8	46	5
415-430	16	180	24	27	76	52	36	103	7	9	40	2
430-445	13	163	28	24	53	41	34	144	6	17	60	11
445-500	9	176	43	24	89	37	28	129	7	7	53	7
500-515	18	175	27	23	84	54	30	108	9	8	41	2
515-530	14	170	37	43	65	42	32	125	15	2	44	7
530-545	12	154	36	27	64	43	27	105	6	15	60	10
545-600	14	169	27	19	68	51	26	127	10	8	57	5
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12

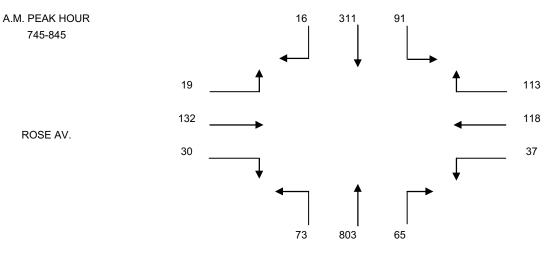
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	53	678	129	97	275	179	125	510	26	41	199	25	2337
415-515	56	694	122	98	302	184	128	484	29	41	194	22	2354
430-530	54	684	135	114	291	174	124	506	37	34	198	27	2378
445-545	53	675	143	117	302	176	117	467	37	32	198	26	2343
500-600	58	668	127	112	281	190	115	465	40	33	202	24	2315

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM


INTERSECTION: N/S MAIN ST.

E/W ROSE AV.

FILE NUMBER: 2-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715	1	35	12	31	20	5	10	124	10	8	8	6
715-730	2	49	10	24	20	2	14	177	7	2	29	4
730-745	2	42	12	33	27	7	10	175	17	4	15	4
745-800	2	70	21	30	23	4	20	209	19	6	32	6
800-815	4	78	19	27	31	10	17	206	14	6	31	6
818-830	8	88	28	30	32	11	15	192	17	9	38	4
830-845	2	75	23	26	32	12	13	196	23	9	31	3
845-900	3	68	17	28	29	9	12	178	17	7	31	4
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	7	196	55	118	90	18	54	685	53	20	84	20	1400
715-815	10	239	62	114	101	23	61	767	57	18	107	20	1579
730-830	16	278	80	120	113	32	62	782	67	25	116	20	1711
745-845	16	311	91	113	118	37	65	803	73	30	132	19	1808
800-900	17	309	87	111	124	42	57	772	71	31	131	17	1769

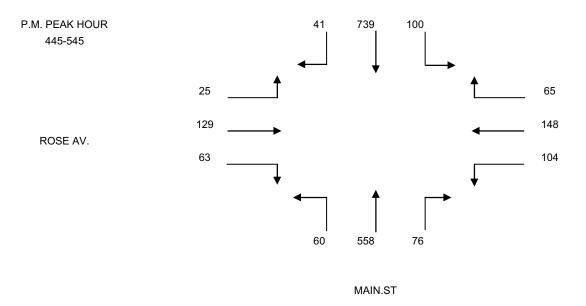
MAIN ST.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM


INTERSECTION: N/S MAIN.ST

E/W ROSE AV.

FILE NUMBER: 2-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
												-
400-415	11	167	28	21	29	15	18	130	12	15	39	5
415-430	7	190	24	17	42	18	13	156	20	10	32	8
430-445	5	178	31	11	27	30	17	134	9	9	35	7
445-500	8	178	38	13	31	24	18	120	13	13	26	6
500-515	7	191	22	13	42	30	23	148	20	13	42	6
515-530	15	200	23	25	37	23	19	146	13	20	33	2
530-545	11	170	17	14	38	27	16	144	14	17	28	11
545-600	8	169	24	18	34	18	14	124	19	18	25	7

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	31	713	121	62	129	87	66	540	54	47	132	26	2008
415-515	27	737	115	54	142	102	71	558	62	45	135	27	2075
430-530	35	747	114	62	137	107	77	548	55	55	136	21	2094
445-545	41	739	100	65	148	104	76	558	60	63	129	25	2108
500-600	41	730	86	70	151	98	72	562	66	68	128	26	2098

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM

INTERSECTION: N/S MAIN ST.

E/W SUNSET AV/ MTA DRWY.

FILE NUMBER: 3-AM

_																	
ſ	15 MINUTE	1A	1B	2	3	4	5A	5B	6	7	8	9A	9B	10	11	12	
	TOTALS	SBRT	SBRT	SBTH	SBLT	WBRT	WBTH	WBTH	WBLT	NBRT	NBTH	NBLT	NBLT	EBRT	EBTH	EBLT	
		-	_	_			_	_	_	_	-						=
	700-715	1	1	33	3	6	0	1	2	6	167	1	2	1	0	0	
	715-730	1	2	37	1	5	1	0	1	5	172	2	0	0	0	0	
	730-745	0	0	54	7	6	0	0	4	4	183	3	0	0	0	1	
	745-800	0	2	60	3	9	0	0	7	3	205	1	0	0	0	1	
	800-815	1	3	92	4	10	0	0	2	2	215	0	0	0	0	1	
	818-830	2	5	88	5	9	0	0	3	11	230	3	0	1	0	0	
	830-845	2	3	84	5	13	1	1	2	7	228	3	1	1	0	3	
	845-900	3	9	72	1	5	0	0	2	8	183	1	0	3	0	3	
	1 HOUR	1A	1B	2	3	4	5A	5B	6	7	8	9A	9B	10	11	12	
	TOTALS	SBRT	SBRT	SBTH	SBLT	WBRT	WBTH	WBTH	WBLT	NBRT	NBTH	NBLT	NBLT	EBRT	EBTH	EBLT	TOTA
	700-800	2	5	184	14	26	1	1	14	18	727	7	2	1	0	2	10
	715-815	2	7	243	15	30	1	0	14	14	775	6	0	0	0	3	11
	730-830	3	10	294	19	34	0	0	16	20	833	7	0	1	0	3	12
	745-845	5	13	324	17	41	1	1	14	23	878	7	1	2	0	5	13
	800-900	8	20	336	15	37	1	1	9	28	856	7	1	5	0	7	13

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM

INTERSECTION: N/S MAIN.ST

E/W SUNSET AV/ MTA DRWY.

FILE NUMBER: 3--PM

																ı
15 MINUTE	1A	1B	2	3	4	5A	5B	6	7	8	9A	9B	10	11	12	
TOTALS	SBRT	SBRT	SBTH	SBLT	WBRT	WBTH	WBTH	WBLT	NBRT	NBTH	NBLT	NBLT	EBRT	EBTH	EBLT	
400-415	2	4	191	5	7	0	0	1	2	102	3	0	0	0	1	
415-430	1	3	201	10	5	1	0	6	6	139	3	0	1	0	1	
430-445	4	0	189	5	13	1	1	4	12	144	2	0	2	0	2	
445-500	2	1	218	8	11	0	0	5	8	163	3	2	2	1	1	
500-515	4	2	210	2	10	1	0	4	10	165	1	0	0	0	0	
515-530	0	3	216	7	9	0	0	3	9	162	6	0	1	0	1	
530-545	6	3	211	14	10	0	0	1	7	156	3	0	1	0	0	
545-600	6	3	228	10	11	2	0	5	9	142	3	1	3	0	2	
																_
1 HOUR	1A	1B	2	3	4	5A	5B	6	7	8	9A	9B	10	11	12	
TOTALS	SBRT	SBRT	SBTH	SBLT	WBRT	WBTH	WBTH	WBLT	NBRT	NBTH	NBLT	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	9	8	799	28	36	2	1	16	28	548	11	2	5	1	5	1499
415-515	11	6	818	25	39	3	1	19	36	611	9	2	5	1	4	1590
430-530	10	6	833	22	43	2	1	16	39	634	12	2	5	1	4	1630
445-545	12	9	855	31	40	1	0	13	34	646	13	2	4	1	2	1663
500-600	16	11	865	33	40	3	0	13	35	625	13	1	5	0	3	1663

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

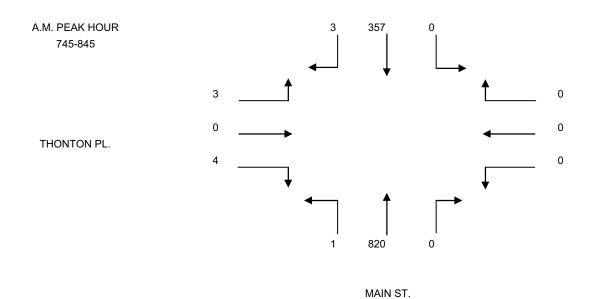
PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM

INTERSECTION: N/S MAIN ST.

E/W THONTON PL.


FILE NUMBER: 4-AM

15 MINUTE

- 1	-			-		-				-	_			
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
	700-715	0	31	0	0	0	0	0	50	0	0	0	1	
	715-730	0	44	0	0	0	0	0	168	0	0	0	0	
	730-745	0	53	0	0	0	0	0	169	0	0	0	1	
	745-800	0	86	0	0	0	0	0	229	0	0	0	1	
	800-815	1	95	0	0	0	0	0	210	0	2	0	1	
	818-830	1	87	0	0	0	0	0	209	0	2	0	0	
	830-845	1	89	0	0	0	0	0	172	1	0	0	1	
	845-900	1	90	0	0	0	0	0	192	0	1	0	0	
														•
	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
Į	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	700-800	0	214	0	0	0	0	0	616	0	0	0	3	833
	715-815	1	278	0	0	0	0	0	776	0	2	0	3	1060
	730-830	2	321	0	0	0	0	0	817	0	4	0	3	1147
	745-845	3	357	0	0	0	0	0	820	1	4	0	3	1188
	800-900	4	361	0	0	0	0	0	783	1	5	0	2	1156

8

12

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM

4

6

445-545

500-600

908

856

0

0

0

0

INTERSECTION: N/S MAIN.ST

E/W THORNTON PLACE.

FILE NUMBER: 4-PM

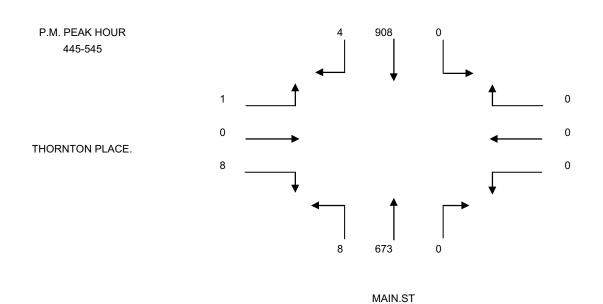
	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
														-
	400-415	1	176	0	0	0	0	0	130	0	0	0	1	
	415-430	2	215	0	0	0	0	0	153	3	0	0	2	
	430-445	0	188	0	0	0	0	0	142	1	1	0	1	
	445-500	0	228	0	0	0	0	0	148	2	4	0	0	
	500-515	2	210	0	0	0	0	0	157	1	1	0	1	
	515-530	1	224	0	0	0	0	0	186	1	0	0	0	
	530-545	1	246	0	0	0	0	0	182	4	3	0	0	
	545-600	2	176	0	0	0	0	0	143	0	3	0	2	
_														_
	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	400-500	3	807	0	0	0	0	0	573	6	5	0	4	1398
	415-515	4	841	0	0	0	0	0	600	7	6	0	4	1462
	430-530	3	850	0	0	0	0	0	633	5	6	0	2	1499

0

0

673

668


8

6

0

1602

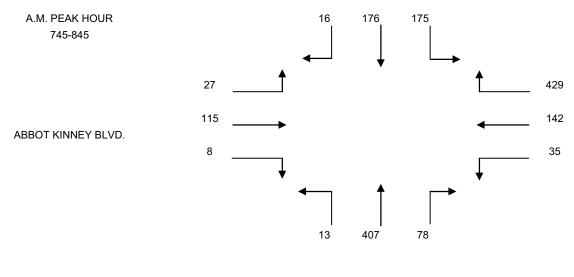
1546

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM


INTERSECTION: N/S MAIN ST.

E/W ABBOT KINNEY BLVD.

FILE NUMBER: 5-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715	1	28	13	46	10	3	10	60	2	1	17	3
715-730	1	16	15	34	12	5	15	76	4	4	21	0
730-745	1	43	16	75	21	4	14	76	2	2	18	5
745-800	5	40	43	112	33	5	24	108	3	2	20	12
800-815	5	42	45	106	31	11	20	112	3	3	29	5
818-830	2	50	51	110	45	10	18	95	5	1	29	5
830-845	4	44	36	101	33	9	16	92	2	2	37	5
845-900	6	47	56	96	30	7	18	85	3	3	30	7
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

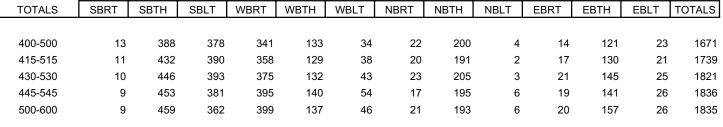
1 HOUR	1	2	3	4	5	6	/	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	8	127	87	267	76	17	63	320	11	9	76	20	1081
715-815	12	141	119	327	97	25	73	372	12	11	88	22	1299
730-830	13	175	155	403	130	30	76	391	13	8	96	27	1517
745-845	16	176	175	429	142	35	78	407	13	8	115	27	1621
800-900	17	183	188	413	139	37	72	384	13	9	125	22	1602

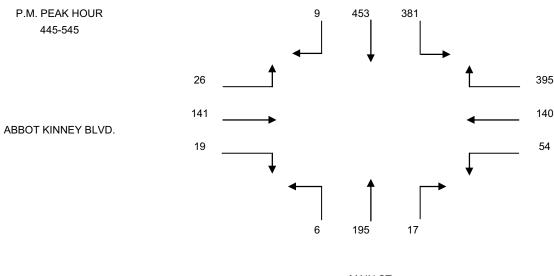
MAIN ST.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 04:00 PM TO 06:00 PM


INTERSECTION: N/S MAIN.ST

E/W ABBOT KINNEY BLVD.

FILE NUMBER: 5-PM

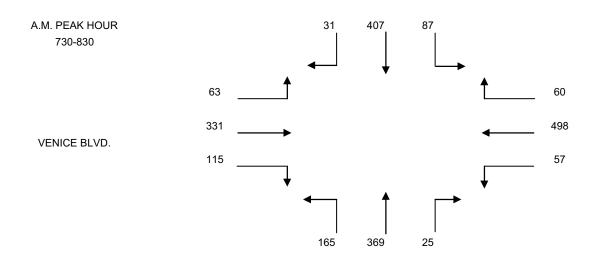
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	1
	ODDT						NDDT						ł
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	l
400-415	3	75	90	78	43	9	6	50	2	1	28	4	
415-430	4	96	92	88	37	8	5	48	1	4	26	6	
430-445	4	102	102	84	29	4	9	62	0	5	42	8	
445-500	2	115	94	91	24	13	2	40	1	4	25	5	
500-515	1	119	102	95	39	13	4	41	0	4	37	2	
515-530	3	110	95	105	40	13	8	62	2	8	41	10	
530-545	3	109	90	104	37	15	3	52	3	3	38	9	
545-600	2	121	75	95	21	5	6	38	1	5	41	5	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOT

MAIN.ST

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 07:00 AM TO 09:00 AM INTERSECTION: N/S ABBOT KINNEY BLVD.

E/W VENICE BLVD.

FILE NUMBER: 6,7-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
700-715	7	49	11	11	107	3	1	47	16	28	44	5
715-730	5	64	10	8	109	9	5	61	29	19	67	10
730-745	8	88	19	14	138	17	8	95	30	23	76	13
745-800	5	100	22	16	129	16	5	68	35	35	84	14
800-815	10	130	26	19	120	13	2	102	55	34	91	18
818-830	8	89	20	11	111	11	10	104	45	23	80	18
830-845	6	111	21	6	100	10	4	55	25	43	97	17
845-900	7	112	19	7	99	6	4	50	22	36	75	11
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

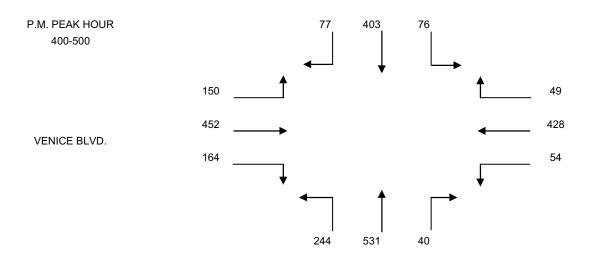
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	25	301	62	49	483	45	19	271	110	105	271	42	1783
715-815	28	382	77	57	496	55	20	326	149	111	318	55	2074
730-830	31	407	87	60	498	57	25	369	165	115	331	63	2208
745-845	29	430	89	52	460	50	21	329	160	135	352	67	2174
800-900	31	442	86	43	430	40	20	311	147	136	343	64	2093

ABBOT KINNEY BLVD.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 04:00 PM TO 06:00 PM INTERSECTION: N/S ABBOT KINNEY BLVD.

E/W VENICE BLVD.

FILE NUMBER: 6,7-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
					_						_	
400-415	19	104	10	12	105	9	20	112	64	30	121	45
415-430	23	104	24	14	98	15	8	144	70	44	112	43
430-445	21	97	18	9	118	16	6	135	60	58	110	35
445-500	14	98	24	14	107	14	6	140	50	32	109	27
500-515	18	101	19	12	94	14	9	131	60	33	95	32
515-530	31	111	15	11	102	13	12	122	61	61	105	53
530-545	25	106	13	13	105	9	11	122	66	53	108	54
545-600	26	80	10	9	92	9	12	112	52	44	91	45

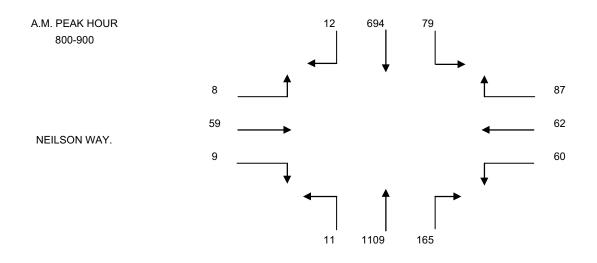
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	77	403	76	49	428	54	40	531	244	164	452	150	2668
415-515	76	400	85	49	417	59	29	550	240	167	426	137	2635
430-530	84	407	76	46	421	57	33	528	231	184	419	147	2633
445-545	88	416	71	50	408	50	38	515	237	179	417	166	2635
500-600	100	398	57	45	393	45	44	487	239	191	399	184	2582

ABBOT KINNEY BLVD.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 07:00 AM TO 09:00 AM INTERSECTION: N/S OCEAN PARK BLVD.

E/W NEILSON WAY.

FILE NUMBER: 12-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
			_					_			_	_
700-715	3	98	9	17	9	4	24	217	1	4	14	2
715-730	4	96	13	21	7	8	24	253	2	2	15	2
730-745	1	103	14	27	8	7	26	277	3	5	7	4
745-800	4	124	15	28	16	8	32	312	2	3	14	5
800-815	2	143	19	26	12	11	45	284	3	3	18	1
818-830	3	167	14	19	16	14	42	290	2	1	19	4
830-845	3	205	22	15	19	16	40	274	3	2	14	1
845-900	4	179	24	27	15	19	38	261	3	3	8	2

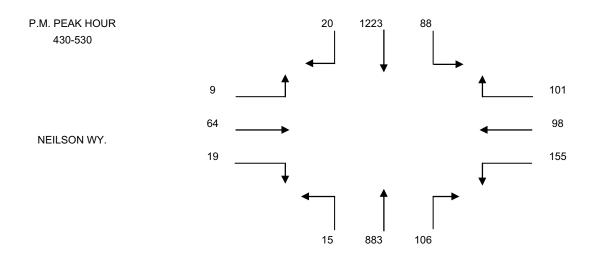
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	12	421	51	93	40	27	106	1059	8	14	50	13	1894
715-815	11	466	61	102	43	34	127	1126	10	13	54	12	2059
730-830	10	537	62	100	52	40	145	1163	10	12	58	14	2203
745-845	12	639	70	88	63	49	159	1160	10	9	65	11	2335
800-900	12	694	79	87	62	60	165	1109	11	9	59	8	2355

OCEAN PARK BLVD.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 04:00 PM TO 06:00 PM INTERSECTION: N/S OCEAN PARK BLVD.

E/W NEILSON WY.

FILE NUMBER: 12-PM

	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
		-											
	400-415	6	208	22	18	10	26	26	245	8	4	7	1
	415-430	2	255	22	13	15	38	22	253	7	2	17	3
	430-445	7	313	27	22	29	28	28	210	3	4	22	2
	445-500	2	300	25	25	29	44	29	211	4	4	10	1
	500-515	2	293	16	26	17	40	20	251	2	4	17	3
	515-530	9	317	20	28	23	43	29	211	6	7	15	3
	530-545	5	273	18	17	27	39	29	228	1	5	23	2
	545-600	1	285	30	18	16	40	25	219	1	2	12	2
1	1 HOLID	1	2	2	4	5	6	7	o	0	10	11	10

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	17	1076	96	78	83	136	105	919	22	14	56	7	2609
415-515	13	1161	90	86	90	150	99	925	16	14	66	9	2719
430-530	20	1223	88	101	98	155	106	883	15	19	64	9	2781
445-545	18	1183	79	96	96	166	107	901	13	20	65	9	2753
500-600	17	1168	84	89	83	162	103	909	10	18	67	10	2720

OCEAN PARK BLVD.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

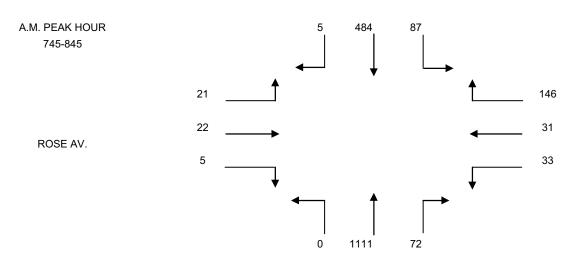
PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM

730-830

745-845


800-900

INTERSECTION: N/S PACIFIC AV.

E/W ROSE AV.

FILE NUMBER: 9-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
700-715	3	66	8	26	5	2	5	148	0	0	2	0	
715-730	2	92	15	29	3	6	9	230	0	0	1	3	
730-745	3	96	13	25	2	2	14	258	0	0	7	3	
745-800	1	117	21	37	3	5	25	270	0	0	3	4	
800-815	3	140	26	37	9	9	18	277	0	0	7	6	
818-830	1	114	25	38	8	12	14	291	0	4	4	5	
830-845	0	113	15	34	11	7	15	273	0	1	8	6	
845-900	1	84	18	28	9	5	14	250	0	0	5	6	
													-
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	9	371	57	117	13	15	53	906	0	0	13	10	1564
715-815	9	445	75	128	17	22	66	1035	0	0	18	16	1831

PACIFIC AV.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

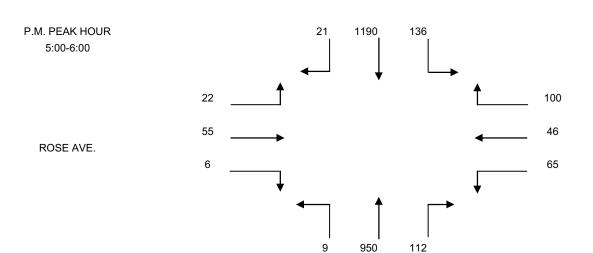
DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM

415-515

430-530

445-545


500-600

INTERSECTION: N/S PACIFIC AVE.

E/W ROSE AVE.

FILE NUMBER: 9-PM

١	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
١	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
														-'
	400-415	4	275	46	14	6	15	17	221	0	3	11	2	
	415-430	12	321	27	24	8	7	22	171	0	0	3	2	
	430-445	10	312	26	26	11	12	18	200	0	0	12	1	
	445-500	6	303	37	25	14	8	20	199	3	2	12	3	
	500-515	6	304	27	24	14	21	17	222	5	3	12	11	
	515-530	4	302	28	27	10	12	30	233	2	1	8	4	
	530-545	6	294	38	22	14	17	31	261	1	1	17	4	
	545-600	5	290	43	27	8	15	34	234	1	1	18	3	
	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	400-500	32	1211	136	89	39	42	77	791	3	5	38	8	247

PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

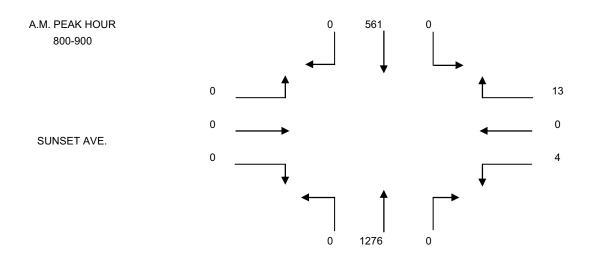
DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM

 $\hbox{INTERSECTION:} \quad \hbox{N/S} \quad \hbox{PACIFIC AV}.$

E/W SUNSET AVE.

2


FILE NUMBER: 8-AM

15 MINUTE

	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
_		-				_								•
	700-715	0	65	0	1	0	0	0	174	0	0	0	0	
	715-730	0	105	0	3	0	1	0	261	0	0	0	0	
	730-745	0	91	0	5	0	1	0	221	0	0	0	0	
	745-800	0	122	0	1	0	0	0	278	0	0	0	0	
	800-815	0	127	0	1	0	0	0	284	0	0	0	0	
	818-830	0	162	0	8	0	0	0	355	0	0	0	0	
	830-845	0	152	0	3	0	3	0	336	0	0	0	0	
	845-900	0	120	0	1	0	1	0	301	0	0	0	0	
														•
	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
Į	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
	700-800	0	383	0	10	0	2	0	934	0	0	0	0	1329
	715-815	0	445	0	10	0	2	0	1044	0	0	0	0	1501
	730-830	0	502	0	15	0	1	0	1138	0	0	0	0	1656
	745-845	0	563	0	13	0	3	0	1253	0	0	0	0	1832
	800-900	0	561	0	13	0	4	0	1276	0	0	0	0	1854

8

12

PACIFIC AV.

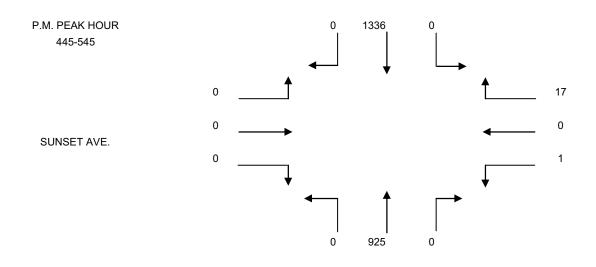
CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM

INTERSECTION: N/S PACIFIC AVE.


E/W SUNSET AVE.

FILE NUMBER: 8-PM

15 MINUTE 1

		_	-	-	-	-	-	-	_				1
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
400-415	0	287	0	3	0	1	0	235	0	0	0	0	
415-430	0	330	0	4	0	0	0	223	0	0	0	0	
430-445	0	326	0	6	0	1	0	225	0	0	0	0	
445-500	0	317	0	3	0	0	0	238	0	0	0	0	
500-515	0	329	0	3	0	0	0	232	0	0	0	0	
515-530	0	341	0	5	0	0	0	223	0	0	0	0	
530-545	0	349	0	6	0	1	0	232	0	0	0	0	
545-600	0	329	0	4	0	1	0	215	0	0	0	0	
													•
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	0	1260	0	16	0	2	0	921	0	0	0	0	2199
415-515	0	1302	0	16	0	1	0	918	0	0	0	0	2237
430-530	0	1313	0	17	0	1	0	918	0	0	0	0	2249
445-545	0	1336	0	17	0	1	0	925	0	0	0	0	2279
500-600	0	1348	0	18	0	2	0	902	0	0	0	0	2270

3 4 5 6 7 8 9 10 11 12

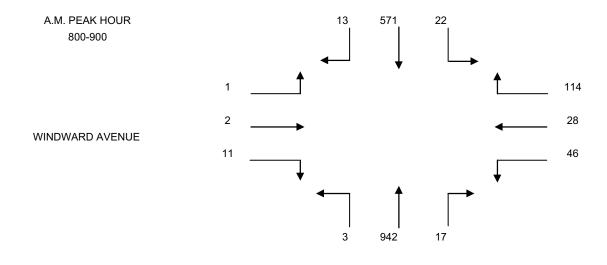
PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM


INTERSECTION: N/S PACIFIC AVE.

E/W WINDWARD AVENUE

FILE NUMBER: 11-AM

	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	700-715	3	68	2	14	0	2	7	187	3	0	2	0
	715-730	2	100	3	22	2	7	14	214	1	0	2	2
	730-745	1	103	6	22	8	17	4	233	1	0	1	0
	745-800	0	101	2	28	6	5	5	231	1	0	0	0
	800-815	4	133	7	28	8	6	4	252	0	0	0	1
	818-830	2	120	3	26	9	17	7	235	0	1	1	0
	830-845	4	175	6	39	9	11	2	235	2	6	1	0
	845-900	3	143	6	21	2	12	4	220	1	4	0	0
_													
	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	6	372	13	86	16	31	30	865	6	0	5	2	1432
715-815	7	437	18	100	24	35	27	930	3	0	3	3	1587
730-830	7	457	18	104	31	45	20	951	2	1	2	1	1639
745-845	10	529	18	121	32	39	18	953	3	7	2	1	1733
800-900	13	571	22	114	28	46	17	942	3	11	2	1	1770

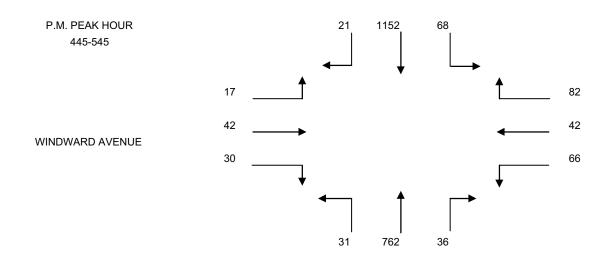
PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM


INTERSECTION: N/S PACIFIC AVE.

E/W WINDWARD AVENUE

FILE NUMBER: 11-PM

	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	400-415	6	241	17	22	5	10	8	196	18	2	11	3
	415-430	14	287	21	20	5	15	6	194	8	5	6	4
	430-445	9	270	13	18	1	12	9	188	3	6	11	7
	445-500	7	302	23	29	16	23	4	187	5	6	16	8
	500-515	4	272	10	23	9	14	15	191	11	8	8	4
	515-530	7	284	16	20	8	17	11	197	5	9	6	4
	530-545	3	294	19	10	9	12	6	187	10	7	12	1
	545-600	11	296	27	19	8	14	6	181	3	3	7	16
_													
	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	36	1100	74	89	27	60	27	765	34	19	44	22	2297
415-515	34	1131	67	90	31	64	34	760	27	25	41	23	2327
430-530	27	1128	62	90	34	66	39	763	24	29	41	23	2326
445-545	21	1152	68	82	42	66	36	762	31	30	42	17	2349
500-600	25	1146	72	72	34	57	38	756	29	27	33	25	2314

PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

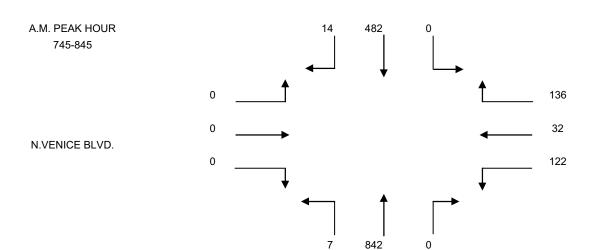
PERIOD: 07:00 AM TO 09:00 AM

INTERSECTION: N/S PACIFIC AVE.

E/W N.VENICE BLVD.

FILE NUMBER: 13-PM

700-800


715-815

730-830

745-845

800-900

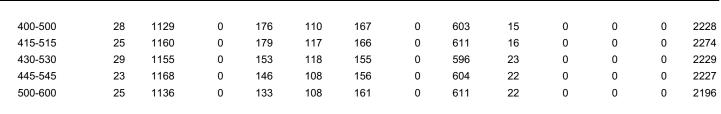
ı	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
L	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
	700-715	1	79	0	13	5	22	0	157	2	0	0	0	
	715-730	2	119	0	18	9	28	0	180	3	0	0	0	
	730-745	6	112	0	22	7	24	0	215	0	0	0	0	
	745-800	4	122	0	36	9	25	0	217	3	0	0	0	
	800-815	2	115	0	42	6	31	0	208	2	0	0	0	
	818-830	6	122	0	22	10	34	0	212	2	0	0	0	
	830-845	2	123	0	36	7	32	0	205	0	0	0	0	
	845-900	1	128	0	21	11	29	0	214	5	0	0	0	
														_
ſ	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
L	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TC

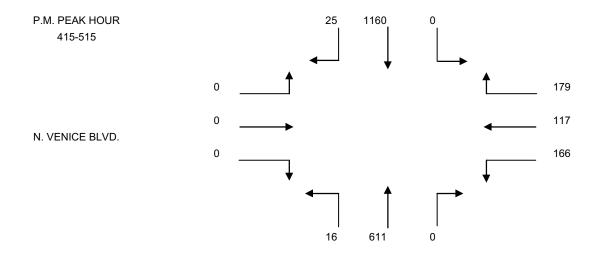
PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 04:00 PM TO 06:00 PM


INTERSECTION: N/S PACIFIC AVE.

E/W N. VENICE BLVD.

FILE NUMBER: 13-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
400-415	6	275	0	39	26	41	0	137	3	0	0	0	
415-430	6	288	0	51	26	47	0	165	2	0	0	0	
430-445	12	274	0	38	31	39	0	147	7	0	0	0	
445-500	4	292	0	48	27	40	0	154	3	0	0	0	
500-515	3	306	0	42	33	40	0	145	4	0	0	0	
515-530	10	283	0	25	27	36	0	150	9	0	0	0	
530-545	6	287	0	31	21	40	0	155	6	0	0	0	
545-600	6	260	0	35	27	45	0	161	3	0	0	0	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	L
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	Т

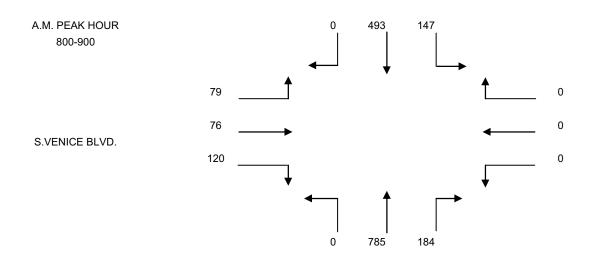
PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 07:00 AM TO 09:00 AM


INTERSECTION: N/S PACIFIC AVE.

E/W S.VENICE BLVD.

FILE NUMBER: 14-AM

١	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
ı	TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
	700-715	0	79	18	0	0	0	38	141	0	5	6	4
	715-730	0	118	17	0	0	0	46	176	0	11	19	15
	730-745	0	101	26	0	0	0	52	198	0	12	9	15
	745-800	0	123	32	0	0	0	43	203	0	22	19	20
	800-815	0	119	30	0	0	0	45	201	0	37	22	14
	818-830	0	120	36	0	0	0	55	188	0	26	15	21
	830-845	0	121	33	0	0	0	38	205	0	35	22	25
	845-900	0	133	48	0	0	0	46	191	0	22	17	19
ı	1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	0	421	93	0	0	0	179	718	0	50	53	54	1568
715-815	0	461	105	0	0	0	186	778	0	82	69	64	1745
730-830	0	463	124	0	0	0	195	790	0	97	65	70	1804
745-845	0	483	131	0	0	0	181	797	0	120	78	80	1870
800-900	0	493	147	0	0	0	184	785	0	120	76	79	1884

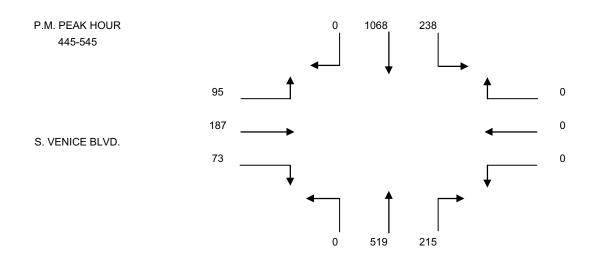
PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004

PERIOD: 04:00 PM TO 06:00 PM


INTERSECTION: N/S PACIFIC AVE.

E/W S. VENICE BLVD.

FILE NUMBER: 14-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
400-415	0	258	70	0	0	0	46	127	0	15	57	35
415-430	0	267	63	0	0	0	56	133	0	10	47	18
430-445	0	257	65	0	0	0	51	120	0	16	44	37
445-500	0	278	61	0	0	0	59	138	0	13	40	23
500-515	0	255	59	0	0	0	61	121	0	21	52	19
515-530	0	274	52	0	0	0	44	137	0	13	51	27
530-545	0	261	66	0	0	0	51	123	0	26	44	26
545-600	0	240	49	0	0	0	53	122	0	13	39	10
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT

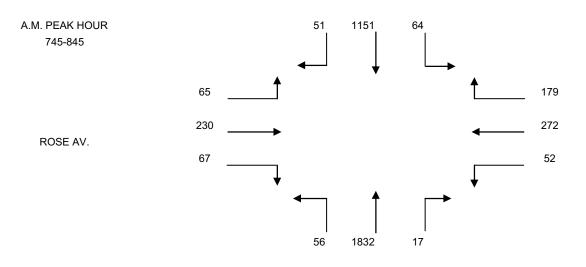
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	0	1060	259	0	0	0	212	518	0	54	188	113	2404
415-515	0	1057	248	0	0	0	227	512	0	60	183	97	2384
430-530	0	1064	237	0	0	0	215	516	0	63	187	106	2388
445-545	0	1068	238	0	0	0	215	519	0	73	187	95	2395
500-600	0	1030	226	0	0	0	209	503	0	73	186	82	2309

PACIFIC AVE.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


PERIOD: 07:00 AM TO 09:00 AM INTERSECTION: N/S LINCOLN BLVD.

N/S LINCOLN BLVD. E/W ROSE AV.

FILE NUMBER: 10-AM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
												_
700-715	13	187	9	29	37	12	2	417	18	13	28	26
715-730	15	205	13	33	41	11	5	443	19	15	32	18
730-745	19	253	10	39	43	9	6	459	12	20	46	23
745-800	12	276	15	46	68	16	4	477	16	23	54	19
800-815	11	309	17	52	75	14	7	463	11	15	62	15
818-830	13	291	18	42	66	12	4	440	16	17	64	13
830-845	15	275	14	39	63	10	2	452	13	12	50	18
845-900	18	251	11	39	58	13	4	443	25	13	4	28

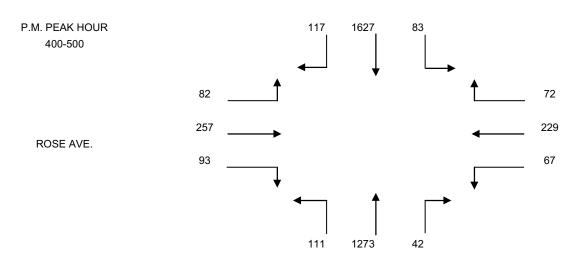
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	59	921	47	147	189	48	17	1796	65	71	160	86	3606
715-815	57	1043	55	170	227	50	22	1842	58	73	194	75	3866
730-830	55	1129	60	179	252	51	21	1839	55	75	226	70	4012
745-845	51	1151	64	179	272	52	17	1832	56	67	230	65	4036
800-900	57	1126	60	172	262	49	17	1798	65	57	180	74	3917

LINCOLN BLVD.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA AREA.

DATE: WEDNESDAY, MARCH 10, 2004


04:00 PM TO 06:00 PM PERIOD: INTERSECTION:

N/S LINCOLN BLVD.

E/W ROSE AVE. FILE NUMBER: 10-PM

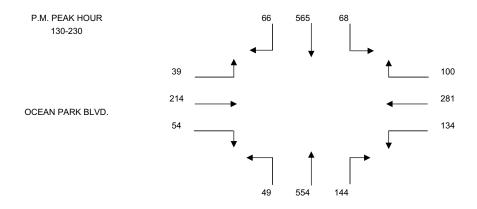
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT
											_	_
400-415	37	382	21	24	69	16	8	368	28	25	76	22
415-430	25	452	26	25	60	12	11	289	23	16	53	21
430-445	26	395	18	14	56	22	8	324	32	26	60	17
445-500	29	398	18	9	44	17	15	292	28	26	68	22
500-515	32	392	14	14	58	14	13	282	20	19	50	21
515-530	23	408	26	17	67	14	11	307	24	21	64	21
530-545	35	389	23	17	65	9	8	294	19	15	57	19
545-600	21	412	26	16	72	11	8	247	23	7	62	19

1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	117	1627	83	72	229	67	42	1273	111	93	257	82	4053
415-515	112	1637	76	62	218	65	47	1187	103	87	231	81	3906
430-530	110	1593	76	54	225	67	47	1205	104	92	242	81	3896
445-545	119	1587	81	57	234	54	47	1175	91	81	239	83	3848
500-600	111	1601	89	64	262	48	40	1130	86	62	233	80	3806

LINCOLN BLVD.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 05, 2004 PERIOD: 12:00 PM TO 04:00 PM

INTERSECTION N/S MAIN ST.

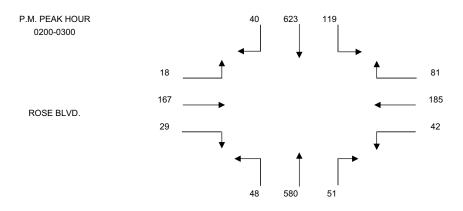
E/W OCEAN PARK BLVD.

FILE NUMBER: 1-PM

45.540.0.75			•		-		-		•	40	44		1
15 MINUTE	1	2	3	4	5	6 MDI T	7	8 NDTU	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	13	144	22	33	64	39	21	135	5	13	62	11	
1200-1215	17	138	25	27	79	39	38	133	5 7	13	62 51	9	
1215-1230	17	129	20	36	79 69	35	24	121	15	17	49	6	
1245-0100	20	134	19	32	57	41	38	127	14	21	49 57	8	
0100-0115	21	134	20	39	62	38	23	127	13	20	56	o 11	
0115-0130	16	135	19	29	56	31	32	121	9	12	50	8	
0130-0145	15	133	14	26	72	33	34	138	10	11	68	7	
0145-0200	15	142	20	28	67	28	47	130	19	14	55	11	
0200-0215	17	141	16	21	73	37	31	142	11	17	51	7	
0200-0213	19	149	18	25	69	36	32	144	9	12	40	14	
0230-0245	15	125	19	28	67	38	35	120	12	28	57	13	
0245-0300	22	137	17	21	64	41	36	135	7	13	44	12	
0300-0315	11	109	20	18	67	27	23	124	13	8	46	9	
0315-0330	15	143	15	33	61	29	26	137	17	12	58	16	
0330-0345	11	122	16	22	58	22	33	139	18	16	56	12	
0345-0400	6	135	10	25	45	34	31	125	16	11	46	11	
00.000.00	·	.00		20		0.	0.	0		•		• • •	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1200-0100	64	545	86	128	269	152	121	516	41	64	219	34	2239
1215-0115	72	538	84	134	267	151	123	504	49	71	213	34	2240
1230-0130	71	535	78	136	244	145	117	492	51	70	212	33	2184
1245-0145	72	539	72	126	247	143	127	509	46	64	231	34	2210
0100-0200	67	547	73	122	257	130	136	512	51	57	229	37	2218
0115-0215	63	551	69	104	268	129	144	531	49	54	224	33	2219
0130-0230	66	565	68	100	281	134	144	554	49	54	214	39	2268
0145-0245	66	557	73	102	276	139	145	536	51	71	203	45	2264
0200-0300	73	552	70	95	273	152	134	541	39	70	192	46	2237
0215-0315	67	520	74	92	267	142	126	523	41	61	187	48	2148
0230-0330	63	514	71	100	259	135	120	516	49	61	205	50	2143
0245-0345	59	511	68	94	250	119	118	535	55	49	204	49	2111
0300-0400	43	509	61	98	231	112	113	525	64	47	206	48	2057

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 05, 2004
PERIOD: 12:00 PM TO 04:00 PM

INTERSECTION N/S MAIN ST.

E/W ROSE BLVD.

FILE NUMBER: 2-PM

								_					ı
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	11	138	18	16	56	10	13	128	16	7	27	5	
1215-1230	21	145	37	21	57	15	12	173	20	6	34	9	
1230-1245	8	125	12	18	39	11	13	139	15	6	33	3	
1245-0100	11	140	18	17	41	14	10	138	16	4	38	6	
0100-0115	8	128	18	22	69	7	15	154	17	8	40	2	
0115-0130	6	152	16	13	52	9	12	124	12	6	49	4	
0130-0145	6	142	36	15	49	10	9	151	14	6	44	8	
0145-0200	21	140	24	18	56	12	7	142	27	8	49	6	
0200-0215	8	163	41	15	48	8	13	135	10	6	44	2	
0215-0230	9	154	26	20	44	9	8	131	13	12	43	7	
0230-0245	6	155	24	21	42	11	18	159	15	6	38	4	
0245-0300	17	151	28	25	51	14	12	155	10	5	42	5	
0300-0315	12	166	13	18	57	19	10	138	5	7	32	7	
0315-0330	6	132	17	14	44	12	8	139	15	4	48	7	
0330-0345	7	161	24	18	52	11	14	146	11	8	39	7	
0345-0400	7	140	16	13	31	12	18	155	10	3	29	6	
													_
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1200-0100	51	548	85	72	193	50	48	578	67	23	132	23	1870
1215-0115	48	538	85	78	206	47	50	604	68	24	145	20	1913
1230-0130	33	545	64	70	201	41	50	555	60	24	160	15	1818
1245-0145	31	562	88	67	211	40	46	567	59	24	171	20	1886
0100-0200	41	562	94	68	226	38	43	571	70	28	182	20	1943
0115-0215	41	597	117	61	205	39	41	552	63	26	186	20	1948
0130-0230	44	599	127	68	197	39	37	559	64	32	180	23	1969
0145-0245	44	612	115	74	190	40	46	567	65	32	174	19	1978
0200-0300	40	623	119	81	185	42	51	580	48	29	167	18	1983
0215-0315	44	626	91	84	194	53	48	583	43	30	155	23	1974
0230-0330	41	604	82	78	194	56	48	591	45	22	160	23	1944
0245-0345	42	610	82	75	204	56	44	578	41	24	161	26	1943
0300-0400	32	599	70	63	184	54	50	578	41	22	148	27	1868
0000-0400													

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: SANTA MONICA / VENICE

DATE: SATURDAY, JULY 03, 2004

PERIOD: 12:00 P.M. TO 4:00 PM

INTERSECTION: N/S MAIN STREET

E/W SUNSET AVENUE / MTA SERVICE DRIVEWAY

FILE NUMBER: 3-MD

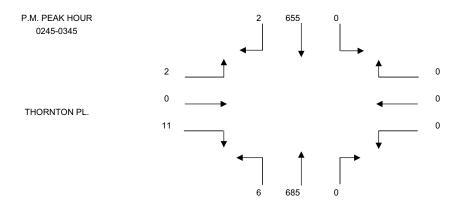
15 MINUTE	1A	1B	2	3	4	5A	5B	6	7	8	9A	9B	10	11	12
TOTALS	SBRT	SBRT	SBTH	SBLT	WBRT	WBTH	WBTH	WBLT	NBRT	NBTH	NBLT	NBLT	EBRT	EBTH	EBLT
1200-1215	7	0	145	12	13	0	0	3	6	154	4	0	0	0	0
1215-1230	9	0	125	12	10	0	0	6	6	141	3	0	0	0	0
1230-1245	5	0	115	13	8	2	0	6	8	143	4	0	0	0	0
1245-0100	6	0	142	8	13	1	0	7	10	159	3	0	0	0	0
0100-0115	4	0	148	8	16	1	0	4	9	168	3	0	0	0	0
0115-0130	2	0	139	4	10	2	0	6	9	164	2	0	0	0	0
0130-0145	4	0	135	5	12	1	0	6	8	149	5	0	0	0	0
0145-0200	4	0	149	11	7	0	0	3	8	142	3	0	0	0	0
0200-0215	4	0	161	8	4	2	0	2	5	159	9	0	0	0	0
0215-0230	3	0	127	6	7	0	0	4	9	159	3	0	0	0	0
0230-0245	7	0	136	7	13	2	0	3	6	133	3	0	0	0	0
0245-0300	4	0	153	10	13	0	0	2	6	146	2	0	0	0	0
0300-0315	6	0	148	7	9	0	0	4	9	146	7	0	0	0	0
0315-0330	7	0	137	6	10	0	0	1	7	148	1	0	0	0	0
0330-0345	8	0	134	4	12	0	0	1	8	148	2	0	0	0	0
0345-0400	5	0	113	7	8	1	0	1	7	145	1	0	0	0	0

1 HOUR	1A	1B	2	3	4	5A	5B	6	7	8	9A	9B	10	11	12
TOTALS	SBRT	SBRT	SBTH	SBLT	WBRT	WBTH	WBTH	WBLT	NBRT	NBTH	NBLT	NBLT	EBRT	EBTH	EBLT
1200-0100	27	0	527	45	44	3	0	22	30	597	14	0	0	0	0
1215-0115	24	0	530	41	47	4	0	23	33	611	13	0	0	0	0
1230-0130	17	0	544	33	47	6	0	23	36	634	12	0	0	0	0
1245-0145	16	0	564	25	51	5	0	23	36	640	13	0	0	0	0
0100-0200	14	0	571	28	45	4	0	19	34	623	13	0	0	0	0
0115-0215	14	0	584	28	33	5	0	17	30	614	19	0	0	0	0
0130-0230	15	0	572	30	30	3	0	15	30	609	20	0	0	0	0
0145-0245	18	0	573	32	31	4	0	12	28	593	18	0	0	0	0
0200-0300	18	0	577	31	37	4	0	11	26	597	17	0	0	0	0
0215-0315	20	0	564	30	42	2	0	13	30	584	15	0	0	0	0
0230-0330	24	0	574	30	45	2	0	10	28	573	13	0	0	0	0
0245-0345	25	0	572	27	44	0	0	8	30	588	12	0	0	0	0
0300-0400	26	0	532	24	39	1	0	7	31	587	11	0	0	0	0

NOTE: MTA SERVICE AREA GATE CLOSED

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 05, 2004
PERIOD: 12:00 PM TO 04:00 PM

INTERSECTION N/S MAIN ST.

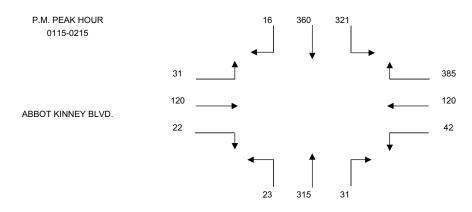
E/W THORNTON PL.

FILE NUMBER: 4-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	2	149	0	0	0	0	0	169	0	0	0	0	
1215-1230	1	152	0	0	0	0	0	158	0	0	0	0	
1230-1245	1	148	0	0	0	0	0	157	0	0	0	0	
1245-0100	0	147	0	0	0	0	0	164	0	1	0	0	
0100-0115	2	154	0	0	0	0	0	168	0	0	0	0	
0115-0130	0	158	0	0	0	0	0	157	1	1	0	2	
0130-0145	0	169	0	0	0	0	0	153	2	2	0	0	
0145-0200	1	183	0	0	0	0	0	169	1	0	0	0	
0200-0215	0	174	0	0	0	0	0	151	4	1	0	0	
0215-0230	1	162	0	0	0	0	0	167	0	1	0	2	
0230-0245	3	163	0	0	0	0	0	171	2	1	0	2	
0245-0300	0	166	0	0	0	0	0	171	2	3	0	1	
0300-0315	1	141	0	0	0	0	0	163	1	3	0	0	
0315-0330	0	174	0	0	0	0	0	182	1	4	0	0	
0330-0345	1	174	0	0	0	0	0	169	2	1	0	1	
0345-0400	1	161	0	0	0	0	0	155	1	1	0	0	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1200-0100	4	596	0	0	0	0	0	648	0	1	0	0	1249
1215-0115	4	601	0	0	0	0	0	647	0	1	0	0	1253
1230-0130	3	607	0	0	0	0	0	646	1	2	0	2	1261
1245-0145	2	628	0	0	0	0	0	642	3	4	0	2	1281
0100-0200	3	664	0	0	0	0	0	647	4	3	0	2	1323
0115-0215	1	684	0	0	0	0	0	630	8	4	0	2	1329
0130-0230	2	688	0	0	0	0	0	640	7	4	0	2	1343
0145-0245	5	682	0	0	0	0	0	658	7	3	0	4	1359
0200-0300	4	665	0	0	0	0	0	660	8	6	0	5	1348
0215-0315	5	632	0	0	0	0	0	672	5	8	0	5	1327
0230-0330	4	644	0	0	0	0	0	687	6	11	0	3	1355
0245-0345	2	655	0	0	0	0	0	685	6	11	0	2	1361
0300-0400	3	650	0	0	0	0	0	669	5	9	0	1	1337

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 12, 2004
PERIOD: 12:00 PM TO 04:00 PM

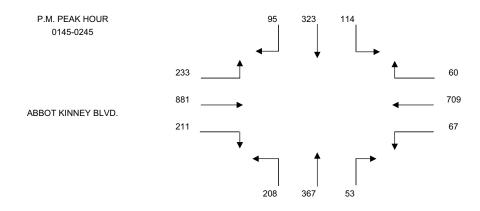
INTERSECTION N/S MAIN ST.

E/W ABBOT KINNEY BLVD.

FILE NUMBER: 5-PM

TOTALS	Γ	15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12]
1215-1230		TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	1
1215-1230															•
1230-1245		1200-1215	1	58	59	89	28	11	8	73	2	2	30	4	
1245-0100		1215-1230	2	60	85	73	32	9	10	67	1	3	27	6	
0100-0115		1230-1245	2	75	82	116	40	6	4	81	5	4	36	9	
0115-0130		1245-0100	7	69	80	85	30	7	7	75	5	7	28	5	
0130-0145		0100-0115	1	71	81	86	33	9	5	53	3	5	23	5	
0145-0200		0115-0130	2	109	80	94	37	9	7	71	3	6	25	5	
0200-0215 6 107 80 111 30 10 8 81 9 5 30 12 0215-0230 1 67 74 69 38 9 8 65 3 4 23 9 0230-0245 5 86 70 81 29 7 5 65 5 4 34 7 0245-0300 5 80 74 85 28 7 5 60 4 4 28 10 0300-0315 6 83 63 113 50 14 15 70 2 5 31 6 0315-0330 5 81 75 86 39 6 6 63 4 8 35 10 0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1HOUR 1 2		0130-0145	4	68	86	87	31	12	3	72	5	6	32	6	
0215-0230 1 67 74 69 38 9 8 65 3 4 23 9 0230-0245 5 86 70 81 29 7 5 65 5 4 34 7 0245-0300 5 80 74 85 28 7 5 60 4 4 28 10 0300-0315 6 83 63 113 50 14 15 70 2 5 31 6 0315-0330 5 81 75 86 39 6 6 63 4 8 35 10 0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 1 HOUR 1 2 26		0145-0200	4	76	75	93	22	11	13	91	6	5	33	8	
0230-0245 5 86 70 81 29 7 5 65 5 4 34 7 0245-0300 5 80 74 85 28 7 5 60 4 4 28 10 0300-0315 6 83 63 113 50 14 15 70 2 5 31 6 0315-0330 5 81 75 86 39 6 6 63 4 8 28 10 0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 1 HOUR 1 2 262		0200-0215	6	107	80	111	30	10	8	81	9	5	30	12	
0245-0300 5 80 74 85 28 7 5 60 4 4 28 10 0300-0315 6 83 63 113 50 14 15 70 2 5 31 6 0315-0330 5 81 75 86 39 6 6 63 4 8 35 10 0330-0345 5 77 77 107 23 4 8 73 4 8 28 10 0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBRH EBLT TOTALS 1200-0100 </td <td></td> <td>0215-0230</td> <td>1</td> <td>67</td> <td>74</td> <td>69</td> <td>38</td> <td>9</td> <td>8</td> <td>65</td> <td>3</td> <td>4</td> <td>23</td> <td>9</td> <td></td>		0215-0230	1	67	74	69	38	9	8	65	3	4	23	9	
0300-0315 6 83 63 113 50 14 15 70 2 5 31 6 0315-0330 5 81 75 86 39 6 6 63 4 8 35 10 0330-0345 5 77 77 107 23 4 8 73 4 8 28 10 0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT TOTALS 1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 <td></td> <td>0230-0245</td> <td>5</td> <td>86</td> <td>70</td> <td>81</td> <td>29</td> <td>7</td> <td>5</td> <td>65</td> <td>5</td> <td>4</td> <td>34</td> <td>7</td> <td></td>		0230-0245	5	86	70	81	29	7	5	65	5	4	34	7	
0315-0330 5 81 75 86 39 6 6 63 4 8 35 10		0245-0300	5	80	74	85	28	7	5	60	4	4	28	10	
0330-0345 5 77 77 107 23 4 8 73 4 8 28 10 0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1 HOUR TOTALS 1 2 3 4 5 6 7 8 9 10 11 12 1 HOUR TOTALS SBRT SBTH SBLT WBRT WBRT WBLT NBRT NBTH NBLT EBRT EBTH EBLT TOTALS 1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22		0300-0315	6	83	63	113	50	14	15	70	2	5	31	6	
0345-0400 5 89 78 90 17 5 5 76 2 7 29 4 1 HOUR TOTALS 1 2 3 4 5 6 7 8 9 10 11 12 1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17		0315-0330	5	81	75	86	39	6	6	63	4	8	35	10	
1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12 TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT TOTALS 1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28		0330-0345	5	77	77	107	23	4	8	73	4	8	28	10	
TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT TOTALS 1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120		0345-0400	5	89	78	90	17	5	5	76	2	7	29	4	
TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT TOTALS 1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120															
1200-0100 12 262 306 363 130 33 29 296 13 16 121 24 1605 1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 <td></td> <td>1 HOUR</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td></td> <td>6</td> <td>7</td> <td>8</td> <td></td> <td>10</td> <td>11</td> <td>12</td> <td></td>		1 HOUR	1	2	3	4		6	7	8		10	11	12	
1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37		TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1215-0115 12 275 328 360 135 31 26 276 14 19 114 25 1615 1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37															
1230-0130 12 324 323 381 140 31 23 280 16 22 112 24 1688 1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37 34 302 23 18 120 36 1694 0200-0300 17 340 298 346 125 33															
1245-0145 14 317 327 352 131 37 22 271 16 24 108 21 1640 0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37 34 302 23 18 120 36 1694 0200-0300 17 340 298 346 125 33 26 271 21 17 115 38 1647 0215-0315 17 316 281 348 145 37															
0100-0200 11 324 322 360 123 41 28 287 17 22 113 24 1672 0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37 34 302 23 18 120 36 1694 0200-0300 17 340 298 346 125 33 26 271 21 17 115 38 1647 0215-0315 17 316 281 348 145 37 33 260 14 17 116 32 1616 0230-0330 21 330 282 365 146 34															
0115-0215 16 360 321 385 120 42 31 315 23 22 120 31 1786 0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37 34 302 23 18 120 36 1694 0200-0300 17 340 298 346 125 33 26 271 21 17 115 38 1647 0215-0315 17 316 281 348 145 37 33 260 14 17 116 32 1616 0230-0330 21 330 282 365 146 34 31 258 15 21 128 33 1664 0245-0345 21 321 289 391 140 31															
0130-0230 15 318 315 360 121 42 32 309 23 20 118 35 1708 0145-0245 16 336 299 354 119 37 34 302 23 18 120 36 1694 0200-0300 17 340 298 346 125 33 26 271 21 17 115 38 1647 0215-0315 17 316 281 348 145 37 33 260 14 17 116 32 1616 0230-0330 21 330 282 365 146 34 31 258 15 21 128 33 1664 0245-0345 21 321 289 391 140 31 34 266 14 25 122 36 1690	_														-
0145-0245 16 336 299 354 119 37 34 302 23 18 120 36 1694 0200-0300 17 340 298 346 125 33 26 271 21 17 115 38 1647 0215-0315 17 316 281 348 145 37 33 260 14 17 116 32 1616 0230-0330 21 330 282 365 146 34 31 258 15 21 128 33 1664 0245-0345 21 321 289 391 140 31 34 266 14 25 122 36 1690	L														
0200-0300 17 340 298 346 125 33 26 271 21 17 115 38 1647 0215-0315 17 316 281 348 145 37 33 260 14 17 116 32 1616 0230-0330 21 330 282 365 146 34 31 258 15 21 128 33 1664 0245-0345 21 321 289 391 140 31 34 266 14 25 122 36 1690		0130-0230													
0215-0315 17 316 281 348 145 37 33 260 14 17 116 32 1616 0230-0330 21 330 282 365 146 34 31 258 15 21 128 33 1664 0245-0345 21 321 289 391 140 31 34 266 14 25 122 36 1690															
0230-0330 21 330 282 365 146 34 31 258 15 21 128 33 1664 0245-0345 21 321 289 391 140 31 34 266 14 25 122 36 1690															
0245-0345 21 321 289 391 140 31 34 266 14 25 122 36 1690															
0300-0400 21 330 293 396 129 29 34 282 12 28 123 30 1707															
		0300-0400	21	330	293	396	129	29	34	282	12	28	123	30	1707

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.


PROJECT: LOS ANGELES.

DATE: SATURDAY, JUNE 12, 2004 PERIOD: 12:00 PM TO 04:00 PM INTERSECTION N/S VENICE BLVD.

E/W ABBOT KINNEY BLVD.

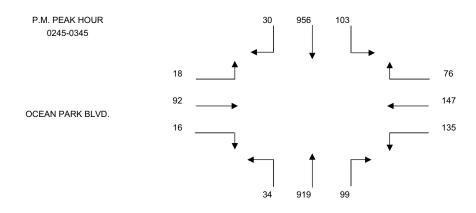
FILE NUMBER: 6-PM

15 MINUTE		2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	21	72	37	6	149	16	14	109	45	77	179	43	
1215-1230	21	94	34	19	137	18	16	96	47	52	239	58	
1230-1245	17	90	15	5	160	18	10	115	60	41	172	30	
1245-0100	36	102	35	18	164	16	10	115	49	90	248	56	
0100-0115	28	85	29	9	177	16	22	78	31	49	237	36	
0115-0130	32	72	18	16	173	14	17	94	41	42	208	25	
0130-0145	25	80	30	13	172	16	18	101	63	32	164	45	
0145-0200	28	81	49	14	195	21	9	85	53	67	229	83	
0200-0215	19	79	14	12	160	16	13	96	54	26	200	42	
0215-0230	25	73	27	20	189	12	19	106	62	57	220	64	
0230-0245	23	90	24	14	165	18	12	80	39	61	232	44	
0245-0300	18	79	13	12	167	15	11	95	61	46	188	33	
0300-0315	14	80	25	7	177	10	11	77	51	47	215	70	
0315-0330	14	81	19	12	180	14	12	98	58	55	227	41	
0330-0345	19	77	23	13	181	16	15	84	47	58	246	49	
0045 0400													
0345-0400	10	61	18	7	174	15	21	97	48	58	222	58	
0345-0400	10	61	18	7	174	15	21	97	48	58	222	58	
1 HOUR	10	2	3	4	174 5	6	21 7	97	9	10	11	58 12	
													TOTALS
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	TOTALS
1 HOUR	1 SBRT	2	3	4	5	6	7	8	9	10	11	12	TOTALS 3271
1 HOUR TOTALS	1 SBRT	2 SBTH	3 SBLT	4 WBRT	5 WBTH	6 WBLT	7 NBRT	8 NBTH	9 NBLT	10 EBRT	11 EBTH	12 EBLT	· · · · · ·
1 HOUR TOTALS	1 SBRT 95 102	2 SBTH 358	3 SBLT	4 WBRT	5 WBTH	6 WBLT	7 NBRT	8 NBTH 435	9 NBLT	10 EBRT 260	11 EBTH 838	12 EBLT 187	3271
1 HOUR TOTALS 1200-0100 1215-0115	1 SBRT 95 102 113	2 SBTH 358 371	3 SBLT 121 113	4 WBRT 48 51	5 WBTH 610 638	6 WBLT 68 68	7 NBRT 50 58	8 NBTH 435 404	9 NBLT 201 187	10 EBRT 260 232	11 EBTH 838 896	12 EBLT 187 180	3271 3300 3221
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130	95 102 113 121	2 SBTH 358 371 349	3 SBLT 121 113 97	4 WBRT 48 51 48	5 WBTH 610 638 674	6 WBLT 68 68 68	7 NBRT 50 58 59	8 NBTH 435 404 402	9 NBLT 201 187 181	10 EBRT 260 232 222	11 EBTH 838 896 865	12 EBLT 187 180 147	3271 3300 3221
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145	95 102 113 121 113	2 SBTH 358 371 349 339	3 SBLT 121 113 97 112	4 WBRT 48 51 48 56	5 WBTH 610 638 674 686	6 WBLT 68 68 64 62	7 NBRT 50 58 59 67	8 NBTH 435 404 402 388	9 NBLT 201 187 181 184	10 EBRT 260 232 222 213	11 EBTH 838 896 865 857	12 EBLT 187 180 147 162	3271 3300 3221 3247
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200	95 102 113 121 113 104	2 SBTH 358 371 349 339 318	3 SBLT 121 113 97 112 126	4 WBRT 48 51 48 56 52	5 WBTH 610 638 674 686 717	6 WBLT 68 68 64 62 67	7 NBRT 50 58 59 67 66	8 NBTH 435 404 402 388 358	9 NBLT 201 187 181 184 188	10 EBRT 260 232 222 213 190	11 EBTH 838 896 865 857 838	12 EBLT 187 180 147 162 189	3271 3300 3221 3247 3222
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215	95 102 113 121 113 104 97	2 SBTH 358 371 349 339 318 312	3 SBLT 121 113 97 112 126 111	4 WBRT 48 51 48 56 52 55	5 WBTH 610 638 674 686 717 700	6 WBLT 68 68 64 62 67 67	7 NBRT 50 58 59 67 66 57	8 NBTH 435 404 402 388 358 376	9 NBLT 201 187 181 184 188 211	10 EBRT 260 232 222 213 190 167	11 EBTH 838 896 865 857 838 801	12 EBLT 187 180 147 162 189 195	3271 3300 3221 3247 3222 3156
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230	95 102 113 121 113 104 97	2 SBTH 358 371 349 339 318 312 313	3 SBLT 121 113 97 112 126 111 120	4 WBRT 48 51 48 56 52 55	5 WBTH 610 638 674 686 717 700 716	6 WBLT 68 68 64 62 67 67 65	7 NBRT 50 58 59 67 66 57 59	8 NBTH 435 404 402 388 358 376 388	9 NBLT 201 187 181 184 188 211 232	10 EBRT 260 232 222 213 190 167 182	11 EBTH 838 896 865 857 838 801 813	12 EBLT 187 180 147 162 189 195 234	3271 3300 3221 3247 3222 3156 3278
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230	95 102 113 121 113 104 97 95	2 SBTH 358 371 349 339 318 312 313	3 SBLT 121 113 97 112 126 111 120	48 51 48 56 52 55 59 60	5 WBTH 610 638 674 686 717 700 716	68 68 68 64 62 67 65	7 NBRT 50 58 59 67 66 57 59	8 NBTH 435 404 402 388 358 376 388	9 NBLT 201 187 181 184 188 211 232	10 EBRT 260 232 222 213 190 167 182 211	11 EBTH 838 896 865 857 838 801 813	12 EBLT 187 180 147 162 189 195 234	3271 3300 3221 3247 3222 3156 3278 3321
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230 0145-0245	95 102 113 121 113 104 97 95 85 80	2 SBTH 358 371 349 339 318 312 313 323	3 SBLT 121 113 97 112 126 111 120 114	48 51 48 56 52 55 59 60	5 WBTH 610 638 674 686 717 700 716 709	68 68 68 64 62 67 65	7 NBRT 50 58 59 67 66 57 59 53	8 NBTH 435 404 402 388 358 376 388 367 377	9 NBLT 201 187 181 184 188 211 232 208 216	10 EBRT 260 232 222 213 190 167 182 211	11 EBTH 838 896 865 857 838 801 813 881	12 EBLT 187 180 147 162 189 195 234 233 183	3271 3300 3221 3247 3222 3156 3278 3321 3145
1 HOUR TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230 0145-0245 0200-0300 0215-0315	95 102 113 121 113 104 97 95 85 80 69	2 SBTH 358 371 349 339 318 312 313 323 321 322	3 SBLT 121 113 97 112 126 111 120 114 78	48 51 48 56 52 55 59 60 58 53	5 WBTH 610 638 674 686 717 700 716 709 681 698	68 68 68 64 62 67 65 67	7 NBRT 50 58 59 67 66 57 59 53 55	8 NBTH 435 404 402 388 358 376 388 367 377 358	9 NBLT 201 187 181 184 188 211 232 208 216 213	10 EBRT 260 232 222 213 190 167 182 211 190 211	838 896 865 857 838 801 813 881	12 EBLT 187 180 147 162 189 195 234 233 183 211	3271 3300 3221 3247 3222 3156 3278 3321 3145 3198

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.

 DATE:
 SATURDAY, JUNE 05, 2004


 PERIOD:
 12:00 PM TO 04:00 PM

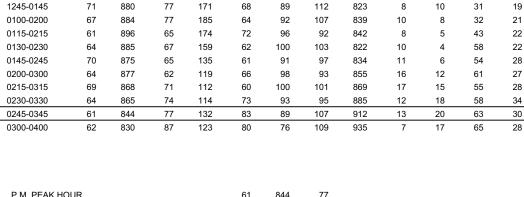
 INTERSECTION
 N/S
 NEILSON WAY.

 E/W
 OCEAN PARK BLVD.

FILE NUMBER: 7-PM

15 MINUTE		2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215		194	23	15	22	36	27	198	8	8	21	2	
1215-1230		218	19	19	39	33	20	189	10	4	22	3	
1230-1245		200	19	25	39	31	23	174	6	2	14	2	
1245-0100		223	31	17	33	40	25	245	7	3	16	4	
0100-0115		225	30	20	36	37	29	218	17	5	24	1	
0115-0130		227	21	17	31	36	30	222	8	7	19	3	
0130-0145		196	22	26	39	23	33	208	10	5	23	2	
0145-0200		229	29	23	38	36	32	212	11	7	17	6	
0200-0215		232	22	18	38	27	28	210	11	6	13	7	
0215-0230		230	16	22	37	32	23	243	7	8	14	2	
0230-0245		221	39	16	46	28	29	228	6	5	22	5	
0245-0300		235	23	21	42	21	22	213	7	7	20	2	
0300-0315		249	19	19	31	42	19	233	9	3	19	8	
0315-0330		248	33	18	38	26	29	239	8	2	25	3	
0330-0345		224	28	18	36	46	29	234	10	4	28	5	
0345-0400) 10	230	24	17	29	22	15	207	8	3	14	8	
_													
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1200-0100		835	92	76	133	140	95	806	31	17	73	11	2352
1215-0115		866	99	81	147	141	97	826	40	14	76	10	2431
1230-0130		875	101	79	139	144	107	859	38	17	73	10	2478
1245-0145		871	104	80	139	136	117	893	42	20	82	10	2527
0100-0200		877	102	86	144	132	124	860	46	24	83	12	2521
0115-0215		884	94	84	146	122	123	852	40	25	72	18	2491
0130-0230		887	89	89	152	118	116	873	39	26	67	17	2499
0145-0245		912	106	79	159	123	112	893	35	26	66	20	2558
0200-0300		918	100	77	163	108	102	894	31	26	69	16	2535
0215-0315		935	97	78	156	123	93	917	29	23	75	17	2575
0230-0330		953	114	74	157	117	99	913	30	17	86	18	2609
0245-0345	30	956	103	76	147	135	99	919	34	16	92	18	2625
0300-0400	31	951	104	72	134	136	92	913	35	12	86	24	2590

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.


PROJECT: LOS ANGELES.

DATE: SATURDAY, JUNE 05, 2004
PERIOD: 12:00 PM TO 04:00 PM

 $\begin{array}{ccc} \text{INTERSECTION} & \text{N/S} & \text{PACIFIC AV}. \\ & \text{E/W} & \text{ROSE AV}. \end{array}$

FILE NUMBER: 8-PM

15 MINUTE	1 1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	16	202	18	37	14	22	29	174	2	4	5	4	
1215-1230	19	223	22	43	16	27	36	188	3	5	6	5	
1230-1245	20	215	22	44	22	23	34	193	2	5	6	6	
1245-0100	22	214	17	46	22	22	33	190	2	3	7	4	
0100-0115	17	216	21	45	11	17	32	212	2	4	6	6	
0115-0130	20	229	17	36	20	22	22	213	4	2	3	5	
0130-0145	12	221	22	44	15	28	25	208	0	1	15	4	
0145-0200	18	218	17	60	18	25	28	206	4	1	8	6	
0200-0215	11	228	9	34	19	21	17	215	0	1	17	7	
0215-0230	23	218	19	21	10	26	33	193	6	1	18	5	
0230-0245	18	211	20	20	14	19	19	220	1	3	11	10	
0245-0300	12	220	14	44	23	32	24	227	9	7	15	5	
0300-0315	16	219	18	27	13	23	25	229	1	4	11	8	
0315-0330	18	215	22	23	23	19	27	209	1	4	21	11	
0330-0345	15	190	23	38	24	15	31	247	2	5	16	6	
0345-0400	13	206	24	35	20	19	26	250	3	4	17	3	
													1
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1200-0100	77	854	79	170	74	94	132	745	9	17	24	19	2294
1215-0115	78	868	82	178	71	89	135	783	9	17	25	21	2356
1230-0130	79	874	77	171	75	84	121	808	10	14	22	21	2356

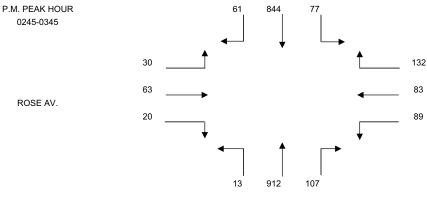
2359

2386

2376

2356

2327


2350

2365

2385

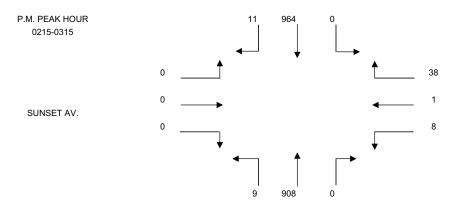
2431

2419

PACIFIC AV.

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 12, 2004
PERIOD: 12:00 PM TO 04:00 PM

 ${\tt INTERSECTION} \quad {\tt N/S} \quad {\tt PACIFIC} \; {\tt AV}.$

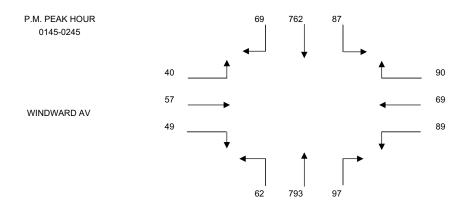
E/W SUNSET AV.

FILE NUMBER: 9-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	4	183	0	4	0	0	0	141	1	0	0	0	
1215-1230	2	204	0	8	1	0	0	163	0	0	0	0	
1230-1245	8	225	0	7	3	2	0	203	1	0	0	0	
1245-0100	1	245	0	13	0	1	0	205	2	0	0	0	
0100-0115	5	251	0	7	0	2	0	253	2	0	0	0	
0115-0130	5	222	0	9	0	2	0	198	1	0	0	0	
0130-0145	2	246	0	5	0	3	0	192	3	0	0	0	
0145-0200	2	231	0	13	1	1	0	258	3	0	0	0	
0200-0215	5	239	0	6	1	2	0	205	3	0	0	0	
0215-0230	3	228	0	12	0	2	0	193	3	0	0	0	
0230-0245	1	245	0	7	1	3	0	241	3	0	0	0	
0245-0300	5	238	0	11	0	2	0	221	1	0	0	0	
0300-0315	2	253	0	8	0	1	0	253	2	0	0	0	
0315-0330	2	220	0	7	1	4	0	203	3	0	0	0	
0330-0345	2	234	0	6	0	2	0	243	4	0	0	0	
0345-0400	1	251	0	9	1	0	0	212	0	0	0	0	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
1200-0100	15	857	0	32	4	3	0	712	4	0	0	0	1627
1215-0115	16	925	0	35	4	5	0	824	5	0	0	0	1814
1230-0130	19	943	0	36	3	7	0	859	6	0	0	0	1873
1245-0145	13	964	0	34	0	8	0	848	8	0	0	0	1875
0100-0200	14	950	0	34	1	8	0	901	9	0	0	0	1917
0115-0215	14	938	0	33	2	8	0	853	10	0	0	0	1858
0130-0230	12	944	0	36	2	8	0	848	12	0	0	0	1862
0145-0245	11	943	0	38	3	8	0	897	12	0	0	0	1912
0200-0300	14	950	0	36	2	9	0	860	10	0	0	0	1881
0215-0315	11	964	0	38	1	8	0	908	9	0	0	0	1939
0230-0330	10	956	0	33	2	10	0	918	9	0	0	0	1938
0245-0345	11	945	0	32	1	9	0	920	10	0	0	0	1928
0300-0400	7	958	0	30	2	7	0	911	9	0	0	0	1924

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 12, 2004
PERIOD: 12:00 PM TO 04:00 PM

INTERSECTION N/S PACIFIC AV.

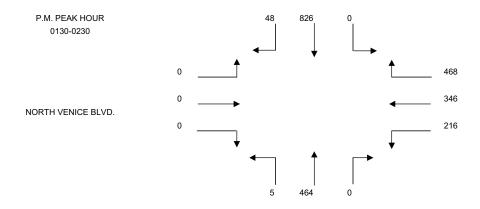
E/W WINDWARD AV

FILE NUMBER: 10-PM

15 [MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TO	OTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
120	00-1215	11	184	12	19	15	13	17	190	20	10	9	12	
121	15-1230	11	150	13	23	14	25	19	175	18	8	8	14	
123	30-1245	17	166	12	28	16	21	21	185	29	18	8	9	
124	45-0100	14	189	13	19	14	17	13	179	24	8	13	11	
010	00-0115	20	172	20	23	20	26	22	169	21	13	10	13	
011	15-0130	23	190	19	21	19	20	16	195	19	15	5	10	
013	30-0145	13	183	12	20	13	12	17	178	20	11	13	8	
014	45-0200	15	192	18	28	17	22	24	207	18	10	11	12	
020	00-0215	16	197	21	26	13	21	22	189	19	16	13	9	
021	15-0230	20	180	23	19	19	26	25	202	14	10	16	9	
023	30-0245	18	193	25	17	20	20	26	195	11	13	17	10	
024	45-0300	16	195	18	20	16	21	24	179	11	12	10	8	
030	00-0315	15	191	16	23	18	22	26	169	13	11	16	7	
031	15-0330	13	196	18	16	13	16	19	195	15	12	20	8	
033	30-0345	11	200	13	17	8	18	19	158	15	11	11	9	
034	45-0400	18	189	18	19	11	16	16	175	18	9	16	10	
034	45-0400	18	189	18	19	11	16	16	175	18	9	16	10	
	45-0400 HOUR	18	189	3	4	11 5	6	7	175 8	18 9	10	16	10	L
1														TOTALS
1	HOUR	1	2	3	4	5	6	7	8	9	10	11	12	TOTALS
1 T0	HOUR	1	2	3	4	5	6	7	8	9	10	11	12	TOTALS 2034
1 TO	HOUR OTALS	1 SBRT	2 SBTH	3 SBLT	4 WBRT	5 WBTH	6 WBLT	7 NBRT	8 NBTH	9 NBLT	10 EBRT	11 EBTH	12 EBLT	
1 TO 120 121	HOUR OTALS	1 SBRT	2 SBTH 689	3 SBLT	4 WBRT	5 WBTH	6 WBLT	7 NBRT 70	8 NBTH 729	9 NBLT	10 EBRT	11 EBTH	12 EBLT 46	2034
1 TC 120 121 123	HOUR OTALS 00-0100 15-0115	1 SBRT 53 62	2 SBTH 689 677	3 SBLT 50 58	4 WBRT 89 93	5 WBTH 59 64	6 WBLT 76 89	7 NBRT 70 75	8 NBTH 729 708	9 NBLT 91 92	10 EBRT 44 47	11 EBTH 38 39	12 EBLT 46 47	2034 2051 2125
120 120 121 123 124	HOUR OTALS 00-0100 15-0115 30-0130	1 SBRT 53 62 74	2 SBTH 689 677 717	3 SBLT 50 58 64	4 WBRT 89 93 91	5 WBTH 59 64 69	6 WBLT 76 89 84	7 NBRT 70 75 72	8 NBTH 729 708 728	9 NBLT 91 92 93	10 EBRT 44 47 54	11 EBTH 38 39 36	12 EBLT 46 47 43	2034 2051 2125
120 120 121 122 124 010	HOUR OTALS 00-0100 15-0115 30-0130 45-0145	1 SBRT 53 62 74 70	2 SBTH 689 677 717 734	3 SBLT 50 58 64 64	4 WBRT 89 93 91 83	5 WBTH 59 64 69 66	6 WBLT 76 89 84 75	7 NBRT 70 75 72 68	8 NBTH 729 708 728 721	9 NBLT 91 92 93 84	10 EBRT 44 47 54 47	11 EBTH 38 39 36 41	12 EBLT 46 47 43 42	2034 2051 2125 2095
120 120 120 120 120 120 010	HOUR OTALS 00-0100 15-0115 30-0130 45-0145 00-0200	1 SBRT 53 62 74 70 71	2 SBTH 689 677 717 734 737	3 SBLT 50 58 64 64 69	4 WBRT 89 93 91 83 92	5 WBTH 59 64 69 66 69	6 WBLT 76 89 84 75 80	7 NBRT 70 75 72 68 79	8 NBTH 729 708 728 721 749	9 NBLT 91 92 93 84 78	10 EBRT 44 47 54 47 49	11 EBTH 38 39 36 41 39	12 EBLT 46 47 43 42 43	2034 2051 2125 2095 2155
1 120 122 123 124 010 011	HOUR OTALS 00-0100 15-0115 30-0130 45-0145 00-0200 15-0215	1 SBRT 53 62 74 70 71 67	2 SBTH 689 677 717 734 737 762	3 SBLT 50 58 64 64 69 70	4 WBRT 89 93 91 83 92 95	5 WBTH 59 64 69 66 69 62	6 WBLT 76 89 84 75 80 75	7 NBRT 70 75 72 68 79 79	8 NBTH 729 708 728 721 749 769	9 NBLT 91 92 93 84 78 76	10 EBRT 44 47 54 47 49 52	11 EBTH 38 39 36 41 39 42	12 EBLT 46 47 43 42 43 39	2034 2051 2125 2095 2155 2188
1 120 122 123 124 010 011 013	HOUR OTALS 00-0100 15-0115 30-0130 45-0145 00-0200 15-0215 30-0230	1 SBRT 53 62 74 70 71 67 64	2 SBTH 689 677 717 734 737 762 752	3 SBLT 50 58 64 64 69 70 74	4 WBRT 89 93 91 83 92 95 93	5 WBTH 59 64 69 66 69 62 62	6 WBLT 76 89 84 75 80 75 81	7 NBRT 70 75 72 68 79 79 88	8 NBTH 729 708 728 721 749 769 776	9 NBLT 91 92 93 84 78 76 71	10 EBRT 44 47 54 47 49 52 47	11 EBTH 38 39 36 41 39 42 53	12 EBLT 46 47 43 42 43 39 38	2034 2051 2125 2095 2155 2188 2199
1 120 122 123 124 010 011 013 014	HOUR OTALS 00-0100 15-0115 30-0130 45-0145 00-0200 15-0215 30-0230 45-0245	1 SBRT 53 62 74 70 71 67 64	2 SBTH 689 677 717 734 737 762 752	3 SBLT 50 58 64 64 69 70 74	89 93 91 83 92 95 93	5 WBTH 59 64 69 66 69 62 62 62	6 WBLT 76 89 84 75 80 75 81	7 NBRT 70 75 72 68 79 79 88	8 NBTH 729 708 728 721 749 769 776	9 NBLT 91 92 93 84 78 76 71	10 EBRT 44 47 54 47 49 52 47	11 EBTH 38 39 36 41 39 42 53	12 EBLT 46 47 43 42 43 39 38	2034 2051 2125 2095 2155 2188 2199 2264
1 TC 120 122 122 122 010 012 013 014 020 022	HOUR DTALS 00-0100 15-0115 30-0130 45-0145 00-0200 15-0215 30-0230 45-0245 00-0300	53 62 74 70 71 67 64 69	2 SBTH 689 677 717 734 737 762 752 762	3 SBLT 50 58 64 64 69 70 74 87	89 93 91 83 92 95 93 90	5 WBTH 59 64 69 66 69 62 62 69	6 WBLT 76 89 84 75 80 75 81 89	7 NBRT 70 75 72 68 79 79 88 97	8 NBTH 729 708 728 721 749 769 776 793	9 NBLT 91 92 93 84 78 76 71 62	10 EBRT 44 47 54 47 49 52 47 49	11 EBTH 38 39 36 41 39 42 53 57	12 EBLT 46 47 43 42 43 39 38 40	2034 2051 2125 2095 2155 2188 2199 2264
1 TC 120 122 123 124 010 011 013 014 020 027	HOUR 00-0100 15-0115 30-0130 45-0145 00-0200 15-0215 30-0230 45-0245 00-0300 15-0315	53 62 74 70 71 67 64 69	2 SBTH 689 677 717 734 737 762 752 762 765 759	3 SBLT 50 58 64 64 69 70 74 87	89 93 91 83 92 95 93 90 82	5 WBTH 59 64 69 66 69 62 62 69 68 73	6 WBLT 76 89 84 75 80 75 81 89 88 88 89	7 NBRT 70 75 72 68 79 79 88 97	8 NBTH 729 708 728 721 749 769 776 793 765 745	9 NBLT 91 92 93 84 78 76 71 62 55 49	10 EBRT 44 47 54 47 49 52 47 49 51 46	11 EBTH 38 39 36 41 39 42 53 57 56	12 EBLT 46 47 43 42 43 39 38 40	2034 2051 2125 2095 2155 2188 2199 2264 2220 2185

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 12, 2004
PERIOD: 12:00 PM TO 04:00 PM

INTERSECTION N/S PACIFIC AV.

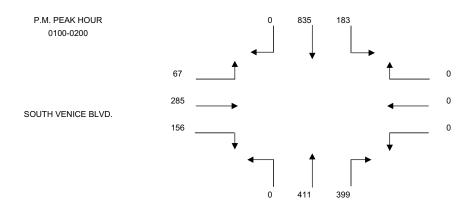
/W NORTH VENICE BLVD.

FILE NUMBER: 11-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
1200-1215	6	139	0	60	65	11	0	94	1	0	0	0	
1215-1230	12	167	0	73	77	33	0	125	1	0	0	0	
1230-1245	14	210	0	92	81	36	0	106	4	0	0	0	
1245-0100	8	212	0	104	71	42	0	111	3	0	0	0	
0100-0115	8	201	0	105	78	43	0	106	5	0	0	0	
0115-0130	12	202	0	102	85	36	0	122	4	0	0	0	
0130-0145	11	206	0	113	95	49	0	126	4	0	0	0	
0145-0200	6	198	0	126	88	56	0	118	0	0	0	0	
0200-0215	16	206	0	114	86	52	0	108	1	0	0	0	
0215-0230	15	216	0	115	77	59	0	112	0	0	0	0	
0230-0245	8	202	0	94	86	32	0	115	5	0	0	0	
0245-0300	6	217	0	108	97	67	0	126	9	0	0	0	
0300-0315	4	181	0	94	75	33	0	118	3	0	0	0	
0315-0330	10	163	0	97	79	42	0	108	2	0	0	0	
0330-0345	4	171	0	99	66	44	0	96	1	0	0	0	
0345-0400	8	178	0	86	81	52	0	81	2	0	0	0	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
1 HOUR TOTALS	1 SBRT	2 SBTH	3 SBLT	4 WBRT	5 WBTH	6 WBLT	7 NBRT	8 NBTH	9 NBLT	10 EBRT	11 EBTH	12 EBLT	TOTALS
1													TOTALS
1													TOTALS
TOTALS	SBRT	SBTH 728 790	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
TOTALS	SBRT 40	SBTH 728	SBLT 0	WBRT 329	WBTH 294	WBLT	NBRT 0	NBTH 436	NBLT 9	EBRT 0	EBTH 0	EBLT 0	1958
1200-0100 1215-0115	SBRT 40 42	SBTH 728 790	SBLT 0 0	329 374	WBTH 294 307	WBLT 122 154	NBRT 0 0	NBTH 436 448	NBLT 9 13	EBRT 0 0	EBTH 0 0	EBLT 0 0	1958 2128
1200-0100 1215-0115 1230-0130	SBRT 40 42 42	728 790 825	SBLT 0 0 0 0	329 374 403	WBTH 294 307 315	122 154 157	NBRT 0 0 0 0	NBTH 436 448 445	9 13 16	0 0 0	0 0 0	0 0 0	1958 2128 2203
1200-0100 1215-0115 1230-0130 1245-0145	40 42 42 42 39	728 790 825 821	SBLT 0 0 0 0 0 0 0	329 374 403 424	294 307 315 329	122 154 157 170	NBRT 0 0 0 0 0 0	NBTH 436 448 445 465	9 13 16 16	0 0 0 0	0 0 0 0	0 0 0 0	1958 2128 2203 2264
1200-0100 1215-0115 1230-0130 1245-0145 0100-0200	40 42 42 39 37	728 790 825 821 807	SBLT 0 0 0 0 0 0 0 0	329 374 403 424 446	294 307 315 329 346	122 154 157 170 184	NBRT 0 0 0 0 0 0 0 0 0	436 448 445 465 472	9 13 16 16 13	0 0 0 0	0 0 0 0	0 0 0 0	1958 2128 2203 2264 2305
TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215	40 42 42 39 37 45	728 790 825 821 807 812	SBLT 0 0 0 0 0 0 0 0	329 374 403 424 446 455	294 307 315 329 346 354	122 154 157 170 184 193	NBRT 0 0 0 0 0 0 0 0 0 0 0 0	436 448 445 465 472 474	9 13 16 16 13 9	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	1958 2128 2203 2264 2305 2342
TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230	40 42 42 39 37 45	728 790 825 821 807 812 826	SBLT 0 0 0 0 0 0 0 0 0 0	329 374 403 424 446 455 468	294 307 315 329 346 354 346	122 154 157 170 184 193 216	NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NBTH 436 448 445 465 472 474 464	9 13 16 16 13 9 5	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	1958 2128 2203 2264 2305 2342 2373
TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230 0145-0245	40 42 42 39 37 45 48	728 790 825 821 807 812 826	SBLT 0 0 0 0 0 0 0 0 0 0 0 0	329 374 403 424 446 455 468 449	294 307 315 329 346 354 346 337	122 154 157 170 184 193 216	NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NBTH 436 448 445 465 472 474 464 453	9 13 16 16 13 9 5 6	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1958 2128 2203 2264 2305 2342 2373 2311
TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230 0145-0245 0200-0300	40 42 42 39 37 45 48 45 45	728 790 825 821 807 812 826 822 841	SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	329 374 403 424 446 455 468 449 431	WBTH 294 307 315 329 346 354 346 337 346	WBLT 122 154 157 170 184 193 216 199 210	NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NBTH 436 448 445 465 472 474 464 453 461	9 13 16 16 13 9 5 6 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1958 2128 2203 2264 2305 2342 2373 2311 2349
TOTALS 1200-0100 1215-0115 1230-0130 1245-0145 0100-0200 0115-0215 0130-0230 0145-0245 0200-0300 0215-0315	40 42 42 39 37 45 48 45 45	728 790 825 821 807 812 826 822 841 816	SBLT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	329 374 403 424 446 455 468 449 431 411	294 307 315 329 346 354 346 337 346 335	122 154 157 170 184 193 216 199 210	NBRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NBTH 436 448 445 465 472 474 464 453 461 471	9 13 16 16 13 9 5 6 15 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1958 2128 2203 2264 2305 2342 2373 2311 2349 2274

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.


DATE: SATURDAY, JUNE 12, 2004
PERIOD: 12:00 PM TO 04:00 PM

INTERSECTION: N/S PACIFIC AV.

E/W SOUTH VENICE BLVD.

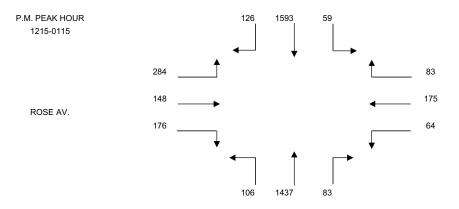
FILE NUMBER: 12-PM

TOTALS SBRT SBTH SBLT WBRT WBTH WBLT NBRT NBTH NBLT EBRT EBTH EBLT 1200-1215 0 150 11 0 0 94 84 0 12 46 5 1215-1230 0 197 56 0 0 0 101 124 0 38 59 15 1230-1245 0 202 34 0 0 99 102 0 33 41 13 1245-0100 0 207 32 0 0 106 119 0 44 53 12 0100-0115 0 198 57 0 0 98 113 0 45 62 15 0115-0130 0 209 40 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0
1215-1230 0 197 56 0 0 0 101 124 0 38 59 15 1230-1245 0 202 34 0 0 0 99 102 0 33 41 13 1245-0100 0 207 32 0 0 0 106 119 0 44 53 12 0100-0115 0 198 57 0 0 0 98 113 0 45 62 15 0115-0130 0 209 40 0 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
1215-1230 0 197 56 0 0 0 101 124 0 38 59 15 1230-1245 0 202 34 0 0 0 99 102 0 33 41 13 1245-0100 0 207 32 0 0 0 106 119 0 44 53 12 0100-0115 0 198 57 0 0 0 98 113 0 45 62 15 0115-0130 0 209 40 0 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
1230-1245 0 202 34 0 0 0 99 102 0 33 41 13 1245-0100 0 207 32 0 0 0 106 119 0 44 53 12 0100-0115 0 198 57 0 0 0 98 113 0 45 62 15 0115-0130 0 209 40 0 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
1245-0100 0 207 32 0 0 0 106 119 0 44 53 12 0100-0115 0 198 57 0 0 0 98 113 0 45 62 15 0115-0130 0 209 40 0 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
0100-0115 0 198 57 0 0 0 98 113 0 45 62 15 0115-0130 0 209 40 0 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
0115-0130 0 209 40 0 0 0 103 103 0 48 83 20 0130-0145 0 212 38 0 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
0130-0145 0 212 38 0 0 0 94 102 0 37 63 15 0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
0145-0200 0 216 48 0 0 0 104 93 0 26 77 17 0200-0215 0 208 42 0 0 0 110 94 0 28 62 10
0200-0215
0215-0230
0230-0245
0245-0300 0 188 46 0 0 0 110 106 0 42 56 22
0300-0315
0315-0330
0330-0345 0 178 47 0 0 0 104 90 0 25 57 18
0345-0400 0 167 54 0 0 0 101 112 0 36 67 12
1 HOUR 1 2 3 4 5 6 7 8 9 10 11 12
TOTALS SBRT SBTH SBLT WBRT WBRT WBLT NBRT NBTH NBLT EBRT EBLT TOT
1200-0100 0 756 133 0 0 0 400 429 0 127 199 45
1215-0115 0 804 179 0 0 0 404 458 0 160 215 55
1230-0130 0 816 163 0 0 0 406 437 0 170 239 60
1245-0145 0 826 167 0 0 0 401 437 0 174 261 62
0100-0200 0 835 183 0 0 0 399 411 0 156 285 67
0115-0215 0 845 168 0 0 0 411 392 0 139 285 62
0130-0230
0145-0245
0200-0300 0 815 166 0 0 0 399 395 0 133 247 63
0215-0315
0230-0330
0.45.045
0245-0345 0 732 166 0 0 0 407 382 0 138 240 65

CLIENT: OVERLAND TRAFFIC CONSULTANTS, INC.

PROJECT: LOS ANGELES.

 DATE:
 SATURDAY, JUNE 05, 2004


 PERIOD:
 12:00 PM TO 04:00 PM

 INTERSECTION
 N/S
 LINCOLN BLVD.

E/W ROSE AV.

FILE NUMBER: 13-PM

15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12]
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	ĺ
													•
1200-1215	25	358	12	19	44	21	20	327	23	37	44	64	
1215-1230	27	390	16	16	46	14	18	354	26	44	42	75	
1230-1245	35	412	11	18	46	14	24	363	30	49	30	73	
1245-0100	28	408	12	32	39	17	22	359	25	49	41	67	
0100-0115	36	383	20	17	44	19	19	361	25	34	35	69	
0115-0130	18	370	13	27	40	16	19	372	23	46	39	70	
0130-0145	28	384	15	22	40	12	16	394	22	43	36	73	
0145-0200	35	388	12	20	38	22	17	373	20	45	34	70	
0200-0215	25	398	5	19	37	15	15	374	18	48	32	88	
0215-0230	12	395	8	14	40	24	16	371	18	52	35	65	
0230-0245	27	354	6	16	45	19	16	345	20	58	22	75	
0245-0300	29	376	16	13	35	12	15	376	31	25	24	62	
0300-0315	24	389	21	15	44	17	11	351	23	32	32	69	
0315-0330	32	394	18	16	37	15	17	374	23	35	45	71	
0330-0345	23	366	20	11	34	18	19	376	23	42	32	67	
0345-0400	26	334	12	15	38	14	22	338	28	39	33	57	
													_
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TC
1200-0100	115	1568	51	85	175	66	84	1403	104	179	157	279	
1215-0115	126	1593	59	83	175	64	83	1437	106	176	148	284	
1230-0130	117	1573	56	94	169	66	84	1455	103	178	145	279	
1245-0145	110	1545	60	98	163	64	76	1486	95	172	151	279	
0100-0200	117	1525	60	86	162	69	71	1500	90	168	144	282	
	106	1540	45	88	155	65	67	1513	83	182	141	301	
0115-0215						73	64	1512	78	188	137	296	
0115-0215 0130-0230	100	1565	40	75	155	13							
	100 99	1565 1535	40 31	75 69	155 160	80	64	1463	76	203	123	298	
0130-0230								1463 1466	76 87	203 183	123 113	298 290	
0130-0230 0145-0245	99	1535	31	69	160	80	64						
0130-0230 0145-0245 0200-0300	99 93	1535 1523	31 35	69 62	160 157	80 70	64 62	1466	87	183	113	290	
0130-0230 0145-0245 0200-0300 0215-0315	99 93 92	1535 1523 1514	31 35 51	69 62 58	160 157 164	80 70 72	64 62 58	1466 1443	87 92	183 167	113 113	290 271	

APPENDIX G LEVEL OF SERVICE WORKSHEETS

	<i>HC</i> S2000 [™] DE	AILED REPORT	
General Informa	tion	Site Information	
Analyst Agency or Co. Date Performed Time Period	Jerry Overland OTC Inc. 4/28/2004 AM Peak Hour	Intersection Area Type Jurisdiction Analysis Year Project ID	Main Street & Ocean Park Blvd. CBD or Similar City of Santa Monica 2004 RAD Sunset

Volume and	Timing Input														
				EB			WE	3			NB			SB	
			LT	TH	RT	LT	<u> </u> TH	RT		LT	TH	RT	LT	TH	RT
Number of lan	es, N ₁		1	1	1	1	1	1		1	1	1	1	1	1
Lane group			L	T	R	L	T	R		L	T	R	L	T	R
Volume, V (vp	h)		44	256	30	101	182	125		33	737	101	71	293	23
% Heavy vehi	cles, %HV		0	0	0	0	0	0		0	0	0	0	0	0
Peak-hour fac	tor, PHF		0.90	0.90	0.90	0.90	0.90	0.90) (0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P) of	or actuated (A)		Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α
Start-up lost ti	me, I ₁		2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Extension of e	ffective green, e)	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Arrival type, A	Т		3	3	3	3	3	3		3	3	3	3	3	3
Unit extension	, UE		3.0	3.0	3.0	3.0	3.0	3.0)	3.0	3.0	3.0	3.0	3.0	3.0
Filtering/meter	ing, I		1.000	1.000	1.000	1.000	1.00	0 1.00	0 1	.000	1.000	1.000	1.000	1.000	1.000
Initial unmet d	emand, Q _b		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Ped / Bike / R	TOR volumes		0	0	0	0	0	0		0	0	0	0	0	0
Lane width			12.0	12.0	12.0	12.0	12.0	12.0) 1	12.0	12.0	12.0	12.0	12.0	12.0
Parking / Grad	le / Parking		N	0	Ν	N	0	N		Ν	0	N	N	0	N
Parking mane	uvers, N _m														
Buses stoppin	g, N _B		0	0	0	0	0	0		0	0	0	0	0	0
Min. time for p	edestrians, G _p			3.2	-1.		3.2	2			3.2	1		3.2	'
Phasing	EW Perm	02	2	03		04		NS Pe	rm		06		07	C)8
	G = 16.0	G = 0.	0	G =		G =		G = 36.	0	G =		G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4		Y =		Y =		Y =	
Duration of An	Y = 4 $Y = 0.25$									Сус	le Lengt	h, C = 6	50.0	I.	

Duration of Arialysis, 1 - 0.20								Sycic Lon	9111, 0	00.0		
Lane Group Capacity, Control	Delay, a	nd LOS	Determi	nation								
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v	49	284	33	112	202	139	37	819	112	79	326	26
Lane group capacity, c	260	456	388	196	456	388	557	1026	872	203	1026	872
v/c ratio, X	0.19	0.62	0.09	0.57	0.44	0.36	0.07	0.80	0.13	0.39	0.32	0.03
Total green ratio, g/C	0.27	0.27	0.27	0.27	0.27	0.27	0.60	0.60	0.60	0.60	0.60	0.60
Uniform delay, d ₁	17.0	19.3	16.5	19.0	18.3	17.8	5.0	9.2	5.2	6.3	5.9	4.9
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.21	0.11	0.17	0.11	0.11	0.11	0.34	0.11	0.11	0.11	0.11
Incremental delay, d ₂	0.4	2.6	0.1	4.0	0.7	0.6	0.1	4.5	0.1	1.2	0.2	0.0
Initial queue delay, d ₃												
Control delay	17.3	22.0	16.6	23.0	19.0	18.4	5.0	13.7	5.3	7.5	6.1	4.9
Lane group LOS	В	С	В	С	В	В	Α	В	Α	Α	Α	Α
Approach delay	20	0.9	,	1	9.8	•	1	2.4		6.3		
Approach LOS		С	•	В			В			Α		
Intersection delay	14	4.1		X _C =	= 0.74		Intersection LOS			В		

	<i>HC</i> S2000 [™] DE	TAILED REPORT								
General Information Site Information										
Analyst Agency or Co. Date Performed	Jerry Overland OTC Inc. 4/28/2004	Intersection Area Type Jurisdiction	Main Street & Ocean Park Blvd. CBD or Similar City of Santa Monica							
Time Period	AM Peak Hour	Analysis Year Project ID	2009 without project RAD Sunset							

Number of lanes, N ₁	Volume and	Timing Input																	
Number of lanes, N1					,	-		,			<u> </u>	,		<u> </u>	,				
Lane group						RT		<u> </u> TH			 	TH	-	+	TH	RT			
Volume, V (vph) 46 269 32 107 191 135 35 815 108 85 337 24 % Heavy vehicles, %HV 0	Number of lan	es, N ₁		1	1	1	1	1		1	1	1	1	1	1	<u>ļ</u>			
% Heavy vehicles, %HV 0	Lane group			L	T	R	L	T		R	L	T	R	L	T	R			
Peak-hour factor, PHF 0.90	Volume, V (vp	h)		46	269	32	107	191		135	35	815	108	85	337	24			
Pretimed (P) or actuated (A) A A A A A A A A A A A A	% Heavy vehic	cles, %HV		0	0	0	0	0		0	0	0	0	0	0	0			
Start-up lost time, I ₁ 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Peak-hour fac	tor, PHF		0.90	0.90	0.90	0.90	0.90) (0.90	0.90	0.90	0.90	0.90	0.90	0.90			
Extension of effective green, e	Pretimed (P) of	or actuated (A)		Α	Α	Α	Α	A		Α	Α	Α	Α	Α	Α	Α			
Arrival type, AT 3	Start-up lost ti	me, I ₁		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0					
Unit extension, UE 3.0 </td <td>Extension of e</td> <td>ffective green, e</td> <td>)</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td></td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td> <td>2.0</td>	Extension of e	ffective green, e)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Arrival type, A	Т		3	3	3	3	3		3	3	3	3	3	3	3			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Unit extension	, UE		3.0	3.0	3.0	3.0	3.0)	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
Ped / Bike / RTOR volumes 0 <td>Filtering/meter</td> <td>ing, I</td> <td></td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.00</td> <td>0 1.</td> <td>.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td> <td>1.000</td>	Filtering/meter	ing, I		1.000	1.000	1.000	1.000	1.00	0 1.	.000	1.000	1.000	1.000	1.000	1.000	1.000			
Lane width 12.0	Initial unmet d	emand, Q _b		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Parking / Grade / Parking N 0 N N 0 <td>Ped / Bike / R</td> <td>TOR volumes</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td colspan="4"></td>	Ped / Bike / R	TOR volumes		0	0	0	0	0		0	0	0	0	0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lane width			12.0	12.0	12.0	12.0	12.0) [1	12.0	12.0	12.0	12.0	12.0	12.0	12.0			
Buses stopping, NB 0	Parking / Grad	le / Parking		N	0	N	N	0		Ν	N	0	N	N	0	N			
Min. time for pedestrians, G_p 3.2 3.2 3.2 3.2 Phasing EW Perm 02 03 04 NS Perm 06 07 08 $G = 16.0$ $G = 0.0$ <td< td=""><td>Parking mane</td><td>uvers, N_m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Parking mane	uvers, N _m																	
Phasing EW Perm 02 03 04 NS Perm 06 07 08 G = 16.0 G = 0.0 G =	Buses stoppin	g, N _B		0	0	0	0	0		0	0	0	0	0	0	0			
G = 16.0 G = 0.0 G = G = G = G = G = G = G = G = G = G	Min. time for p	edestrians, G _p			3.2			3.2	2			3.2	,						
	Phasing	EW Perm	02	!	03		04		NS	Perm		06		07	08				
Liming	T	G = 16.0	G = 0.	0	G =		G =		G =	36.0	G =		G =		G =				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Timing	Y = 4	Y =		Y =		Y =		Y =	4	Y =		Y =		Y =				
Duration of Analysis, T = 0.25 Cycle Length, C = 60.0	Duration of An	alysis, T = <i>0.25</i>									Cyc	le Lengtl	n, C = 6	50.0	•				

Lane Group Capacity, Contro	l Delay, a	and LOS	Determi	ination			<u>'</u>					
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v	51	299	36	119	212	150	39	906	120	94	374	27
Lane group capacity, c	252	456	388	185	456	388	518	1026	872	147	1026	872
v/c ratio, X	0.20	0.66	0.09	0.64	0.46	0.39	0.08	0.88	0.14	0.64	0.36	0.03
Total green ratio, g/C	0.27	0.27	0.27	0.27	0.27	0.27	0.60	0.60	0.60	0.60	0.60	0.60
Uniform delay, d ₁	17.1	19.6	16.5	19.5	18.4	18.0	5.0	10.2	5.2	7.8	6.1	4.9
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.23	0.11	0.22	0.11	0.11	0.11	0.41	0.11	0.22	0.11	0.11
Incremental delay, d ₂	0.4	3.4	0.1	7.4	0.8	0.6	0.1	9.2	0.1	9.0	0.2	0.0
Initial queue delay, d ₃												
Control delay	17.5	23.0	16.6	26.9	19.2	18.6	5.1	19.4	5.3	16.8	6.4	4.9
Lane group LOS	В	С	В	С	В	В	Α	В	Α	В	Α	Α
Approach delay	2	1.6			20.9	<u>'</u>		17.3			8.3	
Approach LOS		С			С			В			Α	
Intersection delay	1	6.9		X _C	$X_C = 0.81$ Intersection LOS					В		

HCS2000[™] DETAILED REPORT General Information Site Information

Analyst Jerry Overland Agency or Co. OTC Inc. Date Performed 4/28/2004 Time Period AM Peak Hour Intersection Main Street & Ocean Park Blvd. Area Type Jurisdiction

Analysis Year

CBD or Similar City of Santa Monica 2009 with project

RAD Sunset (with Main & Project ID Sunset Access)

Volume and Timing Input															
		EB			WE			NB			SB	,			
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT			
Number of lanes, N ₁	1	1	1	1	1	1	1	1	1	1	1	1			
Lane group	L	T	R	L	T	R	L	T	R	L	T	R			
Volume, V (vph)	46	275	32	111	191	135	35	824	118	85	341	24			
% Heavy vehicles, %HV	0	0	0	0	0	0	0	0	0	0	0	0			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90			
Pretimed (P) or actuated (A)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α					
Start-up lost time, I ₁	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0					
Extension of effective green, e	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
Arrival type, AT	3	3	3	3	3	3	3	3	3	3	3	3			
Unit extension, UE	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			
Filtering/metering, I	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
Initial unmet demand, Q _b	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Ped / Bike / RTOR volumes	0	0	0	0	0	0	0	0	0	0	0	0			
Lane width	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0			
Parking / Grade / Parking	N	0	N	N	0	N	N	0	N	N	0	N			
Parking maneuvers, N _m															
Buses stopping, N _B	0	0	0	0	0	0	0	0	0	0	0	0			
Min. time for pedestrians, G _p		3.2	•		3.2	<u>, </u>		3.2	•		3.2				
Phasing EW Perm ()2	03	3	04	[NS Peri	n	06		07	07 08				
G = 16.0 G =	0.0	G =		G =	ĺ	G = 36.0	G	=	G =		G =				
Timing $Y = 4$ $Y =$		Y =		Y =		Y = 4	Υ:	=	Y =		Y =				
Duration of Analysis, T = 0.25							Су	cle Leng	th, C =	60.0					

								0,0.0 =0	, •				
Lane Group Capacity, Con	trol Dela	ay, and	LOS Det	terminat	ion								
		EB			WB			NB			SB		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
Adjusted flow rate, v	51	306	36	123	212	150	39	916	131	94	379	27	
Lane group capacity, c	252	456	388	180	456	388	514	1026	872	140	1026	872	
v/c ratio, X	0.20	0.67	0.09	0.68	0.46	0.39	0.08	0.89	0.15	0.67	0.37	0.03	
Total green ratio, g/C	0.27	0.27	0.27	0.27	0.27	0.27	0.60	0.60	0.60	0.60	0.60	0.60	
Uniform delay, d ₁	17.1	19.6	16.5	19.7	18.4	18.0	5.0	10.3	5.3	8.0	6.2	4.9	
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Delay calibration, k	0.11	0.24	0.11	0.25	0.11	0.11	0.11	0.42	0.11	0.24	0.11	0.11	
Incremental delay, d ₂	0.4	3.8	0.1	10.2	0.8	0.6	0.1	10.1	0.1	11.9	0.2	0.0	
Initial queue delay, d ₃													
Control delay	17.5	23.5	16.6	29.9	19.2	18.6	5.1	20.4	5.4	19.9	6.4	4.9	
Lane group LOS	В	С	В	С	В	В	Α	С	Α	В	Α	Α	
Approach delay	2	2.1	-	21.7			1	18.0					
Approach LOS		С		С			В			Α			
Intersection delay	1:	7.5		X _C = 0.83				Intersection LOS			В		

	<i>HC</i> S2000 [™] DE	TAILED REPORT								
General Information Site Information										
, ,	Jerry Overland OTC Inc. 4/28/2004 PM Peak Hour	Intersection Area Type Jurisdiction Analysis Year Project ID	Main Street & Ocean Park Blvd. CBD or Similar City of Santa Monica 2004 RAD Sunset							

Volume and Timing Input																
		EB			WE				NB		<u> </u>	SB	1			
	LT	TH	RT	LT	TH		RT	LT	TH	RT	LT	TH	RT			
Number of lanes, N ₁	1	1	1	1	1		1	1	1	1	1	1	1			
Lane group	L	T	R	L	T		R	L	T	R	L	T	R			
Volume, V (vph)	27	198	34	174	291		114	37	506	124	135	684	54			
% Heavy vehicles, %HV	0	0	0	0	0		0	0	0	0	0	0	0			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90)	0.90	0.90	0.90	0.90	0.90	0.90	0.90			
Pretimed (P) or actuated (A)	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α			
Start-up lost time, I ₁	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0 2.0 2.0 2.0 2.0 2.0					
Extension of effective green, e	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0				
Arrival type, AT	3	3	3	3	3		3	3	3	3	3	3	3			
Unit extension, UE	3.0	3.0	3.0	3.0	3.0)	3.0	3.0	3.0	3.0	3.0	3.0 3.0 3.				
Filtering/metering, I	1.000	1.000	1.000	1.000	1.00	0	1.000	1.000	1.000	1.000	1.000					
Initial unmet demand, Q _b	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0					
Ped / Bike / RTOR volumes	0	0	0	0	0		0	0	0	0	0	0	0			
Lane width	12.0	12.0	12.0	12.0	12.0)	12.0	12.0	12.0	12.0	12.0	12.0	12.0			
Parking / Grade / Parking	N	0	Ν	N	0		Ν	N	0	N	N	0	N			
Parking maneuvers, N _m																
Buses stopping, N _B	0	0	0	0	0		0	0	0	0	0	0	0			
Min. time for pedestrians, G _p		3.2			3.2	2			3.2	1,		3.2				
Phasing EW Perm 02		03		04		NS	S Perm		06		07	7 08				
G = 17.7 G = 0.0)	G =		G =		G =	34.3	G =		G =		G =				
Timing $Y = 4$ $Y =$		Y =		Y =		Y =	4	Y =		Y =		Y =				
Duration of Analysis, T = 0.25					Į.			Сус	le Length	n, C = 6	60.0					

Buration of 7 that yold, 1 0:20								0,0.0 =0.	.9, 0	00.0		
Lane Group Capacity, Contro	ol Delay, a	and LOS	Determi	nation								
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v	30	220	38	193	323	127	41	562	138	150	760	60
Lane group capacity, c	201	504	429	280	504	429	210	978	831	344	978	831
v/c ratio, X	0.15	0.44	0.09	0.69	0.64	0.30	0.20	0.57	0.17	0.44	0.78	0.07
Total green ratio, g/C	0.30	0.30	0.30	0.30	0.30	0.30	0.57	0.57	0.57	0.57	0.57	0.57
Uniform delay, d ₁	15.6	17.1	15.3	18.7	18.4	16.3	6.2	8.2	6.1	7.3	9.9	5.7
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.11	0.11	0.26	0.22	0.11	0.11	0.17	0.11	0.11	0.33	0.11
Incremental delay, d ₂	0.3	0.6	0.1	7.0	2.8	0.4	0.5	0.8	0.1	0.9	4.0	0.0
Initial queue delay, d ₃												
Control delay	15.9	17.7	15.4	25.7	21.1	16.7	6.7	9.0	6.2	8.2	13.9	5.8
Lane group LOS	В	В	В	С	С	В	Α	Α	Α	Α	В	Α
Approach delay	1	7.2		2	21.6	<u>, </u>		8.4			12.5	
Approach LOS		В		С			Α		В			
Intersection delay	1	4.1		X _C	$C_C = 0.75$ Intersection LOS				В			

	<i>HC</i> S2000 [™] DE	TAILED REPORT									
General Informa	General Information Site Information										
Analyst Agency or Co. Date Performed	Jerry Overland OTC Inc. 4/28/2004	Intersection Area Type Jurisdiction	Main Street & Ocean Park Blvd. CBD or Similar City of Santa Monica								
Time Period	PM Peak Hour	Analysis Year Project ID	2009 without project RAD Sunset								

Volume and Timing Inpu	t																	
			EB			WE	3			NB			SB					
		LT	TH	RT	LT	TH		RT	LT	TH	RT	LT	TH	RT				
Number of lanes, N ₁		1	1	1	1	1		1	1	1	1	1	1	1				
Lane group		L	T	R	L	T		R	L	T	R	L	T	R				
Volume, V (vph)		28	208	36	187	306	;	132	39	576	133	152	767	57				
% Heavy vehicles, %HV		0	0	0	0	0		0	0	0	0	0	0	0				
Peak-hour factor, PHF		0.90	0.90	0.90	0.90	0.90)	0.90	0.90	0.90	0.90	0.90	0.90	0.90				
Pretimed (P) or actuated (A	A)	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α					
Start-up lost time, I ₁		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0 2.0 2.0					
Extension of effective gree	en, e	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0				
Arrival type, AT		3	3	3	3	3		3	3	3	3	3	3	3				
Unit extension, UE		3.0	3.0	3.0	3.0	3.0)	3.0	3.0	3.0	3.0	3.0	3.0	3.0				
Filtering/metering, I		1.000	1.000	1.000	1.000	1.000	0	1.000	1.000	1.000	1.000	1.000	1.000	1.000				
Initial unmet demand, Qb		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0						
Ped / Bike / RTOR volume	es	0	0	0	0	0		0	0	0	0	0	0	0				
Lane width		12.0	12.0	12.0	12.0	12.0)	12.0	12.0	12.0	12.0	12.0	12.0	12.0				
Parking / Grade / Parking		N	0	N	N	0		N	N	0	N	N	0	N				
Parking maneuvers, N _m																		
Buses stopping, N _B		0	0	0	0	0		0	0	0	0	0	0	0				
Min. time for pedestrians,	G _p		3.2	1		3.2	2			3.2	'		3.2					
Phasing EW Perm	02)	03		04		N:	S Perm		06		07	08					
G = 17.4	G = 0.	0	G =		G =		G=	34.6	G =	:	G =		G =					
Timing $Y = 4$	Y =		Y =		Y =		Y =	: 4	Y =		Y =		Y =					
Duration of Analysis, T = 0	0.25			1.		<u>'</u>			Сус	le Lengt	h, C = 6	60.0	,					

Lane Group Capacity, Control	Delay, a	nd LOS	Determi	nation								
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v	31	231	40	208	340	147	43	640	148	169	852	63
Lane group capacity, c	182	496	422	265	496	422	156	986	838	296	986	838
v/c ratio, X	0.17	0.47	0.09	0.78	0.69	0.35	0.28	0.65	0.18	0.57	0.86	0.08
Total green ratio, g/C	0.29	0.29	0.29	0.29	0.29	0.29	0.58	0.58	0.58	0.58	0.58	0.58
Uniform delay, d ₁	15.9	17.5	15.6	19.6	18.9	16.8	6.4	8.6	6.0	8.0	10.7	5.6
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.11	0.11	0.33	0.25	0.11	0.11	0.23	0.11	0.17	0.39	0.11
Incremental delay, d ₂	0.4	0.7	0.1	14.3	3.9	0.5	1.0	1.5	0.1	2.6	8.1	0.0
Initial queue delay, d ₃												
Control delay	16.4	18.2	15.6	33.9	22.8	17.3	7.4	10.1	6.1	10.7	18.8	5.7
Lane group LOS	В	В	В	С	С	В	Α	В	Α	В	В	Α
Approach delay	1	7.7		2	25.0	•		9.2			16.8	
Approach LOS		В			С			Α			В	
Intersection delay	10	6.7		X _C =	= 0.84		Intersec	tion LOS			В	

HCS2000[™] DETAILED REPORT

General Information

Analyst

Jerry Overland

Agency or Co. OTC Inc. Date Performed 4/28/2004 Time Period PM Peak Hour

Site Information Intersection

Main Street & Ocean Park Blvd.

Area Type CBD or Similar Jurisdiction Analysis Year

City of Santa Monica 2009 with project

RAD Sunset (with Sunset & Project ID

Main Access)

Volume and Timing Input												
		EB			WE	3		NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of lanes, N ₁	1	1	1	1	1	1	1	1	1	1	1	1
Lane group	L	T	R	L	T	R	L	T	R	L	T	R
Volume, V (vph)	28	212	36	204	306	132	39	583	140	152	784	57
% Heavy vehicles, %HV	0	0	0	0	0	0	0	0	0	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P) or actuated (A)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Start-up lost time, I ₁	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Extension of effective green, e	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Arrival type, AT	3	3	3	3	3	3	3	3	3	3	3	3
Unit extension, UE	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Filtering/metering, I	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Initial unmet demand, Q _b	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ped / Bike / RTOR volumes	0	0	0	0	0	0	0	0	0	0	0	0
Lane width	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Parking / Grade / Parking	N	0	N	N	0	N	N	0	N	N	0	N
Parking maneuvers, N _m												
Buses stopping, N _B	0	0	0	0	0	0	0	0	0	0	0	0
Min. time for pedestrians, G _p		3.2	•		3.2			3.2	•		3.2	
Phasing EW Perm ()2	03	3	04		NS Perr	n	06		07	()8
G = 17.4 G = (0.0	G =		G =		G = 34.6	G	=	G =		G =	
Timing $Y = 4$ $Y =$		Y =		Y =		Y = 4	Υ:	=	Y =		Y =	
Duration of Analysis, T = 0.25			1,				Су	cle Leng	ngth, C = 60.0			

								<u> </u>	J . , -			
Lane Group Capacity, Control Delay, and LOS Determination												
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v	31	236	40	227	340	147	43	648	156	169	871	63
Lane group capacity, c	182	496	422	261	496	422	143	986	838	290	986	838
v/c ratio, X	0.17	0.48	0.09	0.87	0.69	0.35	0.30	0.66	0.19	0.58	0.88	0.08
Total green ratio, g/C	0.29	0.29	0.29	0.29	0.29	0.29	0.58	0.58	0.58	0.58	0.58	0.58
Uniform delay, d ₁	15.9	17.5	15.6	20.2	18.9	16.8	6.5	8.7	6.0	8.1	11.0	5.6
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.11	0.11	0.40	0.25	0.11	0.11	0.23	0.11	0.17	0.41	0.11
Incremental delay, d ₂	0.4	0.7	0.1	25.6	3.9	0.5	1.2	1.6	0.1	3.0	9.6	0.0
Initial queue delay, d ₃												
Control delay	16.4	18.3	15.6	45.8	22.8	17.3	7.7	10.3	6.1	11.1	20.5	5.7
Lane group LOS	В	В	В	D	С	В	Α	В	Α	В	С	Α
Approach delay	1	7.7		2	29.0			9.4	·		18.2	
Approach LOS		В			С			Α			В	
Intersection delay	1	8.2		X _C	= 0.88		Interse	ction LOS	3		В	

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 2 Main Street and Rose Avenue

Scenario: Existing Conditions

	AM Peak	⟨ Hour Traffic \	/olumes	PM Pea	k Hour Traffic	Volumes
Movement	<u>Counts</u>	<u>VPL</u>	Critictal	<u>Counts</u>	<u>VPL</u>	Critictal
NB Left	73	73		60	60	*
NB Thru	803	434	*	558	317	
NB Right	65	N/A		76	N/A	
SB Left	91	91	*	100	100	
SB Thru	311	327		739	780	*
SB Right	16	N/A		41	N/A	
EB Left	19	N/A	*	25	N/A	*
EB Thru	132	181		129	217	
EB Right	30	N/A		63	N/A	
WB Left	37	N/A		104	N/A	
WB Thru	118	268	*	148	317	*
WB Right	113	N/A		65	N/A	
	AM PEAK	PM PEAK		Approach	RTOR Re	eductions
Movement	Lanes	Lanes		Direction	AM PEAK	PM PEAK

	AM PEAK	PM PEAK	Approach RTOR Reduct		ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	1	1	Number of Phases	2	2
SB Left-Thru	0	0	Phasing		
SB Thru	1	1			
SB Right-Thru	0	0	Capacity	1500	1500
SB Right	0	0			
EB Left	0	0	Critical Movement Analysi	ie: Rosulte Su	mmarv
EB Left-Thru	1	1		:=========	=======
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	287	342
EB Right	0	0	North/South Critical Volumes	525	840
_			Sum of Critical Volumes	812	1,182
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	1	1			
WB Thru	0	0	Intersection CMA Value	0.541	0.788
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.441	0.688
WB Right	0	0	Intersection Level of Service	Α	В

Existing Conditions

Intersection: 2 Main Street and Rose Avenue

Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic		PM Peak Hour Traffic Volumes					
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	3	4	80	80		2	3	65	65	*
NB Thru	13	40	856	464	*	28	28	614	348	
NB Right	4	3	72	N/A		3	4	83	N/A	
SB Left	15	5	111	111	*	23	5	128	128	
										*
SB Thru	23	16	350	366		26	37	802	845	*
SB Right	0	1	17	N/A		0	2	43	N/A	
EB Left	0	1	20	N/A	*	0	1	26	N/A	*
EB Thru	1	7	140	192		3	6	138	235	
EB Right	1	2	33	N/A		4	3	70	N/A	
WB Left	2	2	41	N/A		6	5	115	N/A	
WB Thru	2	6	126	294	*	4	7	159	364	*
WB Right	9	6	128	N/A		21	3	89	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	0	0			
			=======================================	=======	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumr	nary
EB Left-Thru	1	1	=======================================	=======	=====
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	314	390
EB Right	0	0	North/South Critical Volumes	575	910
			Sum of Critical Volumes	889	1,300
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	1	1			
WB Thru	0	0	Intersection CMA Value	0.593	0.867
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.493	0.767
WB Right	0	0	Intersection Level of Service	Α	С

Future Conditions (2009), Without Project

Intersection: 2 Main Street and Rose Avenue

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	≀ Hour Traffic \	/olumes			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	VPL	Critictal	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	80	0	80	80		65	0	65	65	*
NB Thru	856	19	875	481	*	614	14	628	361	
NB Right	72	14	86	N/A		83	11	94	N/A	
SB Left	111	0	111	111	*	128	0	128	128	
SB Thru	350	11	361	377		802	34	836	879	*
SB Right	17	0	17	N/A		43	0	43	N/A	
EB Left	20	0	20	N/A	*	26	0	26	N/A	*
EB Thru	140	1	141	199		138	1	139	249	
EB Right	33	6	39	N/A		70	13	83	N/A	
WB Left	41	7	48	N/A		115	27	142	N/A	
WB Thru	126	0	126	301	*	159	0	159	391	*
WB Right	128	0	128	N/A		89	0	89	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	0	0			
					======
EB Left	0	0	Critical Movement Analysi	======= is: Results Sun	nmary
EB Left EB Left-Thru	0 1	0 1	Critical Movement Analysi	is: Results Sun	nmary
	0 1 0	_	Critical Movement Analysi	is: Results Sun	nmary PM PEAK
EB Left-Thru	1	1	Critical Movement Analysis	========	======
EB Left-Thru EB Thru	1 0	1	=======================================	AM PEAK	PM PEAK
EB Left-Thru EB Thru EB Right-Thru	1 0 0	1 0 0	East/West Critical Volumes	AM PEAK 321	PM PEAK 417
EB Left-Thru EB Thru EB Right-Thru	1 0 0	1 0 0	East/West Critical Volumes North/South Critical Volumes	AM PEAK 321 591	PM PEAK 417 944
EB Left-Thru EB Thru EB Right-Thru EB Right	1 0 0	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 321 591 913	PM PEAK 417 944 1,361
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 0 0	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 321 591 913	PM PEAK 417 944 1,361
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 0 0 0	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 321 591 913 1,500	PM PEAK 417 944 1,361 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Thru	1 0 0 0 0	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 321 591 913 1,500	PM PEAK 417 944 1,361 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	0 0 0 0 1 0	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC/ATCS CMA Value	AM PEAK 321 591 913 1,500 0.608 0.508	PM PEAK 417 944 1,361 1,500 0.907 0.807

Future Conditions (2009), With Project (Sunset/Main Access)

Intersection: 2 Main Street and Rose Avenue

Scenario: Future Conditions (2009), With Project Mitigation (Sunset/Main Access)

		AM Peak	Hour Traffic \	/olumes			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	Critictal	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	80	0	80	80		65	0	65	65	*
NB Thru	856	19	875	481	*	614	14	628	361	
NB Right	72	14	86	N/A		83	11	94	N/A	
SB Left	111	0	111	111	*	128	0	128	128	
SB Thru	350	11	361	377		802	34	836	879	*
SB Right	17	0	17	N/A		43	0	43	N/A	
EB Left	20	0	20	20	*	26	0	26	26	
EB Thru	140	1	141	179		138	1	139	223	*
EB Right	33	6	39	N/A		70	13	83	N/A	
WB Left	41	7	48	48		115	27	142	142	*
WB Thru	126	0	126	254	*	159	0	159	249	
WB Right	128	0	128	N/A		89	0	89	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	0	0			
			=======================================		
EB Left	1	1	Critical Movement Analys	is: Results Sur	nmary
EB Left-Thru	0	0	=======================================		======
EB Thru	1	1		<u>AM PEAK</u>	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	274	365
EB Right	0	0	North/South Critical Volumes	591	944
			Sum of Critical Volumes	865	1,309
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.577	0.873
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.477	0.773
MD Dialet	0	0	Intersection Level of Service	Α	С
WB Right	-				

Future Conditions (2009), With Project Mitigation (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 3 Main Street and Sunset Avenue

Scenario: **Existing Conditions**

	AM Peak	Hour Traffic	Volumes	PM Peak Hour Traffic Volumes				
Movement	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>		
NB Left	8	N/A		15	N/A	*		
NB Thru	878	455	*	646	348			
NB Right	23	N/A		34	N/A			
SB Left	17	N/A	*	31	N/A			
SB Thru	324	180		855	454	*		
SB Right	18	N/A		21	N/A			
EB Left	23	N/A	*	3	N/A	*		
EB Thru	0	33		0	7			
EB Right	10	N/A		4	N/A			
WB Left	15	N/A		13	N/A			
WB Thru	1	57	*	1	54	*		
WB Right	41	N/A		40	N/A			

	AM PEAK	PM PEAK	Approach RTOR Reductions		ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	0	0	Number of Phases	2	2
SB Left-Thru	1	1	Phasing		
SB Thru	0	0			
SB Right-Thru	1	1	Capacity	1200	1200
SB Right	0	0			
ED 1 (1	0	•		:=====================================	======
EB Left	0	0	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	1	1	=======================================		======
EB Thru	0	0		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	0	0	East/West Critical Volumes	80	57
EB Right	0	0	North/South Critical Volumes	472	469
			Sum of Critical Volumes	552	526
WB Left	0	0	Capacity	1,200	1,200
WB Left-Thru	1	1			
WB Thru	0	0	Intersection CMA Value	0.460	0.438
WB Right-Thru	0	0	ATSAC CMA Value	0.460	0.438
WB Right	0	0	Intersection Level of Service	Α	Α
			=======================================	========	======

Intersection: 3 Main Street and Sunset Avenue

Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic	Volumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	8	N/A		0	1	16	N/A	*
NB Thru	19	44	941	487	*	33	32	711	381	
NB Right	0	1	24	N/A		0	2	36	N/A	
SB Left	2	1	20	N/A	*	5	2	38	N/A	
		1				-				*
SB Thru	28	16	368	203		30	43	928	494	*
SB Right	0	1	19	N/A		0	1	22	N/A	
EB Left	0	0	23	N/A	*	0	0	3	N/A	*
EB Thru	0	0	0	33		0	0	0	7	
EB Right	0	0	10	N/A		0	0	4	N/A	
WB Left	0	1	16	N/A		0	1	14	N/A	
WB Thru	0	0	1	64	*	0	0	1	60	*
WB Right	4	2	47	N/A		3	2	45	N/A	
WERIGHT	4		47	IN/A		3	2	43	IN/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	Phasing		
SB Left-Thru	1	1			
SB Thru	0	0	Capacity	1200	1200
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	========	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumr	nary
EB Left-Thru	1	1	=======================================	========	=====
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	87	63
EB Right	0	0	North/South Critical Volumes	507	509
			Sum of Critical Volumes	593	572
WB Left	0	0	Capacity	1,200	1,200
WB Left-Thru	1	1			
WB Thru	0	0	Intersection CMA Value	0.495	0.477
WB Right-Thru	ı 0	0	ATSAC CMA Value	0.495	0.477
WB Right	0	0	Intersection Level of Service	Α	Α

Future Conditions (2009), Without Project

Intersection: 3 Main Street and Sunset Avenue

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic V	/olumes			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	8	4	12	N/A		16	35	51	N/A	*
NB Thru	941	0	941	489	*	711	0	711	399	
NB Right	24	0	24	N/A		36	0	36	N/A	
SB Left	20	0	20	N/A	*	38	0	38	N/A	
SB Thru	368	25	393	214		928	21	949	534	*
SB Right	19	-3	16	N/A		22	60	82	N/A	
EB Left	0	46	46	46	*	0	29	29	29	*
EB Thru	0	0	0	25		0	0	0	15	
EB Right	0	25	25	N/A		0	15	15	N/A	
WB Left	16	10	26	N/A		14	14	28	N/A	
WB Thru	1	0	1	74	*	1	0	1	74	*
WB Right	47	0	47	N/A		45	0	45	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	Phasing		
SB Left-Thru	1	1			
SB Thru	0	0	Capacity	1200	1200
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	========	======
EB Left	1	1	Critical Movement Analysi	======= is: Results Sun	===== nmary
EB Left EB Left-Thru	1 0	1 0	Critical Movement Analysi	======= is: Results Sur =======	====== nmary ======
	•		Critical Movement Analysi	======== is: Results Sur ======= <u>AM PEAK</u>	====== nmary ====== <u>PM PEAK</u>
EB Left-Thru	0	0	Critical Movement Analysi	========	======
EB Left-Thru EB Thru	0	0	=======================================	<u> </u>	PM PEAK
EB Left-Thru EB Thru EB Right-Thru	0 0 1	0 0 1	East/West Critical Volumes	AM PEAK 120	PM PEAK 103
EB Left-Thru EB Thru EB Right-Thru	0 0 1	0 0 1	East/West Critical Volumes North/South Critical Volumes	AM PEAK 120 509	PM PEAK 103 585
EB Left-Thru EB Thru EB Right-Thru EB Right	0 0 1 0	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 120 509 628	PM PEAK 103 585 688
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 0 1 0	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 120 509 628	PM PEAK 103 585 688
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 1 0	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 120 509 628 1,200	PM PEAK 103 585 688 1,200
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 0 1 0	0 0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 120 509 628 1,200	PM PEAK 103 585 688 1,200
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	0 0 1 0 0 1 0	0 0 1 0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC CMA Value	AM PEAK 120 509 628 1,200 0.524 0.524	PM PEAK 103 585 688 1,200 0.573 0.573

Future Conditions (2009), With Project (Sunset/Main Access)

Intersection: 3 Main Street and Sunset Avenue

Scenario: Future Conditions (2009), With Project Mitigation (Sunset/Main Access)

		AM Peak	Hour Traffic V	olumes/			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	8	4	12	N/A		16	35	51	N/A	*
NB Thru	941	0	941	489	*	711	0	711	399	
NB Right	24	0	24	N/A		36	0	36	N/A	
SB Left	20	0	20	N/A	*	38	0	38	N/A	
SB Thru	368	25	393	207		928	21	949	493	*
SB Right	19	-3	16	16		22	60	82	82	
EB Left	0	46	46	46	*	0	29	29	29	*
EB Thru	0	0	0	N/A		0	0	0	N/A	
EB Right	0	25	25	25		0	15	15	15	
WB Left	16	10	26	27		14	14	28	29	
WB Thru	1	0	1	N/A	*	1	0	1	N/A	*
WB Right	47	0	47	47		45	0	45	45	

AM PEAK PM PEAK		PM PEAK	Approach	RTOR Reductions		
Movement	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK	
NB Left	0	0	NorthBound	0	0	
NB Left-Thru	1	1	SouthBound	0	0	
NB Thru	0	0	EastBound	0	0	
NB Right-Thru	1	1	WestBound	0	0	
NB Right	0	0				
-			Number of Phases	2	2	
SB Left	0	0	Phasing			
SB Left-Thru	1	1				
SB Thru	1	1	Capacity	1200	1200	
SB Right-Thru	0	0				
SB Right	1	1				
-			=======================================	========	======	
EB Left	0	0	Critical Movement Analysi	s: Results Sun	nmary	
EB Left EB Left-Thru	0 1	0 1	Critical Movement Analysi	s: Results Sun	nmary ======	
	0 1 0	-	Critical Movement Analysi	s: Results Sun ======= AM PEAK	nmary ====== <u>PM PEAK</u>	
EB Left-Thru	1	1	Critical Movement Analysi ====================================	=======	======	
EB Left-Thru EB Thru	1 0	1	=======================================	<u> AM PEAK</u>	PM PEAK	
EB Left-Thru EB Thru EB Right-Thru	1 0	1 0 0	East/West Critical Volumes	AM PEAK 93	====== PM PEAK 74	
EB Left-Thru EB Thru EB Right-Thru	1 0	1 0 0	East/West Critical Volumes North/South Critical Volumes	AM PEAK 93 509	PM PEAK 74 544	
EB Left-Thru EB Thru EB Right-Thru EB Right	1 0 0 1	1 0 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 93 509 602	PM PEAK 74 544 618	
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 0 0 1	1 0 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 93 509 602	PM PEAK 74 544 618	
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 0 0 1	1 0 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 93 509 602 1,200	PM PEAK 74 544 618 1,200	
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 0 0 1 0 1	1 0 0 1 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 93 509 602 1,200	PM PEAK 74 544 618 1,200	
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	1 0 0 1 0 1	1 0 0 1 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC CMA Value	AM PEAK 93 509 602 1,200 0.501 0.501	PM PEAK 74 544 618 1,200 0.514 0.514	

Future Conditions (2009), With Project Mitigation (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 4 Main Street and Thorton Place

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Pea	k Hour Traffic	Volumes
Movement	Counts	<u>VPL</u>	Critictal	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>
NB Left	1	N/A		8	N/A	*
NB Thru	820	411	*	673	341	
NB Right	0	N/A		0	N/A	
SB Left	0	N/A	*	0	N/A	
SB Thru	357	180		908	456	*
SB Right	3	N/A		4	N/A	
EB Left	3	N/A		1	N/A	
EB Thru	0	7	*	0	9	*
EB Right	4	N/A		8	N/A	
WB Left	0	N/A		0	N/A	
WB Thru	0	N/A		0	N/A	
WB Right	0	N/A		0	N/A	
	AM PEAK	PM PEAK		Approach	RTOR Re	eductions
Movement	<u>Lanes</u>	<u>Lanes</u>		<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0		NorthBound	0	0

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	0	0	Number of Phases	2	2
SB Left-Thru	1	1	Phasing		
SB Thru	0	0			
SB Right-Thru	1	1	Capacity	1200	1200
SB Right	0	0			
EB Left	0	0	Critical Movement Analysi	s: Results Su	===== mmary
EB Left-Thru	1	1	=======================================	=======	======
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	7	9
EB Right	0	0	North/South Critical Volumes	411	464
			Sum of Critical Volumes	418	473
WB Left	0	0	Capacity	1,200	1,200
WB Left-Thru	0	0			
WB Thru	0	0	Intersection CMA Value	0.348	0.394
WB Right-Thru	0	0	ATSAC CMA Value	0.348	0.394
WB Right	0	0	Intersection Level of Service	Α	A

Existing Conditions

Intersection: 4 Main Street and Thorton Place

Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic				PM Pe	ak Hour Traffic \	/olumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	<u>Growth</u>	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	1	N/A		0	0	8	N/A	*
NB Thru	16	41	877	439	*	41	34	748	378	
NB Right	0	0	0	N/A		0	0	0	N/A	
SB Left	0	0	0	N/A	*	0	0	0	N/A	
SB Thru	35	18	410	207		31	45	984	494	*
SB Right	0	0	3	N/A		0	0	4	N/A	
EB Left	0	0	3	N/A		0	0	1	N/A	
EB Thru	0	0	0	7	*	0	0	0	9	*
EB Right	0	0	4	N/A		0	0	8	N/A	
WB Left	0	0	0	N/A		0	0	0	N/A	
WB Thru	0	0	0	N/A		0	0	0	N/A	
WB Right	0	0	0	N/A		0	0	0	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	<u>AM PEAK</u>	<u>PM PEAK</u>
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	Phasing		
SB Left-Thru	1	1			
SB Thru	0	0	Capacity	1200	1200
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================		=====
EB Left	0	0	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	1	1	=======================================		=====
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	7	9
EB Right	0	0	North/South Critical Volumes	439	503
-			Sum of Critical Volumes	446	512
WB Left	0	0	Capacity	1,200	1,200
WB Left-Thru	0	0	· •		
WB Thru	0	0	Intersection CMA Value	0.372	0.427
WB Right-Thru	0	0	ATSAC CMA Value	0.372	0.427
WB Right	0	0	Intersection Level of Service	Α	Α
· ·			=======================================	========	=====

Future Conditions (2009), Without Project

Intersection: 4 Main Street and Thorton Place

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic V	olumes/			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>
NB Left	1	0	1	N/A		8	0	8	N/A	*
NB Thru	877	5	882	442	*	748	35	783	396	
NB Right	0	0	0	N/A		0	0	0	N/A	
SB Left	0	0	0	N/A	*	0	0	0	N/A	
SB Thru	410	51	461	232		984	32	1016	510	*
SB Right	3	0	3	N/A		4	0	4	N/A	
EB Left	3	0	3	N/A		1	0	1	N/A	
EB Thru	0	0	0	7	*	0	0	0	9	*
EB Right	4	0	4	N/A		8	0	8	N/A	
WB Left	0	0	0	N/A		0	0	0	N/A	
WB Thru	0	0	0	N/A		0	0	0	N/A	
WB Right	0	0	0	N/A		0	0	0	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	RTOR Reductions		
Movement	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK		
NB Left	0	0	NorthBound	0	0		
NB Left-Thru	1	1	SouthBound	0	0		
NB Thru	0	0	EastBound	0	0		
NB Right-Thru	1	1	WestBound	0	0		
NB Right	0	0					
			Number of Phases	2	2		
SB Left	0	0	Phasing				
SB Left-Thru	1	1					
SB Thru	0	0	Capacity	1200	1200		
SB Right-Thru	1	1					
SB Right	0	0					
			=======================================	========	======		
EB Left	0	0	Critical Movement Analys	is: Results Sun	nmary		
EB Left-Thru	1	1	=======================================	========	======		
EB Thru	0	0		AM PEAK	PM PEAK		
EB Right-Thru	0	0	Fast/West Critical Volumes	7	9		
EB Right		U	Last West Offical Volumes	1	9		
ED RIGHT	0	0	North/South Critical Volumes	442	519		
EB RIGHT	0	•		442 449	•		
WB Left	0	•	North/South Critical Volumes	· · -	519		
o o	-	0	North/South Critical Volumes Sum of Critical Volumes	449	519 528		
WB Left	0	0	North/South Critical Volumes Sum of Critical Volumes	449	519 528		
WB Left WB Left-Thru	0	0 0	North/South Critical Volumes Sum of Critical Volumes Capacity	449 1,200	519 528 1,200		
WB Left WB Left-Thru WB Thru	0 0 0	0 0 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	449 1,200 0.374	519 528 1,200		
WB Left WB Left-Thru WB Thru WB Right-Thru	0 0 0 0	0 0 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC CMA Value	0.374 0.374	519 528 1,200 0.440 0.440		

Future Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 5 Main Street and Abbot Kinney Boulevard

Existing Conditions Scenario:

AM Peak	Hour Traffic	Volumes	PM Peak Hour Traffic Volumes			
Counts	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	
13	13		31	31	*	
407	243	*	762	399		
78	N/A		36	N/A		
175	175	*	68	68		
176	96		1152	587	*	
16	N/A		21	N/A		
27	N/A	*	17	N/A	*	
115	150		42	89		
8	N/A		30	N/A		
35	N/A		66	N/A		
142	142		42	108	*	
429	429	*	82	82		
	Counts 13 407 78 175 176 16 27 115 8 35 142	Counts VPL 13 13 407 243 78 N/A 175 175 176 96 16 N/A 27 N/A 115 150 8 N/A 35 N/A 142 142	13 13 407 243 * 78 N/A * 175 176 96 16 N/A * 115 150 8 N/A * 142 142	Counts VPL Critictal Counts 13 13 31 407 243 * 762 78 N/A 36 175 175 * 68 176 96 1152 16 N/A 21 27 N/A * 17 115 150 42 8 N/A 30 35 N/A 66 142 142 42	Counts VPL Critictal Counts VPL 13 13 31 31 407 243 * 762 399 78 N/A 36 N/A 175 175 * 68 68 176 96 1152 587 16 N/A 21 N/A 27 N/A * 17 N/A 115 150 42 89 8 N/A 30 N/A 35 N/A 66 N/A 142 142 108	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	1	1	Number of Phases	2	2
SB Left-Thru	0	0	Phasing		
SB Thru	1	1	-		
SB Right-Thru	1	1	Capacity	1500	1500
SB Right	0	0			
			=======================================	=======	======
EB Left	0	0	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	1	1	=======================================	=======	======
EB Thru	0	0		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	0	0	East/West Critical Volumes	456	125
EB Right	0	0	North/South Critical Volumes	418	618
			Sum of Critical Volumes	874	743
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	1	1			
WB Thru	0	0	Intersection CMA Value	0.582	0.495
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.482	0.395
WB Right	1	1	Intersection Level of Service	A	A ======

Intersection: 5 Main Street and Abbot Kinney Boulevard Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic \	/olumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	<u>Growth</u>	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	1	14	14		0	2	33	33	*
NB Thru	2	20	429	256	*	5	38	805	426	
NB Right	1	4	83	N/A		10	2	48	N/A	
SB Left	15	9	199	199	*	15	3	86	86	
SB Thru	2	9	187	102		5	58	1215	618	*
SB Right	0	1	17	N/A		0	1	22	N/A	
EB Left	0	1	28	N/A	*	0	1	18	N/A	*
EB Thru	2	6	123	160		6	2	50	99	
EB Right	0	0	8	N/A		0	2	32	N/A	
WB Left	3	2	40	N/A		2	3	71	N/A	
WB Thru	2	7	151	151		4	2	48	119	*
WB Right	10	21	460	460	*	12	4	98	98	

	ΔΜ ΡΕΔΚ	PM PEAK	Approach	RTOR Re	ductions
Movement	Lanes	Lanes	Direction	AM PEAK	
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
-			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0	-		
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
EB Left	0	0	Critical Movement Analysis:	Doculte Summ	=====
EB Left-Thru	1	1			y
EB Thru	0	0		AM PEAK	 PM PFΔK
EB Right-Thru	0	0	East/West Critical Volumes	489	137
EB Right	0	0	North/South Critical Volumes	455	651
LD ragin	Ü	Ü	Sum of Critical Volumes	944	788
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	1	1	capacity	.,000	.,000
WB Thru	0	0	Intersection CMA Value	0.629	0.525
WB Right-Thru	_	0	ATSAC/ATCS CMA Value	0.529	0.425
WB Right	1	1	Intersection Level of Service	Α	A
3	•		=======================================	========	=====

Future Conditions (2009), Without Project

Intersection: 5 Main Street and Abbot Kinney Boulevard

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic V	/olumes			PM Peak H	our Traffic Volu	mes	
Movement	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	14	0	14	14		33	0	33	33	*
NB Thru	429	0	429	256	*	805	0	805	426	
NB Right	83	0	83	N/A		48	0	48	N/A	
SB Left	199	25	224	224	*	86	18	104	104	
SB Thru	187	0	187	109		1215	0	1215	623	*
SB Right	17	14	31	N/A		22	10	32	N/A	
EB Left	28	1	29	N/A	*	18	5	23	N/A	*
EB Thru	123	0	123	161		50	0	50	104	
EB Right	8	0	8	N/A		32	0	32	N/A	
WB Left	40	0	40	N/A		71	0	71	N/A	
WB Thru	151	0	151	151		48	0	48	119	
WB Right	460	4	464	464	*	98	30	128	128	*

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	Lanes	Lanes	Direction	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	:=======	======
EB Left	0	0	Critical Movement Analysi	is: Results Sun	nmary
EB Left EB Left-Thru	0 1	0 1	Critical Movement Analysi	is: Results Sun	nmary ======
	0 1 0	0 1 0	Critical Movement Analysi	is: Results Sur ======== <u>AM PEAK</u>	nmary ====== <u>PM PEAK</u>
EB Left-Thru	1	1	Critical Movement Analysi ====================================	========	======
EB Left-Thru EB Thru	1	1 0	=======================================	AM PEAK	PM PEAK
EB Left-Thru EB Thru EB Right-Thru	1 0 0	1 0 0	======================================	AM PEAK 494	PM PEAK 151
EB Left-Thru EB Thru EB Right-Thru	1 0 0	1 0 0	East/West Critical Volumes North/South Critical Volumes	AM PEAK 494 480	PM PEAK 151 656
EB Left-Thru EB Thru EB Right-Thru EB Right	1 0 0 0	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 494 480 974	PM PEAK 151 656 807
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 0 0 0	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 494 480 974	PM PEAK 151 656 807
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 0 0 0	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 494 480 974 1,500	PM PEAK 151 656 807 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 0 0 0 0	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 494 480 974 1,500	PM PEAK 151 656 807 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	0 0 0 0 1 0	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC/ATCS CMA Value	AM PEAK 494 480 974 1,500 0.649 0.549	PM PEAK 151 656 807 1,500 0.538 0.438

Future Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 6 Venice Boulevard and Abbot Kinney Boulevard

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Peak Hour Traffic Volumes			
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	
NB Left	165	165	*	244	244	*	
NB Thru	369	394		531	571		
NB Right	25	N/A		40	N/A		
SB Left	87	87		76	76		
SB Thru	407	438	*	403	480	*	
SB Right	31	N/A		77	N/A		
EB Left	63	63	*	150	150	*	
EB Thru	331	166		452	226		
EB Right	115	115		164	164		
WB Left	57	57		54	54		
WB Thru	498	249	*	428	214	*	
WB Right	60	60		49	49		

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	1	1	Number of Phases	2	2
SB Left-Thru	0	0	Phasing		
SB Thru	1	1			
SB Right-Thru	0	0	Capacity	1500	1500
SB Right	0	0			
			=======================================	========	======
EB Left	1	1	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	0	0	=======================================	=======	======
EB Thru	2	2		<u>AM PEAK</u>	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	312	364
EB Right	1	1	North/South Critical Volumes	603	724
			Sum of Critical Volumes	915	1,088
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	2	2	Intersection CMA Value	0.610	0.725
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.510	0.625
WB Right	1	1	Intersection Level of Service	Α	В

Intersection: 6 Venice Boulevard and Abbot Kinney Boulevard Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic				PM Pe	ak Hour Traffic \		
<u>Movement</u>	Related	<u>Growth</u>	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	<u>Growth</u>	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	8	173	173	*	0	12	256	256	*
NB Thru	0	18	387	414		0	27	558	600	
NB Right	0	1	26	N/A		0	2	42	N/A	
SB Left	0	4	91	91		0	4	80	80	
SB Thru	0	20	427	460	*	0	20	423	504	*
SB Right	0	2	33	N/A		0	4	81	N/A	
EB Left	0	3	66	66	*	0	8	158	158	*
EB Thru	0	17	348	174		0	23	475	237	
EB Right	0	6	121	121		0	8	172	172	
WB Left	0	3	60	60		0	3	57	57	
WB Thru	0	25	523	261	*	0	21	449	225	*
WB Right	0	3	63	63		0	2	51	51	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	<u>PM PEAK</u>
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	0	0			
EB Left	1	1	Critical Movement Analysis:		
EB Left EB Left-Thru	1 0	1 0		Results Sumn	nary
	-	1 0 2	Critical Movement Analysis:	Results Sumn	nary =====
EB Left-Thru	0	_	Critical Movement Analysis:	Results Sumn	nary =====
EB Left-Thru EB Thru	0	2	Critical Movement Analysis:	Results Sumn	nary ===== <u>PM PEAK</u>
EB Left-Thru EB Thru EB Right-Thru	0 2 0	2	Critical Movement Analysis: ====================================	Results Sumn AM PEAK 328	nary ====== <u>PM PEAK</u> 382 760
EB Left-Thru EB Thru EB Right-Thru	0 2 0	2	Critical Movement Analysis: I	Results Sumn AM PEAK 328 633	nary ====== <u>PM PEAK</u> 382 760
EB Left-Thru EB Thru EB Right-Thru EB Right	0 2 0	2 0 1	Critical Movement Analysis: I ====================================	Results Sumn	nary ====== PM PEAK 382 760 1,142
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 2 0 1	2 0 1	Critical Movement Analysis: I ====================================	Results Sumn	nary ====== PM PEAK 382 760 1,142
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 2 0 1 1 0 2	2 0 1	Critical Movement Analysis: I ====================================	Results Sumn	nary ====== <u>PM PEAK</u> 382 760 1,142 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 2 0 1 1 0 2	2 0 1 1 0 2	Critical Movement Analysis: I ====================================	Results Sumn	nary ====== PM PEA 382 760 1,142 1,500

Future Conditions (2009), Without Project

Intersection: 6 Venice Boulevard and Abbot Kinney Boulevard

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic \	olumes/			PM Peak H	our Traffic Volu	mes_	
<u>Movement</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	173	0	173	173	*	256	0	256	256	*
NB Thru	387	6	393	420		558	13	571	613	
NB Right	26	0	26	N/A		42	0	42	N/A	
SB Left	91	15	106	106		80	10	90	90	
SB Thru	427	10	437	470	*	423	7	430	511	*
SB Right	33	0	33	N/A		81	0	81	N/A	
EB Left	66	0	66	66	*	158	0	158	158	*
EB Thru	348	0	348	174		475	0	475	237	
EB Right	121	0	121	121		172	0	172	172	
WB Left	60	0	60	60		57	0	57	57	
WB Thru	523	0	523	261	*	449	0	449	225	*
WB Right	63	10	73	73		51	23	74	74	

		PM PEAK	Approach	RTOR Re	
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	<u>PM PEAK</u>
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0	-		
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0	, ,		
SB Right	0	0			
· ·			=======================================	========	======
EB Left	1	1	Critical Movement Analysi	is: Results Sun	nmary
EB Left-Thru	0	0	=======================================	========	======
EB Thru	2	2		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	328	382
EB Right	1	1	North/South Critical Volumes	643	767
			Sum of Critical Volumes	971	1,149
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0	•		
WB Thru	2	2	Intersection CMA Value	0.647	0.766
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.547	0.666
WB Right	1	1	Intersection Level of Service	Α	В
5			PROJECT IMPACT VALUE	0.006	0.004

Future Conditions (2009), With Project (Sunset/Main Access)

	HCS2000 [™] DETAILED REPORT														
General Informa	ntion	Site Information													
Analyst Jerry Overland Agency or Co. OTC Inc. Date Performed 4/28/2004 Time Period AM Peak Hour							on e n ′ear	Neilson Way & Ocean Park Blvd. CBD or Similar City of Santa Monica 2004 RAD Sunset							
Volume and Tim	ning Input														
			EB			WB			NB		SB				
		LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
Number of lanes,	, N ₁	0	1	0	1	1	0	1	2	0	1	2	0		
Lane group			LTR		L	TR		L	TR		L	TR			
Volume, V (vph)			59	9	60	62	87	11	1109	165	79	694	12		
% Heavy vehicles	0	0	0	0	0	0	0	0	0	0	0	0			
Peak-hour factor,	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90			

% Heavy vehicles, %HV	0	0	0	0	0	0	0	0	0	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P) or actuated (A)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Start-up lost time, I ₁		2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Extension of effective green, e		2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Arrival type, AT		3		3	3		3	3		3	3	
Unit extension, UE		3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Filtering/metering, I		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Initial unmet demand, Q _b		0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Ped / Bike / RTOR volumes	0	0	0	0	0	0	0	0	0	0	0	0
Lane width		12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Parking / Grade / Parking	N	0	N	N	0	Ν	N	0	N	N	0	N

Min. time for p	edestrians, G _p			3.2			3.2			3.2		3.2		
Phasing	EW Perm	02		03		04	NS Perm			06		07 08		
-	G = 9.4	G = 0.0		G = G		G =		G = 42.6		G =		G =		
Timing	Y = 4	Y =		Y = Y =			Y = 4		Y =	Y =		Y =		
Duration of Analysis, T = 0.25						,		Сус	le Length	, C = 6	60.0	•		

0

0

0

								 	g, c			
Lane Group Capacity, Control	Delay, a	and LOS	Determi	nation								
		EB			WB			NB		SB		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v		85		67	166		12	1415		88	784	
Lane group capacity, c		215		200	244		419	2262		185	2301	
v/c ratio, X		0.40		0.34	0.68		0.03	0.63		0.48	0.34	
Total green ratio, g/C		0.16		0.16	0.16		0.71	0.71		0.71	0.71	
Uniform delay, d ₁		22.7		22.5	23.9		2.6	4.5		3.8	3.3	
Progression factor, PF		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay calibration, k		0.11		0.11	0.25		0.11	0.21		0.11	0.11	
Incremental delay, d ₂		1.2		1.0	7.5		0.0	0.6		1.9	0.1	
Initial queue delay, d ₃												
Control delay		23.9		23.5	31.4		2.6	5.1		5.7	3.4	
Lane group LOS		С		С	С		Α	Α		Α	Α	
Approach delay	2	23.9			29.1			5.1		3.7		
Approach LOS		С			С			Α		Α		
Intersection delay	7	7.3		X _C	$X_{\rm C} = 0.64$			ction LOS		Α		

Parking maneuvers, N_m Buses stopping, N_B

0

0

0

					-	ICS2	000°	™ DE	TAI	ILED	REI	POR	Τ										
												Site Information											
Analyst Jerry Overland Agency or Co. OTC Inc. Date Performed 4/28/2004 Time Period AM Peak Hour							Intersection Area Type Jurisdiction Analysis Year Project ID							Neilson Way & Ocean Park Blvd. CBD or Similar City of Santa Monica 2009 without project RAD Sunset									
Volume and	Timing Input																						
					EB					WB		1				NB	1		SB				
Number of lanes, N ₁				LT	TH			L7	<u> </u>			RT				TH	RT	LT	TH	RT			
-	<u>'</u>			0		1 0		1 L		1		0		1		2 TR	0	1 L	2 TR	0			
Lane group Volume, V (vp	uh)			8		LTR		63	,	65 65		91		L 12		1173	173	83	750	13			
% Heavy vehic				0	62 9 0 0			03		0		0		0		0	0	0	0	0			
Peak-hour fac				0.90	0.90	0.9		0.9		0.9		0.90	<u> </u>	0.90)	0.90	0.90	0.90	0.90	0.90			
	or actuated (A)			A	A	1		A		A		A		A		A	A	A	A	A			
Start-up lost ti	. ,			71	2.0	 	•	2.0		2.0)			2.0		2.0	71	2.0	2.0	1 71			
	effective green,				2.0	_		2.0		2.0				2.0		2.0		2.0	2.0				
Arrival type, A	T				3			3		3				3		3		3	3				
Unit extension	ı, UE				3.0			3.0)	3.	0			3.0)	3.0		3.0	3.0				
Filtering/metering, I					1.000			1.00	00	1.00	00			1.00	0	1.000		1.000	1.000				
Initial unmet demand, Q _b					0.0			0.0)	0.0				0.0		0.0		0.0	0.0				
Ped / Bike / RTOR volumes				0	0	0)	0		0		0		0		0	0	0	0	0			
Lane width					12.0			12.	0	12.0				12.0		12.0		12.0	12.0				
Parking / Grad	Parking / Grade / Parking			Ν	0	٨	٧	Ν		0		Ν		N		0	N	N	0	N			
Parking maneuvers, N _m																							
Buses stoppin	<u> </u>				0			0		0						0		0	0				
Min. time for p	edestrians, G _p				3.2					3.	2					3.2			3.2				
Phasing	EW Perm		02		03		04		4	1		S Pe	rm	1 0		06		07	0	08			
Timing	G = 9.3	G =	0.0		G =		G =			G		= 42.	.7	(} =		G =		G =				
Tilling	Y = 4	Y =		Y =		Y =			Y		Y = 4		Y =			Y =		Y =					
Duration of An	nalysis, T = <i>0.25</i>			Cycle Length, C = 60.0									60.0										
Lane Group (Capacity, Contr	ol De	elay,	and L	OS De	ermi	natio	n															
				E	В					WB						NB ,		ļ	SB	,			
			LT	TH		RT	L]				R	T	L		-	ГН	RT	LT	TH	RT			
Adjusted flow				88			70		_17			1.			-,	1495		92	847	ļ			
Lane group ca	арасіту, с			202			199		24			<u> </u>	39			267		165	2307	<u> </u>			
v/c ratio, X	tio a/C			0.4			0.3		0.7			· · · · · · · · · · · · · · · · · · ·	0.0		_	66		0.56	0.37	<u> </u>			
	Total green ratio, g/C			0.1			0.1		0.1				0.7			71		0.71	0.71				
Uniform delay, d ₁ Progression factor, PF			23.			22.		24.			1	2.0			.7		4.1	3.4	<u> </u>				
Delay calibration, k			1.00 0.1			0.1		0.2				1.00 0.1		+	23		1.000 0.15	1.000 0.11					
Incremental delay, d ₂			1.5			1.1		9.				0.1		-	.7		4.2	0.11					
Initial queue delay, d ₃			1.0	<u>' </u>		1 1.1	'	<u>J.</u>	<u> </u>					10	. /		7.2	0.1					
Control delay	, -	\dashv		24.	5		23.	7	33.	7			2.0	6	5	4		8.3	3.5	-			
Lane group LO	OS .	-		C			C		C				A					A A	A A				
Approach dela		\dashv		 24.5					 0.8	•	l				<u></u>	-		1	3.9	<u></u>			
Approach LOS	<u> </u>	\dashv	•	C					C						<u></u> А				A				
Intersection de		-		7.7			,	X _C =		7			Inte			LOS			Α				
TM																							

HCS2000 [™] DETAILED REPORT											
General Informa	ntion	Site Information									
Analyst	Jerry Overland	Intersection	Neilson Way & Ocean Park Blvd.								
Agency or Co.	OTC Inc.	Area Type	CBD or Similar								
Date Performed	4/28/2004	Jurisdiction	City of Santa Monica								
Time Period	AM Peak Hour	Analysis Year	2009 with project								
		Project ID	RAD Sunset (with Sunset & Main Access)								

Volume and Timing Input												
		EB			WB	3		NB	,		SB	,
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of lanes, N ₁	0	1	0	1	1	0	1	2	0	1	2	0
Lane group		LTR		L	TR		L	TR		L	TR	
Volume, V (vph)	8	62	9	63	65	91	12	1187	179	83	754	13
% Heavy vehicles, %HV	0	0	0	0	0	0	0	0	0	0	0	0
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P) or actuated (A)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Start-up lost time, I ₁		2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Extension of effective green, e		2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Arrival type, AT		3		3	3		3	3		3	3	
Unit extension, UE		3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Filtering/metering, I		1.000		1.000	1.000)	1.000	1.000		1.000	1.000	
Initial unmet demand, Q _b		0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Ped / Bike / RTOR volumes	0	0	0	0	0	0	0	0	0	0	0	0
Lane width		12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Parking / Grade / Parking	N	0	N	N	0	N	N	0	N	N	0	N
Parking maneuvers, N _m												
Buses stopping, N _B		0		0	0		0	0		0	0	
Min. time for pedestrians, G _p		3.2	,		3.2	'		3.2	1		3.2	,
Phasing EW Perm 0	2	03		04		NS Perr	n	06		07	C)8
G = 9.3 G = (0.0	G =		G =		G = 42.7	G:	=	G =		G =	
Timing $Y = 4$ $Y =$		Y =		Y =		Y = 4	Y =		Y =		Y =	
Duration of Analysis, T = 0.25			l,		I		Су	cle Leng	jth, C = 60.0			

Duration of Analysis, 1 - 0.25		Cycle Length, C = 00.0										
Lane Group Capacity, Conti	rol Delay	y, and L	OS Dete	erminati	on							
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v		88		70	173		13	1518		92	852	
Lane group capacity, c		202		199	242		387	2267		159	2307	
v/c ratio, X		0.44		0.35	0.71		0.03	0.67		0.58	0.37	
Total green ratio, g/C		0.16		0.16	0.16		0.71	0.71		0.71	0.71	
Uniform delay, d ₁		23.0		22.7	24.1		2.6	4.8		4.2	3.4	
Progression factor, PF		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay calibration, k		0.11		0.11	0.28		0.11	0.24		0.17	0.11	
Incremental delay, d ₂		1.5		1.1	9.6		0.0	0.8		5.2	0.1	
Initial queue delay, d ₃												
Control delay		24.5		23.7	33.7		2.6	5.5		9.4	3.5	
Lane group LOS		С		С	С		Α	A		Α	Α	
Approach delay	2	4.5	•	;	30.8	•		5.5	-		4.1	
Approach LOS		С			С			Α			Α	
Intersection delay	7	7.8		X _C	= 0.68		Interse	ction LOS			Α	

	HCS2000 [™] DETAILED REPORT													
General Informa	General Information													
Analyst	Jerry Overland OTC Inc.					Intersection	on	Neilson Blvd.	Way & C	Ocean Pa	rk			
Agency or Co.		Area Type	•	CBD or Similar										
Date Performed					,	Jurisdictio	n	City of S	Santa Mo	nica				
Time Period	PM Peak Hour					Analysis Year 2004								
						Project ID		RAD Su	nset					
Volume and Tim	ning Input													
			EB			WB		NB				SB		
LT TH RT					LT	TH TH	RT	r LT TH RT L			LT	I TH	RT	

volume and	iming input														
				EB			WE	3			NB			SB	
			LT	TH	RT	LT	TH		RT	LT	TH	RT	LT	TH	RT
Number of lan	es, N ₁		0	1	0	1	1		0	1	2	0	1	2	0
Lane group				LTR		L	TR			L	TR		L	TR	
Volume, V (vp	h)		9	64	19	155	98	1	101	15	883	106	88	1223	20
% Heavy vehic	cles, %HV		0	0	0	0	0		0	0	0	0	0	0	0
Peak-hour fac	tor, PHF		0.90	0.90	0.90	0.90	0.90	0	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P) o	or actuated (A)		Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α
Start-up lost ti	me, I ₁			2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Extension of e	ffective green, e)		2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Arrival type, A				3		3	3			3	3		3	3	
Unit extension	Jnit extension, UE			3.0		3.0	3.0)		3.0	3.0		3.0	3.0	
Filtering/meter	Itering/metering, I			1.000		1.000	1.000	0		1.000	1.000		1.000	1.000	
Initial unmet de	emand, Q _b			0.0		0.0	0.0			0.0	0.0		0.0	0.0	
Ped / Bike / R	TOR volumes		0	0	0	0	0		0	0	0	0	0	0	0
Lane width				12.0		12.0	12.0)		12.0	12.0		12.0	12.0	
Parking / Grad	le / Parking		N	0	N	N	0		N	N	0	N	N	0	N
Parking mane	uvers, N _m														
Buses stoppin	g, N _B			0		0	0			0	0		0	0	
Min. time for p	edestrians, G _p			3.2			3.2				3.2	1.		3.2	
Phasing	EW Perm	02		03	1	04		NS	Perm		06		07	0	18
	G = 11.8	G = 0.	0	G =		G =		G = .	40.2	G =		G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4	4	Y =		Y =		Y =	
Duration of An	alvsis T = 0.25	J								Cyc	le Lenath				

Ph	nasing	EW Perm	02	03	04	NS Perm	06	07	08			
Τ:.	mina	G = 11.8	G = 0.0	G =	G =	G = 40.2	G =	G =	G =			
111	ming	Y = 4	Y =	Y = Y = Y = 4		Y = 4	Y =	Y =	Y =			
Dι	ıration of An	alysis, T = <i>0.25</i>	7				Cycle Length, C = 60.0					
1.0	and Charles Comparity, Compared Delay, and LOS Determination											

Duration of Arialysis, 1 - 0.23	Cycle Length, C = 00.0											
Lane Group Capacity, Contr	ol Delay, a	nd LOS	Determi	nation								
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v		102		172	221		17	1099		98	1381	
Lane group capacity, c		280		249	311		172	2142		258	2171	
v/c ratio, X		0.36		0.69	0.71		0.10	0.51		0.38	0.64	
Total green ratio, g/C		0.20		0.20	0.20		0.67	0.67		0.67	0.67	
Uniform delay, d ₁		20.9		22.4	22.5		3.5	5.0		4.4	5.7	
Progression factor, PF		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay calibration, k		0.11		0.26	0.27		0.11	0.12		0.11	0.22	
Incremental delay, d ₂		0.8		7.9	7.4		0.3	0.2		0.9	0.6	
Initial queue delay, d ₃												
Control delay		21.7		30.3	29.9		3.8	5.2		5.3	6.3	
Lane group LOS		С		С	С		Α	Α		Α	Α	
Approach delay	2	1.7		;	30.1			5.2			6.3	
Approach LOS		С			С			Α			Α	
Intersection delay	g).4		X _C	= 0.65		Interse	ction LOS			Α	

					F	ICS2	000 ^{TI}	[™] DE	TAII	LED	REF	POR	Т								
General Infor	mation									ite In			on								
Analyst Agency or Co. Date Performe	OTC Inc.	and							Ar	iterse rea T urisdi	ype			Blvd. CBD	or S	Way & C Similar anta Mo			nrk		
Time Period	ency or Co. OTC Inc. Ite Performed 4/28/2004 Ine Period PM Peak Ho Interpretation PM Peak Ho Interp								Ar	nalys rojec	is Y			•	wit	hout pro					
Volume and 1	Timing Input								<u> </u>												
					EB					W						NB				SB	
				LT	TH	R		LT		TH	1	RT	Γ	LT		TH	-	RT	LT	TH	RT
l.	es, N ₁			0	1	0)	1		1		0		1		2	()	1	2	0
Lane group			_		LTR		_	L	_	TF			_	L		TR	<u> </u>		L	TR	
	<u> </u>		_	9	67	20		163	3	103	3	106	5	16		945	1		92	1335	21
				0	0	0		0	^	0		0		0		0	-)	0	0	0
	•			0.90	0.90	0.9		0.90	0	0.9	0	0.90)	0.90		0.90	0.		0.90	0.90	0.90
				<u>A</u>	2.0	A	1	2.0)	2.0	,	_ A		2.0		A 2.0	/	4	2.0	2.0	<i>A</i>
	<u> </u>		_		2.0	_		2.0		2.0				2.0		2.0	_		2.0	2.0	<u> </u>
					3			3		3	<u>′</u>			3		3	<u> </u>		3	3	
					3.0			3.0)	3.	0			3.0)	3.0			3.0	3.0	
					1.000			1.00		1.00				1.00		1.000			1.000	1.000	<u> </u>
_					0.0			0.0		0.0				0.0		0.0			0.0	0.0	
Ped / Bike / R	TOR volumes			0	0	0		0		0		0		0		0	()	0	0	0
Lane width					12.0			12.0	0	12.	0			12.0)	12.0			12.0	12.0	
Parking / Grad	rking / Grade / Parking			N	0	٨	I	N		0		Ν		N		0	1	٧	N	0	N
Parking mane	uvers, N _m																				
Buses stoppin	g, N _B				0			0		0	1			0		0			0	0	
Min. time for p	edestrians, G _p				3.2	·				3.	2					3.2				3.2	
Phasing	EW Perm		02		03			04	4		N	S Pe	rm			06		(07	0	8
Timing	G = 12.6	G =	0.0		G =		G	; =			G =	= 39.	.4	(} =			G =		G =	
Tilling	Y = 4	Y =			Y =		Υ	´ =			Y =	4		Y	′ =			Y =		Y =	
Duration of An	alysis, T = <i>0.25</i>	5					,							C	ycl	e Lengtl	h, C	= 6	60.0		
Lane Group C	Capacity, Cont	rol De	lay, a	and L	OS Det	ermii	natio	n													
				ĻΕ						VB						NB				SB	
Adjusted flow	rata v		LT	TH		RT	L7		TH		R	Γ	L		-	TH	R1		LT	TH	RT
	<u> </u>			106			18		232				18		-	173			102	1506	<u> </u>
	ірасіту, с			0.34			0.6		332 0.7				13 0.1		-	100 56			225 0.45	2129 0.71	<u> </u>
	tio a/C			0.32			0.0		0.7				0.1		+	66			0.66	0.66	
		_		20.2			21.		21.				3.		-	5.6			5.0	6.6	<u> </u>
	<u> </u>	_		1.00			1.00		1.00				1.0		-	000			1.000	1.000	[
		-		0.11			0.2		0.2				0.1		+	16			0.11	0.27	
		-+		0.6			7.2		6.4				0.1		+	0.3			1.5	1.1	
		\dashv		1.5				-	<u> </u>	-			<u> </u>		†						
Control delay	<u> </u>	-		20.8	3		29.	1	28.	.3			4.	3	5	5.9			6.5	7.7	
Lane group LC	OS			C			C		C				A		┼	A		\dashv	A	A	
Approach dela			2	20.8					3.6						5.9			\neg		7.6	1
Approach LOS	3			С					C						A					Α	
Intersection de	elay		1	0.0				X _C =	0.71	1			Inte	ersec	tior	LOS				В	

HCS2000 [™] DETAILED REPORT										
General Informa	tion	Site Information								
Analyst	Jerry Overland	Intersection	Neilson Way & Ocean Park Blvd.							
Agency or Co.	OTC Inc.	Area Type	CBD or Similar							
Date Performed	4/28/2004	Jurisdiction	City of Santa Monica							
Time Period	PM Peak Hour	Analysis Year	2009 with project							
		Project ID	RAD Sunset (with Sunset & Main)							

Volume and Timing Inpu	ıt													
			EB			WE	3			NB		<u> </u>	SB	,
		LT	TH	RT	LT	TH	ļ_	RT	LT	TH	RT	LT	TH	RT
Number of lanes, N ₁		0	1	0	1	1		0	1	2	0	1	2	0
Lane group			LTR		L	TR			L	TR		L	TR	
Volume, V (vph)		9	67	20	163	103	1	106	16	954	115	92	1347	21
% Heavy vehicles, %HV		0	0	0	0	0		0	0	0	0	0	0	0
Peak-hour factor, PHF		0.90	0.90	0.90	0.90	0.90	0	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P) or actuated ((A)	Α	Α	Α	Α	Α		Α	A	Α	Α	Α	Α	Α
Start-up lost time, I ₁			2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Extension of effective gre	en, e		2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Arrival type, AT			3		3	3			3	3		3	3	
Jnit extension, UE			3.0		3.0	3.0			3.0	3.0		3.0	3.0	
Filtering/metering, I			1.000		1.000	1.000)		1.000	1.000		1.000	1.000	
Initial unmet demand, Qb			0.0		0.0	0.0			0.0	0.0		0.0	0.0	
Ped / Bike / RTOR volume	es	0	0	0	0	0		0	0	0	0	0	0	0
Lane width			12.0		12.0	12.0			12.0	12.0		12.0	12.0	
Parking / Grade / Parking		N	0	Ν	N	0		Ν	N	0	N	N	0	N
Parking maneuvers, N _m														
Buses stopping, N _B			0		0	0			0	0		0	0	
Min. time for pedestrians,	Gp		3.2	,		3.2	<u>'</u>			3.2	1		3.2	,
Phasing EW Perm	C	2	03		04		NS	S Perm		06		07	0	18
G = 12.6	G = (0.0	G =		G =		G =	39.4	G =		G =		G =	
Timing $Y = 4$	Y =		Y =		Y =		Y =	4	Y =		Y =		Y =	
Duration of Analysis, T =	0.25			1,					Сус	le Leng	th, C = 60.0			

Duration of Arialysis, 1 - 0.25		Cycle Length, C = 00.0										
Lane Group Capacity, Contr	ol Dela	y, and L	OS Dete	erminati	on							
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v		106		181	232		18	1188		102	1520	
Lane group capacity, c		313		264	332		130	2099		219	2129	
v/c ratio, X		0.34		0.69	0.70		0.14	0.57		0.47	0.71	
Total green ratio, g/C		0.21		0.21	0.21		0.66	0.66		0.66	0.66	
Uniform delay, d ₁		20.2		21.9	21.9		3.9	5.6		5.1	6.7	
Progression factor, PF		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay calibration, k		0.11		0.25	0.27		0.11	0.16		0.11	0.28	
Incremental delay, d ₂		0.6		7.2	6.4		0.5	0.4		1.6	1.2	
Initial queue delay, d ₃												
Control delay		20.8		29.1	28.3		4.4	6.0		6.7	7.8	
Lane group LOS		С		С	С		Α	A		Α	Α	
Approach delay	2	0.8			28.6	1		6.0	,		7.7	1
Approach LOS		С			С			Α			Α	
Intersection delay	1	0.1		X _C	= 0.71		Interse	ction LOS			В	

Project: RAD Sunset

Intersection: 8 Pacific Avenue and Rose Avenue

AM Peak Hour Traffic Volumes

0

Scenario: Existing Conditions

WB Right

	AW Fear	THOUI TRAINE	voiuilles	FIVI FEAR	Hour Hailie	/Olullies
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>
NB Left	0	N/A		9	N/A	*
NB Thru	1111	592	*	950	536	
NB Right	72	N/A		112	N/A	
· · - · · · · · · · · · · · ·						
SB Left	87	N/A	*	136	N/A	
SB Thru	484	288		1190	674	*
SB Right	5	N/A		21	N/A	
OB ragin	Ü	14/7		21	14/7	
EB Left	21	N/A	*	22	N/A	*
EB Thru	22	48		55	83	
EB Right	5	N/A		6	N/A	
LD ragin	Ü	14// (· ·	14// (
WB Left	33	N/A		65	N/A	
WB Thru	31	210	*	46	211	*
WB Right	146	N/A		100	N/A	
··- · · · · · · ·						
	AM PEAK	PM PEAK		Approach	RTOR Re	ductions
Movement	Lanes	Lanes		<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0		NorthBound	0	0
NB Left-Thru	1	1		SouthBound	0	0
NB Thru	0	0		EastBound	0	0
NB Right-Thru	1	1		WestBound	0	0
NB Right	0	0				-
	•	· ·				
SB Left	0	0		Number of Phases	2	2
SB Left-Thru	1	1		NO LEFT	TURNS NORT	HBOUND
SB Thru	0	0				
SB Right-Thru	1	1		Capacity	1500	1500
SB Right	0	0				
ob i agin	ŭ	Ü	======	==========	========	======
EB Left	0	0	Critic	al Movement Analysi	s: Results Su	mmarv
EB Left-Thru	0	0		==========		-
EB Thru	1	1			AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West	Critical Volumes	231	233
EB Right	0	0		th Critical Volumes	679	683
	J	J		itical Volumes	910	916
WB Left	0	0	Capacity		1,500	1,500
WB Left-Thru	0	Ö	Japaony		1,000	1,000
WB Thru	1	1	Intersection	n CMA Value	0.606	0.610
WB Right-Thru	0	0		ATCS CMA Value	0.506	0.510
WD Night-Inia	0	0		a Lavel of Camilea	0.500	0.010

Intersection Level of Service

Existing Conditions

Α

Α

PM Peak Hour Traffic Volumes

Intersection: 8 Pacific Avenue and Rose Avenue

Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic \	/olumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	0	N/A		0	0	9	N/A	*
NB Thru	24	56	1191	633	*	14	48	1012	569	
NB Right	0	4	76	N/A		0	6	118	N/A	
SB Left	0	4	91	N/A	*	0	7	143	N/A	
SB Thru	15	24	523	310		30	60	1280	722	*
SB Right	0	0	5	N/A		0	1	22	N/A	
EB Left	0	1	22	N/A	*	0	1	23	N/A	*
EB Thru	1	1	24	51		3	3	61	90	
EB Right	0	0	5	N/A		0	0	6	N/A	
WB Left	0	2	35	N/A		0	3	68	N/A	
WB Thru	2	2	35	226	*	4	2	52	228	*
WB Right	3	7	156	N/A		2	5	107	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	NO LEFT 1	TURNS NORT	HBOUND
SB Left-Thru	1	1			
SB Thru	0	0	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	=======	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	0	0	=======================================	=======	=====
EB Thru	1	1		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	248	251
EB Right	0	0	North/South Critical Volumes	724	732
			Sum of Critical Volumes	972	982
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.648	0.655
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.548	0.555
WB Right	0	0	Intersection Level of Service	Α	Α
			=======================================	========	=====

Future Conditions (2009), Without Project

Intersection: 8 Pacific Avenue and Rose Avenue

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic V	olumes			PM Peak Ho	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	0	0	0	N/A		9	0	9	N/A	*
NB Thru	1191	20	1211	645	*	1012	13	1025	577	
NB Right	76	3	79	N/A		118	2	120	N/A	
SB Left	91	4	95	N/A	*	143	12	155	N/A	
SB Thru	523	0	523	312		1280	0	1280	728	*
SB Right	5	0	5	N/A		22	0	22	N/A	
EB Left	22	0	22	N/A	*	23	0	23	N/A	*
EB Thru	24	0	24	51		61	0	61	90	
EB Right	5	0	5	N/A		6	0	6	N/A	
WB Left	35	0	35	N/A		68	0	68	N/A	
WB Thru	35	0	35	226	*	52	0	52	228	*
WB Right	156	0	156	N/A		107	0	107	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	Lanes	Lanes	Direction	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	NO LEI	FT TURNS NOR	THBOUND
SB Left-Thru	1	1			
SB Thru	0	0	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	========	======
EB Left	0	0	Critical Movement Analys	is: Results Sun	nmary
EB Left-Thru	0	0	=======================================	========	======
EB Thru	1	1		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	248	251
EB Right	0	0	North/South Critical Volumes	740	738
			Sum of Critical Volumes	987	988
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.658	0.659
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.558	0.559
WB Right-Thru WB Right	0	\(\frac{1}{2}\)	ATSAC/ATCS CMA Value Intersection Level of Service	0.558 A	0.559 A
•		0			

Future Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection: 9 Pacific Avenue and Sunset Avenue

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Peak	PM Peak Hour Traffic Volumes			
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>		
NB Left	0	N/A		0	N/A	*		
NB Thru	1276	638	*	925	463			
NB Right	0	N/A		0	N/A			
SB Left	0	N/A	*	0	N/A			
SB Thru	561	561		1336	668	*		
SB Right	0	N/A		0	N/A			
EB Left	0	N/A	*	0	N/A	*		
EB Thru	0	0		0	0			
EB Right	0	N/A		0	N/A			
WB Left	4	N/A		1	N/A			
WB Thru	0	17	*	0	18	*		
WB Right	13	N/A		17	N/A			

AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
0	0	NorthBound	0	0
1	1	SouthBound	0	0
1	1	EastBound	0	0
0	0	WestBound	0	0
0	0			
0	0	Number of Phases	2	2
0	0			
1	1			
1	1	Capacity	1200	1200
0	0			
				======
-	0	Critical Movement Analysi	is: Results Su	mmary
0	0	=======================================	=======	======
1	1		<u>AM PEAK</u>	<u>PM PEAK</u>
0	0	East/West Critical Volumes	17	18
0	0	North/South Critical Volumes	638	668
		Sum of Critical Volumes	655	686
0	0	Capacity	1,200	1,200
0	0			
1	1	Intersection CMA Value	0.546	0.572
0	0	ATSAC CMA Value	0.546	0.572
0	0	Intersection Level of Service	Α	Α
	Lanes 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0	Lanes Lanes 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0	Lanes Direction 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 <	Lanes Direction AM PEAK 0 0 NorthBound 0 1 1 SouthBound 0 1 1 EastBound 0 0 0 WestBound 0 0 0 Number of Phases 2 0 0 Number of Phases 2 0 0 Capacity 1200 0 0 Capacity 1200 0 0 Critical Movement Analysis: Results Sults Sults 0 0 Capacity 17 0 0 East/West Critical Volumes 17 0 0 East/West Critical Volumes 638 Sum of Critical Volumes 655 0 0 Capacity 1,200 0 0 Capacity 1,200 0 0 ATSAC CMA Value 0.546

Existing Conditions

 Intersection:
 9
 Pacific Avenue and Sunset Avenue

 Scenario:
 Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic \	/olumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	0	N/A		0	0	0	N/A	*
NB Thru	21	64	1361	680	*	8	46	979	490	
NB Right	0	0	0	N/A		0	0	0	N/A	
SB Left	0	0	0	N/A	*	0	0	0	N/A	
SB Thru	11	28	600	300		25	67	1428	714	*
SB Right	0	0	0	N/A		0	0	0	N/A	
EB Left	0	0	0	N/A	*	0	0	0	N/A	*
EB Thru	0	0	0	0		0	0	0	0	
EB Right	0	0	0	N/A		0	0	0	N/A	
WB Left	0	0	4	N/A		0	0	1	N/A	
WB Thru	0	0	0	18	*	0	0	0	19	*
WB Right	0	1	14	N/A		0	1	18	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
-			Number of Phases	2	2
SB Left	0	0			
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1200	1200
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	=======	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	0	0	=======================================	========	=====
EB Thru	1	1		AM PEAK	<u>PM PEAK</u>
EB Right-Thru	0	0	East/West Critical Volumes	18	19
EB Right	0	0	North/South Critical Volumes	680	714
			Sum of Critical Volumes	698	733
WB Left	0	0	Capacity	1,200	1,200
WB Left WB Left-Thru	0 0	0 0	Capacity	1,200	1,200
	-		Capacity Intersection CMA Value	1,200 0.582	1,200 0.611
WB Left-Thru	0		, ,	ŕ	•
WB Left-Thru WB Thru	0	0	Intersection CMA Value	0.582	0.611

Future Conditions (2009), Without Project

Intersection: 9 Pacific Avenue and Sunset Avenue

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic V	/olumes			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>
NB Left	0	0	0	N/A		0	0	0	N/A	*
NB Thru	1361	15	1376	688	*	979	10	989	495	
NB Right	0	0	0	N/A		0	0	0	N/A	
SB Left	0	0	0	N/A	*	0	0	0	N/A	
SB Thru	600	0	600	300		1428	0	1428	714	*
SB Right	0	0	0	N/A		0	0	0	N/A	
EB Left	0	0	0	N/A	*	0	0	0	N/A	*
EB Thru	0	0	0	0		0	0	0	0	
EB Right	0	0	0	N/A		0	0	0	N/A	
WB Left	4	4	8	N/A		1	3	4	N/A	
WB Thru	0	0	0	18	*	0	0	0	25	*
WB Right	14	-4	10	N/A		18	3	21	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0			
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1200	1200
SB Right-Thru	1	1			
SB Right	0	0			
					======
EB Left	0	0	Critical Movement Analysi	is: Results Sun	nmary
EB Left EB Left-Thru	0 0	0 0	Critical Movement Analys	is: Results Sun	nmary
	•	•	Critical Movement Analysi	is: Results Sun	nmary PM PEAK
EB Left-Thru	•	0	Critical Movement Analysis	========	======
EB Left-Thru EB Thru	0	0 1	=======================================	AM PEAK	PM PEAK
EB Left-Thru EB Thru EB Right-Thru	0 1 0	0 1 0	East/West Critical Volumes	AM PEAK 18	PM PEAK 25
EB Left-Thru EB Thru EB Right-Thru	0 1 0	0 1 0	East/West Critical Volumes North/South Critical Volumes	AM PEAK 18 688	PM PEAK 25 714
EB Left-Thru EB Thru EB Right-Thru EB Right	0 1 0 0	0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 18 688 706	PM PEAK 25 714 739
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 1 0 0	0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	AM PEAK 18 688 706	PM PEAK 25 714 739
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 1 0 0 0	0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	AM PEAK 18 688 706 1,200	PM PEAK 25 714 739 1,200
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Thru	0 1 0 0 0	0 1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	AM PEAK 18 688 706 1,200	PM PEAK 25 714 739 1,200
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	0 1 0 0 0	0 1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC CMA Value	AM PEAK 18 688 706 1,200 0.588 0.588	PM PEAK 25 714 739 1,200 0.616 0.616

Future Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection: 10 Pacific Avenue and Windward Avenue

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Peak	PM Peak Hour Traffic Volumes			
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>		
NB Left	3	N/A		31	N/A	*		
NB Thru	942	481	*	762	415			
NB Right	17	N/A		36	N/A			
SB Left	22	N/A	*	68	N/A			
SB Thru	571	303		1152	621	*		
SB Right	13	N/A		21	N/A			
EB Left	1	N/A	*	17	N/A	*		
EB Thru	2	14		42	89			
EB Right	11	N/A		30	N/A			
WB Left	46	N/A		66	N/A			
WB Thru	28	188	*	42	190	*		
WB Right	114	N/A		82	N/A			

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	0	0	Number of Phases	2	2
SB Left-Thru	1	1	Phasing		
SB Thru	0	0			
SB Right-Thru	1	1	Capacity	1500	1500
SB Right	0	0			
ED 1 (1	0	•			======
EB Left	0	0	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	0	0	=======================================		=======
EB Thru	0	0		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	1	1	East/West Critical Volumes	189	207
EB Right	0	0	North/South Critical Volumes	503	652
			Sum of Critical Volumes	692	859
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.461	0.572
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.361	0.472
WB Right	0	0	Intersection Level of Service	Α	Α
			=======================================	========	=======

Existing Conditions

 Intersection:
 10
 Pacific Avenue and Windward Avenue

 Scenario:
 Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic \	/olumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	3	N/A		0	2	33	N/A	*
NB Thru	0	47	989	505	*	0	38	800	435	
NB Right	0	1	18	N/A		0	2	38	N/A	
SB Left	0	1	23	N/A	*	0	3	71	N/A	
SB Thru	0	29	600	318		0	58	1210	652	*
SB Right	0	1	14	N/A		0	1	22	N/A	
EB Left	0	0	1	N/A	*	0	1	18	N/A	*
EB Thru	0	0	2	15		0	2	44	93	
EB Right	0	1	12	N/A		0	2	32	N/A	
WB Left	0	2	48	N/A		0	3	69	N/A	
WB Thru	0	1	29	197	*	0	2	44	200	*
WB Right	0	6	120	N/A		0	4	86	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	1	1	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
-			Number of Phases	2	2
SB Left	0	0	Phasing		
SB Left-Thru	1	1			
SB Thru	0	0	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	=======	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	0	0	=======================================	========	=====
	U	U			
EB Thru	0	0		AM PEAK	<u>PM PEAK</u>
EB Thru EB Right-Thru	_		East/West Critical Volumes	AM PEAK 198	PM PEAK 217
	_		East/West Critical Volumes North/South Critical Volumes		
EB Right-Thru	0	0 1		198	217
EB Right-Thru	0	0 1	North/South Critical Volumes	198 528	217 684
EB Right-Thru EB Right	0 1 0	0 1 0	North/South Critical Volumes Sum of Critical Volumes	198 528 727	217 684 901
EB Right-Thru EB Right WB Left	0 1 0	0 1 0	North/South Critical Volumes Sum of Critical Volumes	198 528 727	217 684 901
EB Right-Thru EB Right WB Left WB Left-Thru	0 1 0 0 0	0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity	198 528 727 1,500	217 684 901 1,500
EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 1 0 0 0	0 1 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	198 528 727 1,500	217 684 901 1,500

Future Conditions (2009), Without Project

Intersection: 10 Pacific Avenue and Windward Avenue

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic \	/olumes			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	3	0	3	N/A		33	0	33	N/A	*
NB Thru	989	3	992	507	*	800	6	806	438	
NB Right	18	0	18	N/A		38	0	38	N/A	
SB Left	23	0	23	N/A	*	71	0	71	N/A	
SB Thru	600	5	605	321		1210	4	1214	654	*
SB Right	14	0	14	N/A		22	0	22	N/A	
EB Left	1	0	1	N/A	*	18	0	18	N/A	*
EB Thru	2	0	2	15		44	0	44	93	
EB Right	12	0	12	N/A		32	0	32	N/A	
WB Left	48	0	48	N/A		69	0	69	N/A	
WB Thru	29	0	29	197	*	44	0	44	200	*
WB Right	120	0	120	N/A		86	0	86	N/A	

	AM PEAK PM PEAK		Approach	RTOR Reductions		
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK	
NB Left	0	0	NorthBound	0	0	
NB Left-Thru	1	1	SouthBound	0	0	
NB Thru	0	0	EastBound	0	0	
NB Right-Thru	1	1	WestBound	0	0	
NB Right	0	0				
			Number of Phases	2	2	
SB Left	0	0	Phasing			
SB Left-Thru	1	1				
SB Thru	0	0	Capacity	1500	1500	
SB Right-Thru	1	1				
SB Right	0	0				
			=======================================	========	======	
EB Left	0	0	Critical Movement Analys	is: Results Sun	nmary	
EB Left-Thru	0	0	=======================================	========	======	
EB Thru	0	0		AM PEAK	PM PEAK	
EB Right-Thru	1	1	East/West Critical Volumes	198	217	
EB Right	0	0	North/South Critical Volumes	530	686	
			Sum of Critical Volumes	728	903	
WB Left	0	0	Capacity	1,500	1,500	
WB Left-Thru	0	0				
WB Thru	1	1	Intersection CMA Value	0.485	0.602	
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.385	0.502	
WB Right	0	0	Intersection Level of Service	Α	Α	
-			PROJECT IMPACT VALUE	0.001	0.001	

Future Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection: 11 Pacific Avenue and Venice Boulevard (N)

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Peak Hour Traffic Volumes				
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>		
NB Left	7	7		16	16	*		
NB Thru	842	842	*	611	611			
NB Right	0	N/A		0	N/A			
SB Left	0	N/A	*	0	N/A			
SB Thru	482	482		1160	1160	*		
SB Right	14	14		25	25			
EB Left	0	N/A		0	N/A			
EB Thru	0	N/A		0	N/A			
EB Right	0	N/A		0	N/A			
WB Left	122	122		166	166			
WB Thru	32	32		117	117			
WB Right	136	136	*	179	179	*		

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
SB Left	0	0	Number of Phases	2	2
SB Left-Thru	0	0	Phasing		
SB Thru	1	1			
SB Right-Thru	0	0	Capacity	1500	1500
SB Right	1	1			
EB Left	0	0	Critical Movement Analysi	:======= is: Results Su	====== mmarv
EB Left-Thru	0	0	=======================================	========	======
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	136	179
EB Right	0	0	North/South Critical Volumes	842	1,176
3			Sum of Critical Volumes	978	1,355
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.652	0.903
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.552	0.803
WB Right	1	1	Intersection Level of Service	A =======	D ======

Intersection: 11 Pacific Avenue and Venice Boulevard (N) Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic	<u>Volumes</u>	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	7	7		0	1	17	17	*
NB Thru	20	42	904	904	*	6	31	648	648	
NB Right	0	0	0	N/A		0	0	0	N/A	
SB Left	0	0	0	N/A	*	0	0	0	N/A	
SB Thru	10	24	516	516		23	58	1241	1241	*
SB Right	2	1	17	17		2	1	28	28	
EB Left	0	0	0	N/A		0	0	0	N/A	
EB Thru	0	0	0	N/A		0	0	0	N/A	
EB Right	0	0	0	N/A		0	0	0	N/A	
WB Left	0	6	128	128		0	8	174	174	
WB Thru	8	2	42	42		8	6	131	131	
WB Right	1	7	144	144	*	5	9	193	193	*

	*** 55***	D14 DE 416		DT00 D	
		PM PEAK	Approach	RTOR Re	
Movement	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	Phasing		
SB Left-Thru	0	0	-		
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0	•		
SB Right	1	1			
ŭ			=======================================	=======	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	0	0	=======================================	=======	=====
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	0	0	East/West Critical Volumes	144	193
EB Right	0	0	North/South Critical Volumes	904	1,258
ŭ			Sum of Critical Volumes	1,048	1,451
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0	, ,	•	•
WB Thru	1	1	Intersection CMA Value	0.699	0.967
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.599	0.867
WB Right	1	1	Intersection Level of Service	A	D
· · = · · · 9· · ·	•	-	=======================================		_

Future Conditions (2009), Without Project

Intersection: 11 Pacific Avenue and Venice Boulevard (N)

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic \	/olumes			PM Peak H	our Traffic Volu	<u>ımes</u>	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>
NB Left	7	0	7	7		17	0	17	17	*
NB Thru	904	3	907	907	*	648	6	654	654	
NB Right	0	0	0	N/A		0	0	0	N/A	
SB Left	0	0	0	N/A	*	0	0	0	N/A	
SB Thru	516	5	521	521		1241	4	1245	1245	*
SB Right	17	0	17	17		28	0	28	28	
EB Left	0	0	0	N/A		0	0	0	N/A	
EB Thru	0	0	0	N/A		0	0	0	N/A	
EB Right	0	0	0	N/A		0	0	0	N/A	
WB Left	128	0	128	128		174	0	174	174	
WB Thru	42	0	42	42		131	0	131	131	
WB Right	144	0	144	144	*	193	0	193	193	*

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	0	0	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	0	0	Phasing		
SB Left-Thru	0	0	-		
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	1	1			
			=======================================	========	
EB Left	0	0	Critical Movement Analysi	s: Results Sur	nmary
EB Left-Thru	_				======
LD Leit-IIIIu	0	0			
EB Thru	0	0 0		AM PEAK	PM PEAK
	_	-	East/West Critical Volumes	AM PEAK 144	PM PEAK 193
EB Thru	0	0	East/West Critical Volumes North/South Critical Volumes		
EB Thru EB Right-Thru	0	0		144	193
EB Thru EB Right-Thru	0	0	North/South Critical Volumes	144 907	193 1,262
EB Thru EB Right-Thru EB Right	0 0 0	0 0 0	North/South Critical Volumes Sum of Critical Volumes	144 907 1,051	193 1,262 1,455
EB Thru EB Right-Thru EB Right WB Left	0 0 0	0 0 0	North/South Critical Volumes Sum of Critical Volumes	144 907 1,051	193 1,262 1,455
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 0 1 0	0 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity	144 907 1,051 1,500	193 1,262 1,455 1,500
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 0 0 1 0	0 0 0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	144 907 1,051 1,500	193 1,262 1,455 1,500

Future Conditions (2009), With Project (Sunset/Main Access)

Intersection: Pacific Avenue and Venice Boulevard (S) 12

Scenario: **Existing Conditions**

	AM Peak	⟨ Hour Traffic \	/olumes	PM Peak Hour Traffic Volumes			
Movement	Counts	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	
NB Left	0	N/A		0	N/A	*	
NB Thru	785	969	*	519	734		
NB Right	184	N/A		215	N/A		
SB Left	147	147	*	238	238		
SB Thru	493	493		1068	1068	*	
SB Right	0	N/A		0	N/A		
EB Left	79	N/A		95	N/A		
EB Thru	76	138	*	187	178	*	
EB Right	120	N/A		73	N/A		
WB Left	0	N/A		0	N/A		
WB Thru	0	N/A		0	N/A		
WB Right	0	N/A		0	N/A		
	AM PEAK	PM PEAK		Approach	RTOR R	eductions	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	1	1	Number of Phases	2	2
SB Left-Thru	0	0	Phasing		
SB Thru	1	1			
SB Right-Thru	0	0	Capacity	1500	1500
SB Right	0	0			
			=======================================	========	======
EB Left	0	0	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	1	1	=======================================		======
EB Thru	0	0		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	1	1	East/West Critical Volumes	138	178
EB Right	0	0	North/South Critical Volumes	1,116	1,068
			Sum of Critical Volumes	1,254	1,246
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	0	0	Intersection CMA Value	0.836	0.830
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.736	0.730
WB Right	0	0	Intersection Level of Service	C	C

Intersection:12Pacific Avenue and Venice Boulevard (S)Scenario:Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic	Volumes	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	0	N/A		0	0	0	N/A	*
NB Thru	19	39	843	1036	*	2	26	547	773	
NB Right	0	9	193	N/A		0	11	226	N/A	
051.6	•	-	400	400	*		40	054	054	
SB Left	6	7	160	160	^	4	12	254	254	
SB Thru	2	25	520	520		18	53	1139	1139	*
SB Right	0	0	0	N/A		0	0	0	N/A	
EB Left	1	4	84	N/A		4	5	104	N/A	
EB Thru	7	4	87	148	*	18	9	214	197	*
EB Right	0	6	126	N/A		0	4	77	N/A	
WB Left	0	0	0	N/A		0	0	0	N/A	
WB Thru	0	0	0	N/A		0	0	0	N/A	
	-	_				•	•	-		
WB Right	0	0	0	N/A		0	0	0	N/A	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	Direction	AM PEAK	PM PEAK
NB Left	0	0	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
-			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0	-		
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	0	0			
			=======================================	========	=====
EB Left	0	0	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	1	1	=======================================	=======	=====
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	1	1	East/West Critical Volumes	148	197
EB Right	0	0	North/South Critical Volumes	1,197	1,139
			Sum of Critical Volumes	1,345	1,337
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	0	0	Intersection CMA Value	0.897	0.891
14/0 01 14 71	0	0	ATSAC/ATCS CMA Value	0.797	0.791
WB Right-Thru	U	U			
WB Right-Thru WB Right	0	0	Intersection Level of Service	С	С

Future Conditions (2009), Without Project

Intersection: 12 Pacific Avenue and Venice Boulevard (S)

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	Hour Traffic \	/olumes			PM Peak H	our Traffic Volu	mes	
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	0	0	N/A		0	0	0	N/A	*
NB Thru	843	3	846	1039	*	547	6	553	779	
NB Right	193	0	193	N/A		226	0	226	N/A	
SB Left	160	0	160	160	*	254	0	254	254	
SB Thru	520	5	525	525		1139	4	1143	1143	*
SB Right	0	0	0	N/A		0	0	0	N/A	
EB Left	84	0	84	N/A		104	0	104	NI/A	
					*				N/A	*
EB Thru	87	0	87	148	•	214	0	214	197	•
EB Right	126	0	126	N/A		77	0	77	N/A	
WB Left	0	0	0	N/A		0	0	0	N/A	
WB Thru	0	0	0	N/A		0	0	0	N/A	
WB Right	0	0	0	N/A		0	0	0	N/A	

		PM PEAK	Approach	RTOR Re	
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	<u>AM PEAK</u>	<u>PM PEAK</u>
NB Left	0	0	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	0	0	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0	-		
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	0	0			
SB Right	0	0			
· ·			=======================================	========	======
EB Left	0	0	Critical Movement Analysi	is: Results Sun	nmary
EB Left-Thru	1	1	=======================================	========	======
EB Thru	0	0		AM PEAK	PM PEAK
EB Right-Thru	1	1	East/West Critical Volumes	148	197
EB Right	0	0	North/South Critical Volumes	1,200	1,143
· ·			Sum of Critical Volumes	1,348	1,341
WB Left	0	0	Capacity	1,500	1,500
WB Left-Thru	0	0	. ,	•	
WB Thru	0	0	Intersection CMA Value	0.899	0.894
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.799	0.794
WB Right	0	0	Intersection Level of Service	С	С
3	-	-	PROJECT IMPACT VALUE	0.001	0.003

Future Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection: 13 Lincoln Boulevard and Rose Avenue

Scenario: Existing Conditions

	AM Peak	Hour Traffic	Volumes	PM Peak	Hour Traffic	Volumes
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>
NB Left	56	56		111	111	*
NB Thru	1832	925	*	1273	658	
NB Right	17	N/A		42	N/A	
SB Left	64	64	*	83	83	
SB Thru	1151	601		1627	872	*
SB Right	51	N/A		117	N/A	
EB Left	65	65	*	82	82	*
EB Thru	230	149		257	175	
EB Right	67	N/A		93	N/A	
WB Left	52	52		67	67	
WB Thru	272	272	*	229	229	*
WB Right	179	179		72	72	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
SB Left	1	1	Number of Phases	2	2
SB Left-Thru	0	0	Phasing		
SB Thru	1	1			
SB Right-Thru	1	1	Capacity	1500	1500
SB Right	0	0			
			=======================================	========	======
EB Left	1	1	Critical Movement Analysi	is: Results Su	mmary
EB Left-Thru	0	0	=======================================	========	======
EB Thru	1	1		<u>AM PEAK</u>	<u>PM PEAK</u>
EB Right-Thru	1	1	East/West Critical Volumes	337	311
EB Right	0	0	North/South Critical Volumes	989	983
			Sum of Critical Volumes	1,326	1,294
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.884	0.863
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.784	0.763
WB Right	1	1	Intersection Level of Service	С	С
			=======================================	========	=======

Existing Conditions

Intersection: 13 Lincoln Boulevard and Rose Avenue Scenario: Future Conditions (2009), Without Project

		AM Pe	ak Hour Traffic	Volumes			PM Pea	ak Hour Traffic \	Volumes	
<u>Movement</u>	Related	Growth	W/O Project	VPL	<u>Critictal</u>	Related	Growth	W/O Project	VPL	<u>Critictal</u>
NB Left	14	3	73	73		32	6	149	149	*
NB Thru	147	92	2071	1048	*	151	64	1488	773	
NB Right	8	1	26	N/A		15	2	59	N/A	
SB Left	5	3	72	72	*	5	4	92	92	
SB Thru	67	58	1276	667		81	81	1789	963	*
SB Right	5	3	59	N/A		14	6	137	N/A	
EB Left	10	3	78	78	*	8	4	94	94	*
EB Thru	10	12	252	169		8	13	278	201	
EB Right	17	3	87	N/A		27	5	125	N/A	
WB Left	5	3	60	60		18	3	88	88	
WB Thru	1	14	287	287	*	14	11	254	254	*
WB Right	2	9	190	190		6	4	82	82	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
<u>Movement</u>	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
_			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	========	=====
EB Left	1	1	Critical Movement Analysis:	Results Sumn	nary
EB Left-Thru	0	^	=======================================	========	=====
	U	0			
EB Thru	1	1		AM PEAK	<u>PM PEAK</u>
EB Thru EB Right-Thru	1 1	1 1	East/West Critical Volumes	AM PEAK 365	PM PEAK 349
	1 1 0	1 1 0	East/West Critical Volumes North/South Critical Volumes		
EB Right-Thru	1 1	1 1		365	349
EB Right-Thru	1 1	1 1	North/South Critical Volumes	365 1,120	349 1,112
EB Right-Thru EB Right	1 1	1 1	North/South Critical Volumes Sum of Critical Volumes	365 1,120 1,485	349 1,112 1,460
EB Right-Thru EB Right WB Left	1 1 0	1 0	North/South Critical Volumes Sum of Critical Volumes	365 1,120 1,485	349 1,112 1,460
EB Right-Thru EB Right WB Left WB Left-Thru	1 1 0 1 0	1 0	North/South Critical Volumes Sum of Critical Volumes Capacity	365 1,120 1,485 1,500	349 1,112 1,460 1,500
EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 1 0 1 0	1 1 0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	365 1,120 1,485 1,500	349 1,112 1,460 1,500

Future Conditions (2009), Without Project

Intersection: 13 Lincoln Boulevard and Rose Avenue

Scenario: Future Conditions (2009), With Project (Sunset/Main Access)

		AM Peak	≀ Hour Traffic \	/olumes			PM Peak H	our Traffic Volu	mes	
Movement	W/O Proj.	Project	W/ Project	VPL	<u>Critictal</u>	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	73	5	78	78		149	13	162	162	*
NB Thru	2071	0	2071	1048	*	1488	0	1488	773	
NB Right	26	0	26	N/A		59	0	59	N/A	
SB Left	72	0	72	72	*	92	0	92	92	
SB Thru	1276	0	1276	667		1789	0	1789	967	*
SB Right	59	-1	58	N/A		137	8	145	N/A	
SB RIGHT	39	-1	36	IN/A		137	O	145	IN/A	
EB Left	78	2	80	80	*	94	3	97	97	*
EB Thru	252	5	257	176		278	4	282	206	
EB Right	87	8	95	N/A		125	5	130	N/A	
WB Left	60	0	60	60		88	0	88	88	
WB Thru	287	3	290	290	*	254	6	260	260	*
		0				82				
WB Right	190	U	190	190		02	0	82	82	

	AM PEAK	PM PEAK	Approach	RTOR Re	ductions
Movement	<u>Lanes</u>	<u>Lanes</u>	<u>Direction</u>	AM PEAK	PM PEAK
NB Left	1	1	NorthBound	0	0
NB Left-Thru	0	0	SouthBound	0	0
NB Thru	1	1	EastBound	0	0
NB Right-Thru	1	1	WestBound	0	0
NB Right	0	0			
			Number of Phases	2	2
SB Left	1	1	Phasing		
SB Left-Thru	0	0			
SB Thru	1	1	Capacity	1500	1500
SB Right-Thru	1	1			
SB Right	0	0			
			=======================================	========	======
EB Left	1	1	Critical Movement Analys	is: Results Sun	nmary
EB Left-Thru	0	0	=======================================	========	======
EB Thru	1	1		AM PEAK	PM PEAK
EB Right-Thru	1	1	East/West Critical Volumes	370	358
EB Right	0	0	North/South Critical Volumes	1,120	1,129
			Sum of Critical Volumes	1,490	1,486
WB Left	1	1	Capacity	1,500	1,500
WB Left-Thru	0	0			
WB Thru	1	1	Intersection CMA Value	0.994	0.991
WB Right-Thru	0	0	ATSAC/ATCS CMA Value	0.894	0.891
WD Right Hind	•				
WB Right	1	1	Intersection Level of Service	D	D
•		1	Intersection Level of Service PROJECT IMPACT VALUE	D 0.004	D 0.018

Future Conditions (2009), With Project (Sunset/Main Access)

HCS2000[™] DETAILED REPORT Site Information

Analyst Jerry Overland
Agency or Co. OTC Inc.
Date Performed 4/28/2004

General Information

Time Period Saturday Peak Hour

Intersection Main Street & Ocean Park Blvd.

Area Type CBD or Similar
Jurisdiction City of Santa Monica

Analysis Year 2004 Project ID RAD Sunset

	- J														
Volume and Timing Input															
				EB			WE	3		NB			SB		
			LT	TH	RT	LT	TH	RT	LT_	TH	RT	LT	TH	RT	
Number of la	nes, N ₁		1	1	1	1	1	1	1	1	1	1	1	1	
Lane group			L	T	R	L	T	R	L	T	R	L	T	R	
Volume, V (v	ph)		39	214	54	134	281	100	49	554	144	68	565	66	
% Heavy veh	icles, %HV		0	0	0	0	0	0	0	0	0	0	0	0	
Peak-hour fac	ctor, PHF		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Pretimed (P)	or actuated (A))	Α	Α	A	Α	Α	Α	A	Α	Α	Α	Α	Α	
Start-up lost t	ime, I ₁		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Extension of	effective green	, e	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Arrival type, A	AT.		3	3	3	3	3	3	3	3	3	3	3	3	
Unit extension	n, UE		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Filtering/mete	ering, I		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Initial unmet	demand, Q _b		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Ped / Bike / F	RTOR volumes		0	0	0	0	0	0	0	0	0	0	0	0	
Lane width			12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	
Parking / Gra	de / Parking		N	0	N	N	0	N	N	0	N	N	0	N	
Parking mane	euvers, N _m														
Buses stoppii	ng, N _B		0	0	0	0	0	0	0	0	0	0	0	0	
Min. time for	pedestrians, G	strians, G _p 3.2		3.2	'		3.2	1.		3.2	·,		3.2	•	
Phasing	Phasing EW Perm 02)2	03	3	04		NS Perr	n	06		07	(08	
Timing	G = 17.3	G =	0.0	G =		G =		G = 34.7	G	=	G =	G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4	Υ:	=	Y =		Y =		
Duration of A	nalysis, T = 0.2	25							Су	cle Leng	th, C =	60.0			

Lane Group Capacity, Control Delay, and LOS Determination												
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v	43	238	60	149	312	111	54	616	160	76	628	73
Lane group capacity, c	201	493	419	257	493	419	305	989	841	314	989	841
v/c ratio, X	0.21	0.48	0.14	0.58	0.63	0.26	0.18	0.62	0.19	0.24	0.63	0.09
Total green ratio, g/C	0.29	0.29	0.29	0.29	0.29	0.29	0.58	0.58	0.58	0.58	0.58	0.58
Uniform delay, d ₁	16.2	17.7	15.8	18.2	18.6	16.5	5.9	8.3	6.0	6.2	8.4	5.6
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.11	0.11	0.17	0.21	0.11	0.11	0.21	0.11	0.11	0.22	0.11
Incremental delay, d ₂	0.5	0.7	0.2	3.3	2.6	0.3	0.3	1.2	0.1	0.4	1.4	0.0
Initial queue delay, d ₃												
Control delay	16.7	18.4	16.0	21.5	21.2	16.8	6.2	9.6	6.1	6.6	9.8	5.7
Lane group LOS	В	В	В	С	С	В	Α	Α	Α	Α	Α	Α
Approach delay	1	7.8	<u>'</u>		20.4			8.7			9.1	
Approach LOS		В			С			Α			Α	
Intersection delay	1	2.7		X _C	= 0.63		Interse	ction LOS	3		В	

HCS2000[™] DETAILED REPORT General Information Site Information Analyst Jerry Overland Intersection Main Street & Ocean Park Blvd. OTĆ Inc. Agency or Co. Area Type CBD or Similar Date Performed 4/28/2004 Jurisdiction City of Santa Monica Time Period Saturday Peak Hour Analysis Year 2009 without project Project ID RAD Sunset

Volume and	Timing Input													
				EB			WB		<u> </u>	NB	_		SB	
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of lar	nes, N ₁		1	1	1	1	1	1	1	1	1	1	1	1
Lane group			L	T	R	L	T	R	L	T	R	L	T	R
Volume, V (v	oh)		41	225	57	145	295	115	51	617	154	80	625	69
% Heavy veh	icles, %HV		0	0	0	0	0	0	0	0	0	0	0	0
Peak-hour fac	ctor, PHF		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P)	or actuated (A))	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Start-up lost t	ime, I ₁		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Extension of	effective green	, e	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Arrival type, A	AT .		3	3	3	3	3	3	3	3	3	3	3	3
Unit extension	n, UE		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Filtering/mete	ring, I		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Initial unmet of	demand, Q _b		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ped / Bike / F	TOR volumes		0	0	0	0	0	0	0	0	0	0	0	0
Lane width			12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Parking / Gra	de / Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking mane	euvers, N _m													
Buses stoppii	ng, N _B		0	0	0	0	0	0	0	0	0	0	0	0
Min. time for	oedestrians, G	p		3.2	•		3.2	',		3.2	,		3.2	·
Phasing	EW Perm	()2	03	3	04		NS Perr	n	06		07	()8
	G = 17.3	G = (0.0	G =		G =		G = 34.7	G:	=	G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4	Υ =	=	Y =		Y =	
Duration of A	nalysis, T = <i>0.2</i>	25			l <u>.</u>		Į,		Су	cle Leng	 th, C =	60.0		

Lane Group Capacity, Con	trol Dela	ay, and	LOS Det	terminat	ion							
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	<u> </u> TH	RT	LT	TH	RT
Adjusted flow rate, v	46	250	63	161	328	128	57	686	171	89	694	77
Lane group capacity, c	189	493	419	248	493	419	261	989	841	266	989	841
v/c ratio, X	0.24	0.51	0.15	0.65	0.67	0.31	0.22	0.69	0.20	0.33	0.70	0.09
Total green ratio, g/C	0.29	0.29	0.29	0.29	0.29	0.29	0.58	0.58	0.58	0.58	0.58	0.58
Uniform delay, d ₁	16.3	17.8	15.9	18.7	18.8	16.7	6.1	8.9	6.0	6.6	9.0	5.6
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.12	0.11	0.23	0.24	0.11	0.11	0.26	0.11	0.11	0.27	0.11
Incremental delay, d ₂	0.7	0.9	0.2	5.9	3.4	0.4	0.4	2.1	0.1	0.7	2.3	0.0
Initial queue delay, d ₃												
Control delay	17.0	18.7	16.0	24.6	22.2	17.1	6.5	11.0	6.2	7.4	11.2	5.7
Lane group LOS	В	В	В	С	С	В	Α	В	Α	Α	В	Α
Approach delay	1.	8.0			21.7			9.8			10.3	
Approach LOS		В			С			Α			В	
Intersection delay	1.	3.7		X _C	= 0.69		Interse	ction LOS	3		В	

HCS2000[™] DETAILED REPORT General Information Site Information Analyst Jerry Overland Intersection Main Street & Ocean Park Blvd. OTĆ Inc. Agency or Co. Area Type CBD or Similar Date Performed 4/28/2004 Jurisdiction City of Santa Monica Time Period Saturday Peak Hour Analysis Year 2009 with project

Project ID

RAD Sunset

Volume and	Timing Input													
				EB			WB	}	<u> </u>	NB	_		SB	
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of lar	nes, N ₁		1	1	1	1	1	1	1	1	1	1	1	1
Lane group			L	T	R	L	T	R	L	T	R	L	T	R
Volume, V (v	oh)		41	231	57	156	295	115	51	625	161	80	636	69
% Heavy veh	icles, %HV		0	0	0	0	0	0	0	0	0	0	0	0
Peak-hour fac	ctor, PHF		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P)	or actuated (A))	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Start-up lost t	ime, I ₁		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Extension of	effective green	, e	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Arrival type, A	AT .		3	3	3	3	3	3	3	3	3	3	3	3
Unit extension	n, UE		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Filtering/mete	ering, I		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Initial unmet of	demand, Q _b		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ped / Bike / F	RTOR volumes		0	0	0	0	0	0	0	0	0	0	0	0
Lane width			12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Parking / Gra	de / Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking mane	euvers, N _m													
Buses stoppii	ng, N _B		0	0	0	0	0	0	0	0	0	0	0	0
Min. time for	pedestrians, G	p		3.2	•		3.2	<u> </u>		3.2	,		3.2	·
Phasing	EW Perm	()2	03	3	04		NS Perr	n	06		07	()8
	G = 17.6	G = (0.0	G =		G =		G = 34.4	G:	=	G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4	Υ =	=	Y =		Y =	
Duration of A	nalysis, T = <i>0.2</i>	25			l.		! <u>.</u>		Су	cle Leng	 th, C =	60.0		

Lane Group Capacity, Con	trol Dela	ay, and	LOS De	terminat	ion							
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	<u> </u> TH	RT	LT	TH	RT
Adjusted flow rate, v	46	257	63	173	328	128	57	694	179	89	707	77
Lane group capacity, c	195	502	427	249	502	427	247	980	834	255	980	834
v/c ratio, X	0.24	0.51	0.15	0.69	0.65	0.30	0.23	0.71	0.21	0.35	0.72	0.09
Total green ratio, g/C	0.29	0.29	0.29	0.29	0.29	0.29	0.57	0.57	0.57	0.57	0.57	0.57
Uniform delay, d ₁	16.1	17.6	15.7	18.8	18.5	16.4	6.3	9.2	6.2	6.8	9.3	5.8
Progression factor, PF	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Delay calibration, k	0.11	0.12	0.11	0.26	0.23	0.11	0.11	0.27	0.11	0.11	0.28	0.11
Incremental delay, d ₂	0.6	0.9	0.2	8.1	3.0	0.4	0.5	2.4	0.1	0.8	2.6	0.0
Initial queue delay, d ₃												
Control delay	16.7	18.5	15.8	27.0	21.6	16.8	6.8	11.6	6.4	7.7	11.9	5.8
Lane group LOS	В	В	В	С	С	В	Α	В	Α	Α	В	Α
Approach delay	1	7.8			22.1			10.3			11.0	
Approach LOS		В			С			В			В	
Intersection delay	1.	4.1		X _C	= 0.71		Interse	ction LOS	3		В	

Project: RAD Sunset

Intersection:2Main Street and Rose AvenueScenario:Existing Conditions (Weekend)

	MID-DAY F	eak Hour Tramic	voiumes
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	Critictal
NB Left	48	48	*
NB Thru	580	316	
NB Right	51	N/A	
SB Left	119	119	
SB Thru	623	663	*
SB Right	40	N/A	
EB Left	18	N/A	*
EB Thru	167	214	
EB Right	29	N/A	
WB Left	42	N/A	
WB Thru	185	308	*
WB Right	81	N/A	

Movement NB Left NB Left-Thru NB Thru NB Right-Thru NB Right	MID-DAY PEAK <u>Lanes</u> 1 0 1 1 0	Approach <u>Direction</u> NorthBound SouthBound EastBound WestBound	RTOR Reductions MID-DAY PEAK 0 0 0 0
SB Left SB Left-Thru SB Thru	1 0 1	Number of Phases Phasing	2
SB Right-Thru SB Right	0	Capacity	1500
EB Left	0	Critical Movement Analy	sis: Results Summary
EB Left-Thru	1	=======================================	
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	326
EB Right	0	North/South Critical Volumes Sum of Critical Volumes	711 1,037
WB Left	0	Capacity	1,500
WB Left-Thru	1		
WB Thru	0	Intersection CMA Value	0.691
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.591
WB Right	0	Intersection Level of Service	A =======

Intersection: 2 Main Street and Rose Avenue

Scenario: Future Weekend Conditions (2009), Without Project

<u>Movement</u>	Related	Growth	W/O Project	VPL	Critictal
NB Left	2	2	52	52	*
NB Thru	27	29	636	346	
NB Right	3	3	57	N/A	
SB Left	18	6	143	143	
SB Thru	24	31	678	720	*
SB Right	0	2	42	N/A	
EB Left	0	1	19	N/A	*
EB Thru	2	8	177	231	
EB Right	4	1	34	N/A	
WB Left	0	2	44	N/A	
WB Thru	9	9	203	349	*
WB Right	17	4	102	N/A	

МІГ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0	-	
SB Thru	1	Capacity	1500
SB Right-Thru	0		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analys	is: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	368
EB Right	0	North/South Critical Volumes	773
		Sum of Critical Volumes	1,141
WB Left	0	Capacity	1,500
WB Left-Thru	1		
WB Thru	0	Intersection CMA Value	0.761
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.661
WB Right	0	Intersection Level of Service	В
		=======================================	

Future Weekend Conditions (2009), Without Project

Intersection: 2 Main Street and Rose Avenue

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

<u></u>	יו יו עם פו	oun riour rrun	io voiaiii	<u> </u>
W/O Proj.	Project	W/ Project	<u>VPL</u>	Critictal
52	0	52	52	*
636	15	651	360	
57	13	70	N/A	
143	0	143	143	
678	23	701	743	*
42	0	42	N/A	
19	0	19	N/A	*
177	1	178	241	
34	9	43	N/A	
44	10	63	Ν/Δ	
203	0	203	368	*
102	0	102	N/A	
	W/O Proj. 52 636 57 143 678 42 19 177 34 44 203	W/O Proj. Project 52 0 636 15 57 13 143 0 678 23 42 0 19 0 177 1 34 9 44 19 203 0	W/O Proj. Project W/ Project 52 0 52 636 15 651 57 13 70 143 0 143 678 23 701 42 0 42 19 0 19 177 1 178 34 9 43 44 19 63 203 0 203	52 0 52 52 636 15 651 360 57 13 70 N/A 143 0 143 143 678 23 701 743 42 0 42 N/A 19 0 19 N/A 177 1 178 241 34 9 43 N/A 44 19 63 N/A 203 0 203 368

МІ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0		
SB Thru	1	Capacity	1500
SB Right-Thru	0		
SB Right	0		
_			
EB Left	0	Critical Movement Analy	sis: Results Summary
EB Left EB Left-Thru	0 1	Critical Movement Analy	 /sis: Results Summary
		Critical Movement Analy	/sis: Results Summary MID-DAY PEAK
EB Left-Thru	1	Critical Movement Analy	=======================================
EB Left-Thru EB Thru	1 0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	1 0 0	East/West Critical Volumes	MID-DAY PEAK 387
EB Left-Thru EB Thru EB Right-Thru	1 0 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 387 796
EB Left-Thru EB Thru EB Right-Thru EB Right	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 387 796 1,183
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 387 796 1,183
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 387 796 1,183 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Left-Thru WB Thru	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 387 796 1,183 1,500

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection:3Main Street and Sunset AvenueScenario:Existing Conditions (Weekend)

	MID-DA I	Peak Hour	Trainic volumes
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>
NB Left	13	N/A	
NB Thru	640	345	*
NB Right	36	N/A	
SB Left	25	N/A	*
SB Thru	564	303	
SB Right	16	N/A	
EB Left	0	N/A	*
EB Thru	0	0	
EB Right	0	N/A	
WB Left	23	N/A	
WB Thru	5	79	*
WB Right	51	N/A	

Movement NB Left NB Left-Thru	MID-DAY PEAK Lanes 0 1	Approach <u>Direction</u> NorthBound SouthBound	RTOR Reductions MID-DAY PEAK 0 0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
SB Left SB Left-Thru SB Thru	0 1 0	Number of Phases Phasing	2
SB Right-Thru	1	Capacity	1200
SB Right	0	Capacity	
EB Left	0	======================================	vsis: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	79
EB Right	0	North/South Critical Volumes	370
		Sum of Critical Volumes	449
WB Left	0	Capacity	1,200
WB Left-Thru	1		
		Intersection CMA Value	0.374
WB Thru	0	intersection CiviA value	0.574
WB Thru WB Right-Thru	<u>.</u>	ATSAC CMA Value	0.374
	<u>.</u>		

Existing Conditions (Weekend)

Intersection: 3 Main Street and Sunset Avenue

Scenario: Future Weekend Conditions (2009), Without Project

Movement	Related	Growth	W/O Project	<u>VPL</u>	Critictal
NB Left	0	1	14	N/A	
NB Thru	29	32	701	376	*
NB Right	0	2	38	N/A	
SB Left	5	1	31	N/A	*
SB Thru	21	28	613	331	
SB Right	0	1	17	N/A	
EB Left	0	0	0	N/A	*
EB Thru	0	0	0	0	
EB Right	0	0	0	N/A	
WB Left	0	1	24	N/A	
WB Thru	0	0	5	86	*
WB Right	3	3	57	N/A	

MILE	D-DAY PEAK	Annroach	RTOR Reductions
Movement	Lanes	Approach Direction	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
	1	WestBound	0
NB Right-Thru	· ·	Westbound	U
NB Right	0	Newskar of Dharas	0
001.6	•	Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	1		
SB Thru	0	Capacity	1200
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analys	is: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	86
EB Right	0	North/South Critical Volumes	407
ū		Sum of Critical Volumes	493
WB Left	0	Capacity	1,200
WB Left-Thru	1	, ,	•
WB Thru	0	Intersection CMA Value	0.411
WB Right-Thru	0	ATSAC CMA Value	0.411
WB Right	0	Intersection Level of Service	A
	· ·	=======================================	

Future Weekend Conditions (2009), Without Project

Intersection: 3 Main Street and Sunset Avenue

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	14	20	34	N/A	
NB Thru	701	0	701	386	*
NB Right	38	0	38	N/A	
SB Left	31	0	31	N/A	*
SB Thru	613	15	628	356	
SB Right	17	36	53	N/A	
EB Left	0	28	28	28	*
EB Thru	0	0	0	15	
EB Right	0	15	15	N/A	
WB Left	24	6	30	N/A	
WB Thru	5	0	5	92	*
WB Right	57	0	57	N/A	

МІС	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	1		
SB Thru	0	Capacity	1200
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	1	======================================	sis: Results Summary
EB Left EB Left-Thru	1 0	Critical Movement Analy	sis: Results Summary
	•	Critical Movement Analy	/sis: Results Summary MID-DAY PEAK
EB Left-Thru	0	Critical Movement Analy ====================================	=======================================
EB Left-Thru EB Thru	0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	0 0 1	East/West Critical Volumes	MID-DAY PEAK 120
EB Left-Thru EB Thru EB Right-Thru	0 0 1	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 120 417
EB Left-Thru EB Thru EB Right-Thru EB Right	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 120 417 537
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 120 417 537
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 120 417 537 1,200
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 120 417 537 1,200

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection:4Main Street and Thorton PlaceScenario:Existing Conditions (Weekend)

	MID-DAY	Peak Hour Traffic	volumes
<u>Movement</u>	Counts	<u>VPL</u>	Critictal
NB Left	6	N/A	
NB Thru	685	346	*
NB Right	0	N/A	
SB Left	0	N/A	*
SB Thru	655	329	
SB Right	2	N/A	
EB Left	2	N/A	
EB Thru	0	13	*
EB Right	11	N/A	
WB Left	0	N/A	
WB Thru	0	N/A	
WB Right	0	N/A	

	MID-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
SB Left	0	Number of Phases	2
SB Left-Thru	1	Phasing	
SB Thru	0	-	
SB Right-Thru	1	Capacity	1200
SB Right	0		
EB Left	0	Critical Movement Analy	sis: Results Summary
EB Left EB Left-Thru	0 1	Critical Movement Analy	sis: Results Summary
		Critical Movement Analy	sis: Results Summary ====================================
EB Left-Thru EB Thru	1	East/West Critical Volumes	=======================================
EB Left-Thru EB Thru EB Right-Thru	1 0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru	1 0 0	East/West Critical Volumes	MID-DAY PEAK 13
EB Left-Thru EB Thru EB Right-Thru	1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 13 346
EB Left-Thru EB Thru EB Right-Thru EB Right	1 0 0 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 13 346 359
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 13 346 359
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 13 346 359 1,200
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 13 346 359 1,200 0.299

Intersection: 4 Main Street and Thorton Place

Scenario: Future Weekend Conditions (2009), Without Project

Movement	Related	Growth	W/O Project	VPL	Critictal
NB Left	0	0	6	N/A	
NB Thru	37	34	756	381	*
NB Right	0	0	0	N/A	
SB Left	0	0	0	N/A	*
SB Thru	32	33	720	361	
SB Right	0	0	2	N/A	
EB Left	0	0	2	N/A	
EB Thru	0	0	0	14	*
EB Right	0	1	12	N/A	
WB Left	0	0	0	N/A	
WB Thru	0	0	0	N/A	
WB Right	0	0	0	N/A	

-			
MII	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	1		
SB Thru	0	Capacity	1200
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analys	is: Results Summary
EB Left-Thru	1	=======================================	
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	14
EB Right	0	North/South Critical Volumes	381
		Sum of Critical Volumes	395
WB Left	0	Capacity	1,200
WB Left-Thru	0		
M/D There	0	Intersection CMA Value	0.329
WB Thru	•		
WB Right-Thru	0	ATSAC CMA Value	0.329
	0	ATSAC CMA Value Intersection Level of Service	0.329 A

Future Weekend Conditions (2009), Without Project

Intersection: 4 Main Street and Thorton Place

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	<u>VPL</u>	Critictal
NB Left	6	0	6	N/A	
NB Thru	756	20	776	391	*
NB Right	0	0	0	N/A	
SB Left	0	0	0	N/A	
SB Thru	720	37	757	379	
SB Right	2	0	2	N/A	
EB Left	2	0	2	N/A	
EB Thru	0	0	0	14	*
EB Right	12	0	12	N/A	
WB Left	0	0	0	N/A	
WB Thru	0	0	0	N/A	
WB Right	0	0	0	N/A	

Ü			
MII	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	1		
SB Thru	0	Capacity	1200
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analy	ysis: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	14
EB Right	0	North/South Critical Volumes	391
		Sum of Critical Volumes	405
WB Left	0	Capacity	1,200
WB Left-Thru	0		
WB Thru	0	Intersection CMA Value	0.337
WB Right-Thru	0	ATSAC CMA Value	0.337
WB Right	0	Intersection Level of Service	Α
		PROJECT IMPACT VALUE	0.008

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

Project: RAD Sunset

Intersection: 5 Main Street and Abbot Kinney Boulevard

Scenario: Existing Conditions (Weekend)

MID-DAY	Peak Hour	Traffic	Volumes
---------	-----------	----------------	----------------

	MID-DAI FE	ak Houl Hai	iic voiuiiles
Movement	<u>Counts</u>	<u>VPL</u>	<u>Critictal</u>
NB Left	23	23	
NB Thru	315	173	*
NB Right	31	N/A	
SB Left	321	321	*
SB Thru	360	188	
SB Right	16	N/A	
EB Left	31	N/A	*
EB Thru	120	173	
EB Right	22	N/A	
WD Loff	40	NI/A	
WB Left	42	N/A	
WB Thru	120	120	
WB Right	385	385	*

Movement	MID-DAY PEAK Lanes	Approach Direction	RTOR Reductions MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
SB Left	1	Number of Phases	2
SB Left-Thru	0	Phasing	
SB Thru	1		
SB Right-Thru	1	Capacity	1500
SB Right	0		
EB Left	0	Critical Movement Analy	ysis: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	416
EB Right	0	North/South Critical Volumes	494
		Sum of Critical Volumes	910
WB Left	0	Capacity	1,500
WB Left-Thru	1	•	
WB Thru	0	Intersection CMA Value	0.607
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.507
WB Right	1	Intersection Level of Service	A

Intersection: 5 Main Street and Abbot Kinney Boulevard

Scenario: Future Weekend Conditions (2009), Without Project

MID-DAY Peak Hour Traffic Volumes

		<u></u>	i oun iloui ilu	ino roian	
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	<u>Critictal</u>
NB Left	0	1	24	24	
NB Thru	7	16	338	187	*
NB Right	4	2	37	N/A	
SB Left	24	16	361	361	*
SB Thru	7	18	385	201	
SB Right	0	1	17	N/A	
EB Left	0	2	33	N/A	*
EB Thru	12	6	138	194	
EB Right	0	1	23	N/A	
WB Left	4	2	48	N/A	
WB Thru	8	6	134	134	
WB Right	24	19	428	428	*

MII	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0		
SB Thru	1	Capacity	1500
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analys	is: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	461
EB Right	0	North/South Critical Volumes	548
		Sum of Critical Volumes	1,009
WB Left	0	Capacity	1,500
WB Left-Thru	1		
WB Thru	0	Intersection CMA Value	0.673
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.573
WB Right	1	Intersection Level of Service	Α
		=======================================	=======================================

Future Weekend Conditions (2009), Without Project

Intersection: 5 Main Street and Abbot Kinney Boulevard

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

	<u></u>		oun iloui iluii	io voiaiii	<u></u>
<u>Movement</u>	W/O Proj.	Project	W/ Project	<u>VPL</u>	<u>Critictal</u>
NB Left	24	0	24	24	
NB Thru	338	0	338	187	*
NB Right	37	0	37	N/A	
SB Left	361	23	384	384	*
SB Thru	385	0	385	207	
SB Right	17	13	30	N/A	
EB Left	33	3	36	N/A	*
EB Thru	138	0	138	197	
EB Right	23	0	23	N/A	
WB Left	48	0	48	N/A	
WB Thru	134	0	134	134	
WB Right	428	17	445	445	*

МІС	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0		
SB Thru	1	Capacity	1500
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analy	sis: Results Summary
EB Left EB Left-Thru	0 1	Critical Movement Analy	•
		-	•
EB Left-Thru	1	-	=======================================
EB Left-Thru EB Thru	1		MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	1 0 0	East/West Critical Volumes	MID-DAY PEAK 481
EB Left-Thru EB Thru EB Right-Thru	1 0 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 481 571
EB Left-Thru EB Thru EB Right-Thru EB Right	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 481 571 1,052
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 481 571 1,052
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 481 571 1,052 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 481 571 1,052 1,500 0.701
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru WB Right-Thru	1 0 0 0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value ATSAC/ATCS CMA Value	MID-DAY PEAK 481 571 1,052 1,500 0.701 0.601

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 6 Venice Boulevard and Abbot Kinney Boulevard

Scenario: Existing Conditions (Weekend)

MID-DAY Peak Hour Traffic Volumes

Movement	Counts	VPL	Critictal
NB Left	208	208	*
NB Thru	367	420	
NB Right	53	N/A	
SB Left	114	114	
SB Thru	323	418	*
SB Right	95	N/A	
EB Left	233	233	*
EB Thru	881	441	
EB Right	211	211	
WB Left	67	67	
WB Thru	709	355	*
WB Right	60	60	
9			

===== nmary
:======
===

 Intersection:
 6
 Venice Boulevard and Abbot Kinney Boulevard

 Scenario:
 Future Weekend Conditions (2009), Without Project

		MID-DAY	Peak Hour Tra	ffic Volur	nes
<u>Movement</u>	Related	Growth	W/O Project	<u>VPL</u>	Critictal
NB Left	0	10	218	218	*
NB Thru	14	18	399	455	
NB Right	0	3	56	N/A	
SB Left	6	6	126	126	
SB Thru	20	16	359	461	*
SB Right	2	5	102	N/A	
EB Left	0	12	245	245	*
EB Thru	17	44	942	471	
EB Right	0	11	222	222	
-					
WB Left	0	3	70	70	
WB Thru	29	35	773	387	*

3

77

77

WB Right

14

	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0	· ·	
SB Thru	1	Capacity	1500
SB Right-Thru	0	, ,	
SB Right	0		
· ··g···		=======================================	===============
EB Left	1	Critical Movement Analysi	is: Results Summary
EB Left-Thru	0	=======================================	=======================================
EB Thru	2		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	631
EB Right	1	North/South Critical Volumes	679
Ü		Sum of Critical Volumes	1,311
WB Left	1	Capacity	1,500
WB Left-Thru	0		1,222
WB Thru	2	Intersection CMA Value	0.874
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.774
WB Right	1	Intersection Level of Service	C
TTD Tagnt	•	=======================================	:=========

Future Weekend Conditions (2009), Without Project

Intersection: 6 Venice Boulevard and Abbot Kinney Boulevard

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	218	0	218	218	*
NB Thru	399	8	407	463	
NB Right	56	0	56	N/A	
SB Left	126	10	136	136	
SB Thru	359	5	364	466	*
SB Right	102	0	102	N/A	
EB Left	245	0	245	245	*
EB Thru	942	0	942	471	
EB Right	222	0	222	222	
WB Left	70	0	70	70	
WB Thru	773	0	773	387	*
WB Right	77	15	92	92	

MID-DAY PEAK		Approach	RTOR Reductions		
Movement	Lanes	Direction	MID-DAY PEAK		
NB Left	1	NorthBound	0		
NB Left-Thru	0	SouthBound	0		
NB Thru	0	EastBound	0		
NB Right-Thru	1	WestBound	0		
NB Right	0				
_		Number of Phases	2		
SB Left	1	Phasing			
SB Left-Thru	0				
SB Thru	1	Capacity	1500		
SB Right-Thru	0				
SB Right	0				
			=======================================		
EB Left	1	Critical Movement Analy	sis: Results Summary		
EB Left EB Left-Thru	1 0	Critical Movement Analy	/sis: Results Summary		
	•	Critical Movement Analy	rsis: Results Summary MID-DAY PEAK		
EB Left-Thru	0	Critical Movement Analy	=======================================		
EB Left-Thru EB Thru	0	=======================================	MID-DAY PEAK		
EB Left-Thru EB Thru EB Right-Thru	0 2 0	East/West Critical Volumes	MID-DAY PEAK 631		
EB Left-Thru EB Thru EB Right-Thru	0 2 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 631 684		
EB Left-Thru EB Thru EB Right-Thru EB Right	0 2 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 631 684 1,316		
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 2 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 631 684 1,316		
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 2 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 631 684 1,316 1,500		
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Left-Thru WB Thru	0 2 0 1 1 0 2	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 631 684 1,316 1,500		

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

HCS2000[™] DETAILED REPORT

General Information

Analyst

Jerry Overland

Agency or Co. OTC Inc.
Date Performed 4/28/2004

Time Period Saturday Peak Hour

Site Information

Intersection Neilson Way & Ocean Park

Blvd.

Area Type CBD or Similar
Jurisdiction City of Santa Monica

Analysis Year 2004 Project ID RAD Sunset

Volume and Timing Input															
				EB			WE				NB		<u> </u>	SB	
			LT	TH	RT	LT_	TH	R	Т	LT	TH	RT	LT	TH	RT
Number of lanes, N ₁		0	1	0	1	1	0)	1	2	0	1	2	0	
Lane group				LTR		L	TR			L	TR		L	TR	
Volume, V (vp	oh)		18	92	16	135	147	70	6	34	919	99	103	956	30
% Heavy veh	icles, %HV		0	0	0	0	0	0)	0	0	0	0	0	0
Peak-hour fac	ctor, PHF		0.90	0.90	0.90	0.90	0.90	0.9	90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P)	or actuated (A)		Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α
Start-up lost t	ime, I ₁			2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Extension of e	effective green	, e		2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Arrival type, A	AT .			3		3	3			3	3		3	3	
Unit extension	n, UE			3.0		3.0	3.0			3.0	3.0		3.0	3.0	
Filtering/mete	ring, I			1.000		1.000	1.000)		1.000	1.000		1.000	1.000	
Initial unmet of	demand, Q _b			0.0		0.0	0.0			0.0	0.0		0.0	0.0	
Ped / Bike / R	TOR volumes		0	0	0	0	0	0)	0	0	0	0	0	0
Lane width				12.0		12.0	12.0			12.0	12.0		12.0	12.0	
Parking / Gra	de / Parking		N	0	N	N	0		ı	N	0	N	N	0	N
Parking mane	euvers, N _m														
Buses stoppir	ng, N _B			0		0	0			0	0		0	0	
Min. time for p	oedestrians, G)		3.2	1,		3.2				3.2	,		3.2	'
Phasing	EW Perm	0	2	03	;	04	1	NS F	Perm	i [06		07	C)8
Timeline	G = 12.9	G = 0	0.0	G =		G =		G = 3	9.1	G =	:	G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4		Y =		Y =		Y =	
Duration of A	nalysis, T = <i>0.2</i>	25					<u>'</u>			Сус	le Leng	ngth, C = 60.0			

Lane Group Capacity, Contr	ol Dela	y, and L	OS Dete	erminati	on							
		EB			WB		NB			SB		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v		140		150	247		38	1131		114	1095	
Lane group capacity, c		272		243	349		247	2087		235	2107	
v/c ratio, X		0.51		0.62	0.71		0.15	0.54		0.49	0.52	
Total green ratio, g/C		0.21		0.21	0.21		0.65	0.65		0.65	0.65	
Uniform delay, d ₁		20.8		21.3	21.8		4.0	5.6		5.3	5.5	
Progression factor, PF		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay calibration, k		0.12		0.20	0.27		0.11	0.14		0.11	0.13	
Incremental delay, d ₂		1.7		4.7	6.5		0.3	0.3		1.6	0.2	
Initial queue delay, d ₃												
Control delay		22.5		26.0	28.3		4.3	5.9		6.9	5.7	
Lane group LOS		С		С	С		Α	Α		Α	Α	
Approach delay	2	2.5	•		27. <i>4</i>	•		5.9			5.8	
Approach LOS		С			С			Α			Α	
Intersection delay	Ş	9.6		X _C	= 0.58		Interse	ction LOS	,	А		
	-						-					

HCS2000[™] DETAILED REPORT

General Information

Analyst

Jerry Overland

Agency or Co. OTC Inc.
Date Performed 4/28/2004

Time Period Saturday Peak Hour

Site Information

Intersection Neilson Way & Ocean Park

Blvd.

Area Type CBD or Similar
Jurisdiction City of Santa Monica
Analysis Year 2009 without project

Project ID RAD Sunset

Volume and	Volume and Timing Input													
				EB		WB NB				SB				
			LT	TH	RT	LT_	TH	RT	LT	TH	RT	LT	TH	RT
Number of lar	nes, N ₁		0	1	0	1	1	0	1	2	0	1	2	0
Lane group				LTR		L	TR		L	TR		L	TR	
Volume, V (v	oh)		19	97	17	142	154	80	36	983	104	108	1015	32
% Heavy veh	icles, %HV		0	0	0	0	0	0	0	0	0	0	0	0
Peak-hour fac	ctor, PHF		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P)	or actuated (A))	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Start-up lost t	ime, I ₁			2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Extension of	effective green	, e		2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Arrival type, A	AT .			3		3	3		3	3		3	3	
Unit extension	n, UE			3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Filtering/mete	ring, I			1.000		1.000	1.000)	1.000	1.000		1.000	1.000	
Initial unmet of	demand, Q _b			0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Ped / Bike / R	TOR volumes		0	0	0	0	0	0	0	0	0	0	0	0
Lane width				12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Parking / Gra	de / Parking		N	0	Ν	N	0	N	N	0	N	N	0	N
Parking mane	euvers, N _m													
Buses stopping	ng, N _B			0		0	0		0	0		0	0	
Min. time for p	oedestrians, G	p		3.2	1,		3.2	<u>'</u>		3.2	1		3.2	J
Phasing	EW Perm	0	2	03		04		NS Per	m	06		07	()8
Time in a	G = 13.3	G = 0	0.0	G =		G =		G = 38.7	' G	=	G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y = 4	Υ	=	Y =		Y =	
Duration of A	nalysis, T = <i>0.2</i>	 ?5			·				Cy	cle Leng	e Length, C = 60.0			

Duration of Analysis, 1 = 0.25			Gycie Length, C = 60.0									
Lane Group Capacity, Con	trol Delay	, and L	OS Dete	erminati	on							
		EB	3		WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Adjusted flow rate, v		148		158	260		40	1208		120	1164	
Lane group capacity, c		278		245	360		220	2065		206	2086	
v/c ratio, X		0.53		0.64	0.72		0.18	0.58		0.58	0.56	
Total green ratio, g/C		0.22		0.22	0.22		0.65	0.65		0.65	0.65	
Uniform delay, d ₁		20.6		21.2	21.6		4.3	6.1		6.1	5.9	
Progression factor, PF		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay calibration, k		0.14		0.22	0.28		0.11	0.18		0.17	0.16	
Incremental delay, d ₂		2.0		5.7	7.0		0.4	0.4		4.2	0.3	
Initial queue delay, d ₃												
Control delay		22.6		27.0	28.6		4.7	6.5		10.2	6.2	
Lane group LOS		С		С	С		Α	Α		В	Α	
Approach delay	2.	2.6	,		28.0			6.4	,		6.6	
Approach LOS		С			С			Α			Α	
Intersection delay	1	0.2		X _C	= 0.62		Interse	ction LOS			В	
				-						-		

HCS2000[™] DETAILED REPORT General Information Site Information Neilson Way & Ocean Park Intersection Jerry Overland Analyst Blvd. Agency or Co. OTC Inc. Area Type CBD or Similar Date Performed 4/28/2004 Jurisdiction City of Santa Monica Time Period Saturday Peak Hour Analysis Year 2009 with project RAD Sunset (with Sunset & Project ID

Main)

Volume and Timing Input															
				EB			WE				NB	1		SB	1
			LT	TH	RT	LT	TH	_ _	RT	LT	TH	RT	LT	TH	RT
Number of lar	nes, N ₁		0	1	0	1	1		0	1	2	0	1	2	0
Lane group				LTR		L	TR			L	TR		L	TR	
Volume, V (vp	oh)		19	97	17	142	154		80	36	993	110	108	1023	32
% Heavy vehi	icles, %HV		0	0	0	0	0		0	0	0	0	0	0	0
Peak-hour fac	ctor, PHF		0.90	0.90	0.90	0.90	0.90) (0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pretimed (P)	or actuated (A)		Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α
Start-up lost t	ime, I ₁			2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Extension of e	effective green	, e		2.0		2.0	2.0			2.0	2.0		2.0	2.0	
Arrival type, A	AT .			3		3	3			3	3		3	3	
Unit extension	n, UE			3.0		3.0	3.0			3.0	3.0		3.0	3.0	
Filtering/mete	ring, I			1.000		1.000	1.000	0		1.000	1.000		1.000	1.000	
Initial unmet d	lemand, Q _b			0.0		0.0	0.0			0.0	0.0		0.0	0.0	
Ped / Bike / R	TOR volumes		0	0	0	0	0		0	0	0	0	0	0	0
Lane width				12.0		12.0	12.0			12.0	12.0		12.0	12.0	
Parking / Grad	de / Parking		N	0	Ν	N	0		Ν	N	0	N	N	0	N
Parking mane	euvers, N _m														
Buses stoppir	ng, N _B			0		0	0			0	0		0	0	
Min. time for p	oedestrians, G)		3.2	1		3.2	<u> </u>			3.2			3.2	
Phasing	EW Perm	0	2	03		04	[NS	S Perm		06		07		18
. .	G = 13.3	G = (0.0	G =		G =		G =	38.7	G =	=	G =		G =	
Timing	Y = 4	Y =		Y =		Y =		Y =	4	Y =	Y =		Y =		
Duration of Ar	nalysis, T = <i>0.2</i>	25			Cycle Length, C = 60.0										

Burution of 7 tharyolo, 1 0.20			Sydio Longari, C 00.0								
Lane Group Capacity, Control Delay, an				on							
	EB		WB			NB		SB			
LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
	148		158	260		40	1225		120	1173	
	278		245	360		217	2064		201	2086	
	0.53		0.64	0.72		0.18	0.59		0.60	0.56	
	0.22		0.22	0.22		0.65	0.65		0.65	0.65	
	20.6		21.2	21.6		4.3	6.1		6.1	5.9	
	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
	0.14		0.22	0.28		0.11	0.18		0.19	0.16	
	2.0		5.7	7.0		0.4	0.5		4.8	0.4	
	22.6		27.0	28.6		4.7	6.6		10.9	6.3	
	С		С	С		Α	Α		В	Α	
2.	2.6	•	1 2	28.0			6.5			6.7	
	С			С			Α			Α	
1	0.2			Interse	Intersection LOS		В				
	LT 2	EB LT TH 148 278 0.53 0.22 20.6 1.000 0.14 2.0 22.6	EB LT TH RT 148 278 0.53 0.22 20.6 1.000 0.14 2.0 22.6 C 22.6 C	EB LT TH RT LT 148 158 278 245 0.53 0.64 0.22 0.22 20.6 21.2 1.000 1.000 0.14 0.22 2.0 5.7 22.6 27.0 C C 22.6 C	EB WB LT TH RT LT TH 148 158 260 278 245 360 0.53 0.64 0.72 0.22 0.22 0.22 20.6 21.2 21.6 1.000 1.000 1.000 0.14 0.22 0.28 2.0 5.7 7.0 22.6 27.0 28.6 C C C 22.6 28.0 C	EB WB LT TH RT LT TH RT 148 158 260 278 245 360 <t< td=""><td> Second Second</td><td> B</td><td> Second Second</td><td> Second Second</td><td> SB</td></t<>	Second	B	Second	Second	SB

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection:8Pacific Avenue and Rose AvenueScenario:Existing Conditions (Weekend)

MID-DAY Peak Hour Traffic Volumes

		i cak iloui	manic volumes
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>
NB Left	13	N/A	
NB Thru	912	510	*
NB Right	107	N/A	
SB Left	77	N/A	*
SB Thru	844	491	
SB Right	61	N/A	
EB Left	30	N/A	*
EB Thru	63	113	
EB Right	20	N/A	
WB Left	89	N/A	
WB Thru	83	304	*
	132	N/A	
WB Right	132	IN/A	

	MID-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
SB Left	0	Number of Phases	2
SB Left-Thru	1	NO LEF	T TURNS NORTHBOUND
SB Thru	0		
SB Right-Thru	1	Capacity	1500
SB Right	0	•	
EB Left	0	Critical Movement Analy	/sis: Results Summary
EB Left-Thru	0	===============	=======================================
EB Thru	1		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	334
EB Right	0	North/South Critical Volumes	587
•		Sum of Critical Volumes	921
WB Left	0	Capacity	1,500
WB Left WB Left-Thru	0 0	Capacity	1,500
		Capacity Intersection CMA Value	1,500 0.614
WB Left-Thru WB Thru			,
WB Left-Thru	0	Intersection CMA Value	0.614

Intersection: 8 Pacific Avenue and Rose Avenue

Scenario: Future Weekend Conditions (2009), Without Project

Movement	Related	Growth	W/O Project	VPL	Critictal
NB Left	0	1	14	N/A	
NB Thru	37	46	995	553	*
NB Right	0	5	112	N/A	
SB Left	4	4	85	N/A	*
SB Thru	41	42	927	538	
SB Right	0	3	64	N/A	
EB Left	0	2	32	N/A	*
EB Thru	2	3	68	121	
EB Right	0	1	21	N/A	
WB Left	3	4	96	N/A	
WB Thru	0	4	87	324	*
WB Right	2	7	141	N/A	

VVD ragin	2	171 1975	
МІ	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phase	es 2
SB Left	0	NO	D LEFT TURNS NORTHBOUND
SB Left-Thru	1		
SB Thru	0	Capacity	1500
SB Right-Thru	1		
SB Right	0		
		===============	=======================================
EB Left	0	Critical Movement Ar	nalysis: Results Summary
EB Left-Thru	0	==============	=======================================
EB Thru	1		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	356
EB Right	0	North/South Critical Volumes	638
		Sum of Critical Volumes	994
WB Left	0	Capacity	1,500
WB Left-Thru	0		
WB Thru	1	Intersection CMA Value	0.663
WB Right-Thru	0	ATSAC/ATCS CMA Valu	e 0.563
WB Right	0	Intersection Level of Service	Α
		=============	

Future Weekend Conditions (2009), Without Project

Intersection: 8 Pacific Avenue and Rose Avenue

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	14	0	14	N/A	
NB Thru	995	16	1011	562	*
NB Right	112	2	114	N/A	
SB Left	85	8	93	N/A	*
SB Thru	927	0	927	542	
SB Right	64	0	64	N/A	
EB Left	32	0	32	N/A	*
EB Thru	68	0	68	121	
EB Right	21	0	21	N/A	
WB Left	96	0	96	N/A	
WB Thru	87	0	87	324	*
WB Right	141	0	141	N/A	

МІГ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	0	NO L	LEFT TURNS NORTHBOUND
SB Left-Thru	1		
SB Thru	0	Capacity	1500
SB Right-Thru	1		
SB Right	0		
		================	=======================================
EB Left	0	Critical Movement Anal	ysis: Results Summary
EB Left-Thru	0	=======================================	
EB Thru	1		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	356
EB Right	0	North/South Critical Volumes	655
		Sum of Critical Volumes	1,011
WB Left	0	Capacity	1,500
WB Left-Thru	0		
WB Thru	1	Intersection CMA Value	0.674
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.574
WB Right	0	Intersection Level of Service	Α
		PROJECT IMPACT VALUE	0.011

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 9 Pacific Avenue and Sunset Avenue Scenario: Existing Conditions (Weekend)

		reak Houl	Traffic Volumes
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>
NB Left	9	N/A	
NB Thru	908	459	*
NB Right	0	N/A	
SB Left	0	N/A	*
SB Thru	964	488	
SB Right	11	N/A	
EB Left	0	N/A	*
EB Thru	0	0	
EB Right	0	N/A	
WB Left	8	N/A	
WB Thru	1	47	*
WB Right	38	N/A	

	MID-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	0	WestBound	0
NB Right	0		
SB Left	0	Number of Phases	2
SB Left-Thru	0		
SB Thru	1		
SB Right-Thru	1	Capacity	1200
SB Right	0		
EB Left	0	======================================	sis: Results Summary
EB Left EB Left-Thru	0 0	Critical Movement Analy	rsis: Results Summary
	-	Critical Movement Analy	=======================================
EB Left-Thru EB Thru	-	Critical Movement Analy	======================================
EB Left-Thru EB Thru EB Right-Thru	0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru	0 1 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 47
EB Left-Thru EB Thru EB Right-Thru	0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 47 459 506
EB Left-Thru EB Thru EB Right-Thru EB Right	0 1 0 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 47 459
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 47 459 506
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 1 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 47 459 506 1,200 0.421
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 47 459 506 1,200

Intersection: 9 Pacific Avenue and Sunset Avenue

Scenario: Future Weekend Conditions (2009), Without Project

MID-DAY Peak Hour Traffic Volumes

<u>Movement</u>	Related	Growth	W/O Project	VPL	Critictal
NB Left	0	0	9	N/A	
NB Thru	27	45	980	495	*
NB Right	0	0	0	N/A	
SB Left	0	0	0	N/A	*
SB Thru	39	48	1051	531	
SB Right	0	1	12	N/A	
EB Left	0	0	0	N/A	*
EB Thru	0	0	0	0	
EB Right	0	0	0	N/A	
WB Left	0	0	8	N/A	
WB Thru	0	0	1	49	*
WB Right	0	2	40	N/A	

-			
MII	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	0	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	0		
SB Left-Thru	0		
SB Thru	1	Capacity	1200
SB Right-Thru	1		
SB Right	0		
		=======================================	-==========
EB Left	0	Critical Movement Analys	is: Results Summary
EB Left-Thru	0	=======================================	
EB Thru	1		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	49
EB Right	0	North/South Critical Volumes	495
		Sum of Critical Volumes	544
WB Left	0	Capacity	1,200
WB Left-Thru	0		
WB Thru	1	Intersection CMA Value	0.454
WB Right-Thru	0	ATSAC CMA Value	0.454
WB Right	0	Intersection Level of Service	Α
•		=======================================	

Future Weekend Conditions (2009), Without Project

Intersection: 9 Pacific Avenue and Sunset Avenue

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	9	0	9	N/A	
NB Thru	980	13	993	501	*
NB Right	0	0	0	N/A	
SB Left	0	0	0	N/A	*
SB Thru	1051	0	1051	531	
SB Right	12	0	12	N/A	
EB Left	0	0	0	N/A	*
EB Thru	0	0	0	0	
EB Right	0	0	0	N/A	
WB Left	8	5	13	N/A	
WB Thru	1	0	1	57	*
WB Right	40	3	43	N/A	

МІГ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	0	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	0		
SB Left-Thru	0		
SB Thru	1	Capacity	1200
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analy	/sis: Results Summary
EB Left-Thru	0	=======================================	
EB Thru	4		
	1		MID-DAY PEAK
EB Right-Thru	0	East/West Critical Volumes	MID-DAY PEAK 57
EB Right-Thru EB Right	•	East/West Critical Volumes North/South Critical Volumes	
-	0		57
-	0	North/South Critical Volumes	57 501
EB Right	0	North/South Critical Volumes Sum of Critical Volumes	57 501 559
EB Right WB Left	0 0	North/South Critical Volumes Sum of Critical Volumes	57 501 559
EB Right WB Left WB Left-Thru	0 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity	57 501 559 1,200
EB Right WB Left WB Left-Thru WB Thru	0 0 0 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	57 501 559 1,200

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 10 Pacific Avenue and Windward Avenue

Scenario: Existing Conditions (Weekend)

MID-DAY Peak Hour Traffic Volumes

	MID-DA I	reak nour ma	anic volumes
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>
NB Left	62	N/A	
NB Thru	793	476	*
NB Right	97	N/A	
SB Left	87	N/A	*
SB Thru	762	459	
SB Right	69	N/A	
EB Left	40	N/A	*
EB Thru	57	146	
EB Right	49	N/A	
WB Left	89	N/A	
WB Thru	69	248	*
WB Right	90	N/A	

	MID-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
SB Left	0	Number of Phases	2
SB Left-Thru	1	Phasing	
SB Thru	0		
SB Right-Thru	1	Capacity	1500
SB Right	0		
EB Left	0	Critical Movement Analy	sis: Results Summary
EB Left EB Left-Thru	0 0	Critical Movement Analy	sis: Results Summary
	-	Critical Movement Analy	sis: Results Summary MID-DAY PEAK
EB Left-Thru	0	Critical Movement Analy ====================================	=======================================
EB Left-Thru EB Thru	0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	0 0 1	East/West Critical Volumes	MID-DAY PEAK 288
EB Left-Thru EB Thru EB Right-Thru	0 0 1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 288 563
EB Left-Thru EB Thru EB Right-Thru EB Right	0 0 1 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 288 563 851
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 288 563 851
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 288 563 851 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 288 563 851 1,500 0.567

Existing Conditions (Weekend)

10 Pacific Avenue and Windward Avenue Intersection:

Scenario: Future Weekend Conditions (2009), Without Project

MID-DAY Peak Hour Traffic Volumes

Related	Growth	W/O Project	<u>VPL</u>	Critictal
0	3	65	N/A	
39	40	872	521	*
4	5	106	N/A	
0	4	91	N/A	*
42	38	842	503	
0	3	72	N/A	
0	2	42	N/A	*
0	3	60	153	
0	2	51	N/A	
2	4	95	N/A	
0	3	72	262	*
0	5	95	N/A	
	0 39 4 0 42 0 0 0 0	0 3 39 40 4 5 0 4 42 38 0 3 0 2 0 3 0 2 2 4 0 3	0 3 65 39 40 872 4 5 106 0 4 91 42 38 842 0 3 72 0 2 42 0 3 60 0 2 51 2 4 95 0 3 72	0 3 65 N/A 39 40 872 521 4 5 106 N/A 0 4 91 N/A 42 38 842 503 0 3 72 N/A 0 2 42 N/A 0 3 60 153 0 2 51 N/A 2 4 95 N/A 0 3 72 262

Ü			
MII	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	1		
SB Thru	0	Capacity	1500
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analys	is: Results Summary
EB Left-Thru	0	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	1	East/West Critical Volumes	304
EB Right	0	North/South Critical Volumes	613
		Sum of Critical Volumes	917
WB Left	0	Capacity	1,500
WB Left-Thru	0		
WB Thru	1	Intersection CMA Value	0.611
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.511
WB Right	0	Intersection Level of Service	Α

Future Weekend Conditions (2009), Without Project

Intersection: 10 Pacific Avenue and Windward Avenue

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	65	0	65	N/A	
NB Thru	872	4	876	523	*
NB Right	106	0	106	N/A	
SB Left	91	0	91	N/A	*
SB Thru	842	4	846	505	
SB Right	72	0	72	N/A	
EB Left	42	0	42	N/A	*
EB Thru	60	0	60	153	
EB Right	51	0	51	N/A	
WB Left	95	0	95	N/A	
WB Thru	72	0	72	262	*
WB Right	95	0	95	N/A	

МІ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	1	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	1		
SB Thru	0	Capacity	1500
SB Right-Thru	1		
SB Right	0		
EB Left	0	Critical Movement Analy	rsis: Results Summary
EB Left EB Left-Thru	0 0	Critical Movement Analy	rsis: Results Summary
	-	Critical Movement Analy	vsis: Results Summary MID-DAY PEAK
EB Left-Thru	0	Critical Movement Analy	=======================================
EB Left-Thru EB Thru	0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	0 0 1	East/West Critical Volumes	MID-DAY PEAK 304
EB Left-Thru EB Thru EB Right-Thru	0 0 1	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 304 615
EB Left-Thru EB Thru EB Right-Thru EB Right	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 304 615 919
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 304 615 919
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 304 615 919 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Left-Thru WB Thru	0 0 1 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 304 615 919 1,500

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 11 Pacific Avenue and Venice Boulevard (N)

Scenario: Existing Conditions (Weekend)

MID-DAY Peak Hour Traffic Volumes

		cak Hour Hai	ne volunies
<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	Critictal
NB Left	5	5	*
NB Thru	464	464	
NB Right	0	N/A	
SB Left	0	N/A	
SB Thru	826	826	*
SB Right	48	48	
EB Left	0	N/A	
EB Thru	0	N/A	
EB Right	0	N/A	
WB Left	216	216	
WB Thru	346	346	
WB Right	468	468	*

Movement	MID-DAY PEAK Lanes	Ap p roach Direction	RTOR Reductions MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	0	WestBound	0
NB Right	0		-
SB Left	0	Number of Phases	2
SB Left-Thru	0	Phasing	
SB Thru	1		
SB Right-Thru	0	Capacity	1500
SB Right	1		
EB Left	0	Critical Movement Analy	/sis: Results Summary
EB Left-Thru		=======================================	
EB Left-Thru EB Thru	0	=======================================	MID-DAY PEAK
EB Thru	0	East/West Critical Volumes	MID-DAY PEAK 468
EB Thru EB Right-Thru	0	East/West Critical Volumes North/South Critical Volumes	
EB Thru	0 0 0		468
EB Thru EB Right-Thru	0 0 0	North/South Critical Volumes Sum of Critical Volumes	468 831
EB Thru EB Right-Thru EB Right	0 0 0 0	North/South Critical Volumes	468 831 1,299
EB Thru EB Right-Thru EB Right WB Left	0 0 0 0	North/South Critical Volumes Sum of Critical Volumes	468 831 1,299
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 0 0 0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity	468 831 1,299 1,500
EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 0 0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	468 831 1,299 1,500

Existing Conditions (Weekend)

Intersection: 11 Pacific Avenue and Venice Boulevard (N)

Scenario: Future Weekend Conditions (2009), Without Project

Movement	Related	Growth	W/O Project	VPL	Critictal
NB Left	0	0	5	5	*
NB Thru	11	23	498	498	
NB Right	0	0	0	N/A	
SB Left	0	0	0	N/A	
SB Thru	42	41	909	909	*
SB Right	5	2	55	55	
EB Left	0	0	0	N/A	
EB Thru	0	0	0	N/A	
EB Right	0	0	0	N/A	
WB Left	0	11	227	227	
WB Thru	11	17	374	374	
WB Right	8	23	499	499	*

MII	D-DAY PEAK	Approach	RTOR Reductions	
Movement	Lanes	Direction	MID-DAY PEAK	
NB Left	1	NorthBound	0	
NB Left-Thru	0	SouthBound	0	
NB Thru	1	EastBound	0	
NB Right-Thru	0	WestBound	0	
NB Right	0			
		Number of Phases	2	
SB Left	0	Phasing		
SB Left-Thru	0			
SB Thru	1	Capacity	1500	
SB Right-Thru	0			
SB Right	1			
		=======================================	=======================================	
EB Left	0	Critical Movement Analys	is: Results Summary	
EB Left-Thru	0	=======================================	=======================================	
EB Thru	0		MID-DAY PEAK	
EB Right-Thru	0	East/West Critical Volumes	499	
EB Right	0	North/South Critical Volumes	915	
		Sum of Critical Volumes	1,414	
WB Left	1	Capacity	1,500	
WB Left-Thru	0			
WB Thru	1	Intersection CMA Value	0.943	
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.843	
WB Right	1	Intersection Level of Service D		
		=======================================		

Future Weekend Conditions (2009), Without Project

Intersection: 11 Pacific Avenue and Venice Boulevard (N)

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	VPL	Critictal
NB Left	5	0	5	5	*
NB Thru	498	4	502	502	
NB Right	0	0	0	N/A	
SB Left	0	0	0	N/A	
SB Thru	909	4	913	913	*
SB Right	55	0	55	55	
EB Left	0	0	0	N/A	
EB Thru	0	0	0	N/A	
EB Right	0	0	0	N/A	
WB Left	227	0	227	227	
WB Thru	374	0	374	374	
WB Right	499	0	499	499	*

МІ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	0	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	0	Phasing	
SB Left-Thru	0	-	
SB Thru	1	Capacity	1500
SB Right-Thru	0		
SB Right	1		
EB Left	0	Critical Movement Analy	rsis: Results Summary
EB Left EB Left-Thru	0 0	Critical Movement Analy	rsis: Results Summary
	-	Critical Movement Analy	rsis: Results Summary MID-DAY PEAK
EB Left-Thru	0	Critical Movement Analy	=======================================
EB Left-Thru EB Thru	0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	0 0 0	East/West Critical Volumes	MID-DAY PEAK 499
EB Left-Thru EB Thru EB Right-Thru	0 0 0	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 499 919
EB Left-Thru EB Thru EB Right-Thru EB Right	0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 499 919 1,418
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	0 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 499 919 1,418
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	0 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 499 919 1,418 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left WB Left-Thru WB Thru	0 0 0 0 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 499 919 1,418 1,500

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 12 Pacific Avenue and Venice Boulevard (S)

Scenario: Existing Conditions (Weekend)

MID-DAY Peak Hour Traffic Volumes

<u>Movement</u>	<u>Counts</u>	<u>VPL</u>	Critictal
NB Left	0	N/A	
NB Thru	411	810	*
NB Right	399	N/A	
SB Left	183	183	*
SB Thru	835	835	
SB Right	0	N/A	
EB Left	67	N/A	
EB Thru	285	254	*
EB Right	156	N/A	
WB Left	0	N/A	
WB Thru	0	N/A	
WB Right	0	N/A	

MID-DAY PEAK <u>Lanes</u>	Approach <u>Direction</u>	RTOR Reductions MID-DAY PEAK
0	NorthBound	0
0	SouthBound	0
0	EastBound	0
1	WestBound	0
0		
1	Number of Phases	2
0	Phasing	
1		
0	Capacity	1500
0		
0	Critical Movement Analy	ysis: Results Summary
1	=======================================	=======================================
0		MID-DAY PEAK
1	East/West Critical Volumes	254
0	North/South Critical Volumes	993
	Sum of Critical Volumes	1,247
0	Capacity	1,500
0		
0	Intersection CMA Value	0.831
0	ATSAC/ATCS CMA Value	0.731
0	Intersection Level of Service	C
	Lanes 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0	Lanes 0 NorthBound 0 SouthBound 0 EastBound 1 WestBound 0 Number of Phases 0 Phasing 1 Capacity 0 Capacity 0 Critical Movement Analy 1 East/West Critical Volumes 0 North/South Critical Volumes Sum of Critical Volumes Capacity 0 Intersection CMA Value 0 ATSAC/ATCS CMA Value

Intersection: 12 Pacific Avenue and Venice Boulevard (S)

Scenario: Future Weekend Conditions (2009), Without Project

MID-DA	Y Peak	Hour	Traffic	Volumes

<u>Movement</u>	Related	Growth	W/O Project	VPL	Critictal
NB Left	0	0	0	N/A	
NB Thru	31	21	463	882	*
NB Right	0	20	419	N/A	
SB Left	3	9	195	195	*
SB Thru	7	42	884	884	
SB Right	0	0	0	N/A	
EB Left	0	3	70	N/A	
EB Thru	13	14	312	273	*
EB Right	0	8	164	N/A	
WB Left	0	0	0	N/A	
WB Thru	0	0	0	N/A	
WB Right	0	0	0	N/A	

· ·			
MII	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0		
SB Thru	1	Capacity	1500
SB Right-Thru	0		
SB Right	0		
		=======================================	=======================================
EB Left	0	Critical Movement Analysi	s: Results Summary
EB Left-Thru	1	=======================================	=======================================
EB Thru	0		MID-DAY PEAK
EB Right-Thru	1	East/West Critical Volumes	273
EB Right	0	North/South Critical Volumes	1,077
		Sum of Critical Volumes	1,350
WB Left	0	Capacity	1,500
WB Left-Thru	0		
WB Thru	0	Intersection CMA Value	0.900
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.800
WB Right	0	Intersection Level of Service	С

Future Weekend Conditions (2009), Without Project

Intersection: 12 Pacific Avenue and Venice Boulevard (S)

Scenario: Future WeekendConditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	<u>VPL</u>	Critictal
NB Left	0	0	0	N/A	
NB Thru	463	4	467	886	*
NB Right	419	0	419	N/A	
SB Left	195	0	195	195	*
SB Thru	884	4	888	888	
SB Right	0	0	0	N/A	
EB Left	70	0	70	N/A	
EB Thru	312	0	312	273	*
EB Right	164	0	164	N/A	
WB Left	0	0	0	N/A	
WB Thru	0	0	0	N/A	
WB Right	0	0	0	N/A	

	D-DAY PEAK	Approach	RTOR Reductions
<u>Movement</u>	<u>Lanes</u>	<u>Direction</u>	MID-DAY PEAK
NB Left	0	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	0	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0		
SB Thru	1	Capacity	1500
SB Right-Thru	0		
SB Right	0		
		=======================================	
EB Left	0	Critical Movement Analy	sis: Results Summary
EB Left-Thru		================	
	1		
EB Thru	1 0		MID-DAY PEAK
EB Thru EB Right-Thru		East/West Critical Volumes	MID-DAY PEAK 273
	0	East/West Critical Volumes North/South Critical Volumes	
EB Right-Thru	0		273
EB Right-Thru	0	North/South Critical Volumes	273 1,081
EB Right-Thru EB Right	0 1 0	North/South Critical Volumes Sum of Critical Volumes	273 1,081 1,354
EB Right-Thru EB Right WB Left	0 1 0 0	North/South Critical Volumes Sum of Critical Volumes	273 1,081 1,354
EB Right-Thru EB Right WB Left WB Left-Thru	0 1 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity	273 1,081 1,354 1,500
EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	0 1 0 0 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	273 1,081 1,354 1,500

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

INTERSECTION CMA WORKSHEET

Project: RAD Sunset

Intersection: 13 Lincoln Boulevard and Rose Avenue Scenario: Existing Conditions (Weekend)

MID-DAY Peak Hour Traffic Volumes

	MID-DA I	reak nour	Trainic volumes
<u>Movement</u>	Counts	<u>VPL</u>	<u>Critictal</u>
NB Left	106	106	*
NB Thru	1437	760	
NB Right	83	N/A	
SB Left	59	59	
SB Thru	1593	797	*
SB Right*	126	N/A	
EB Left	284	284	*
EB Thru	148	162	
EB Right	176	N/A	
WB Left	64	64	
WB Thru	175	175	*
WB Right	83	83	

Movement NB Left NB Left-Thru NB Thru NB Right-Thru NB Right	MID-DAY PEAK <u>Lanes</u> 1 0 1 1 0	Approach <u>Direction</u> NorthBound SouthBound EastBound WestBound	RTOR Reductions MID-DAY PEAK 0 0 0 0
SB Left	1	Number of Phases	2
SB Left-Thru	0	Phasing	
SB Thru	1		
SB Right-Thru	1	Capacity	1500
SB Right	0		
EB Left	1	Critical Movement Analy	/sis: Results Summary
EB Left EB Left-Thru	1 0	Critical Movement Analy	/sis: Results Summary
	1 0 1	Critical Movement Analy	ysis: Results Summary ====================================
EB Left-Thru	1 0 1 1	Critical Movement Analy ====================================	=======================================
EB Left-Thru EB Thru	1 0 1 1 0	=======================================	MID-DAY PEAK
EB Left-Thru EB Thru EB Right-Thru	1	East/West Critical Volumes	MID-DAY PEAK 459
EB Left-Thru EB Thru EB Right-Thru	1	East/West Critical Volumes North/South Critical Volumes	MID-DAY PEAK 459 903
EB Left-Thru EB Thru EB Right-Thru EB Right	1	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 459 903 1,362
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left	1 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes	MID-DAY PEAK 459 903 1,362
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru	1 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity	MID-DAY PEAK 459 903 1,362 1,500
EB Left-Thru EB Thru EB Right-Thru EB Right WB Left WB Left-Thru WB Thru	1 1 0 1 0	East/West Critical Volumes North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	MID-DAY PEAK 459 903 1,362 1,500 0.908

Existing Conditions

^{*} S/B FUNCTIONAL RIGHT-TURN LANE

Intersection: 13 Lincoln Boulevard and Rose Avenue

Scenario: Future Weekend Conditions (2009), Without Project

|--|

Related	Growth	W/O Project	<u>VPL</u>	Critictal
28	5	139	139	*
139	72	1648	873	
11	4	98	N/A	
4	3	66	66	
49	80	1722	934	*
14	6	146	N/A	
9	14	307	307	*
9	7	164	187	
24	9	209	N/A	
13	3	80	80	
14	9	198	198	*
5	4	92	92	
	28 139 11 4 49 14 9 9 24 13	28 5 139 72 11 4 4 3 49 80 14 6 9 14 9 7 24 9	28 5 139 139 72 1648 11 4 98 4 3 66 49 80 1722 14 6 146 9 14 307 9 7 164 24 9 209 13 3 80 14 9 198	28 5 139 139 139 72 1648 873 11 4 98 N/A 4 3 66 66 49 80 1722 934 14 6 146 N/A 9 14 307 307 9 7 164 187 24 9 209 N/A 13 3 80 80 14 9 198 198

MIC	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		-
	-	Number of Phases	2
SB Left	1	Phasing	_
SB Left-Thru	0	3	
SB Thru	1	Capacity	1500
SB Right-Thru	1	, ,	
SB Right	0		
Ü		=======================================	==========
EB Left	1	Critical Movement Analysi	is: Results Summary
EB Left-Thru	0	=======================================	=======================================
EB Thru	1		MID-DAY PEAK
EB Right-Thru	1	East/West Critical Volumes	505
EB Right	0	North/South Critical Volumes	1,073
		Sum of Critical Volumes	1,578
WB Left	1	Capacity	1,500
WB Left-Thru	0		
WB Thru	1	Intersection CMA Value	1.052
WB Right-Thru	0	ATSAC/ATCS CMA Value	0.952
WB Right	1	Intersection Level of Service	E
=		=======================================	=======================================

Future Weekend Conditions (2009), Without Project

Intersection: 13 Lincoln Boulevard and Rose Avenue

Scenario: Future Weekend Conditions (2009), With Project (Sunset/Main Access)

MID-DAY Peak Hour Traffic Volumes

Movement	W/O Proj.	Project	W/ Project	<u>VPL</u>	Critictal
NB Left	139	4	143	143	*
NB Thru	1648	0	1648	873	
NB Right	98	0	98	N/A	
SB Left	66	0	66	66	
SB Thru	1722	0	1722	938	*
SB Right	146	8	154	N/A	
EB Left	307	5	312	312	*
EB Thru	164	4	168	191	
EB Right	209	5	214	N/A	
WB Left	80	0	80	80	
WB Thru	198	4	202	202	*
WB Right	92	0	92	92	

МІГ	D-DAY PEAK	Approach	RTOR Reductions
Movement	Lanes	Direction	MID-DAY PEAK
NB Left	1	NorthBound	0
NB Left-Thru	0	SouthBound	0
NB Thru	1	EastBound	0
NB Right-Thru	1	WestBound	0
NB Right	0		
-		Number of Phases	2
SB Left	1	Phasing	
SB Left-Thru	0		
SB Thru	1	Capacity	1500
SB Right-Thru	1		
SB Right	0		
		=======================================	=======================================
EB Left	1	Critical Movement Analy	sis: Results Summary
EB Left-Thru	0	=======================================	=======================================
EB Thru			
	1		MID-DAY PEAK
EB Right-Thru	1 1	East/West Critical Volumes	MID-DAY PEAK 514
EB Right-Thru EB Right	•	East/West Critical Volumes North/South Critical Volumes	
-	1		514
-	1	North/South Critical Volumes	514 1,081
EB Right	1 0	North/South Critical Volumes Sum of Critical Volumes	514 1,081 1,595
EB Right WB Left	1 0	North/South Critical Volumes Sum of Critical Volumes	514 1,081 1,595
EB Right WB Left WB Left-Thru	1 0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity	514 1,081 1,595 1,500
EB Right WB Left WB Left-Thru WB Thru	1 0 1 0	North/South Critical Volumes Sum of Critical Volumes Capacity Intersection CMA Value	514 1,081 1,595 1,500

Future Weekend Conditions (2009), With Project (Sunset/Main Access)

APPENDIX G - WATER AND WASTEWATER:

WEST LOS ANGELES TRANSPORTATION FACILITY

G1 - UTILITY STUDY FOR METROPOLITAN TRANSIT AUTHORITY,

DIVISION 6 BUS SERVICE FACILITY LOCATED AT

JEFFERSON BOULEVARD AND RODEO ROAD,

LOS ANGELES,

APRIL 30, 2004.

SUNSET AVENUE PROJECT

G2 - UTILITY STUDY FOR METROPOLITAN TRANSIT AUTHORITY,
DIVISION 6 "THE DEPOT" APARTMENTS LOCATED AT 100 SUNSET AVENUE,
LOS ANGELES,
APRIL 30, 2004.

West Los Angeles Transportation Facility

G1 - UTILITY STUDY FOR METROPOLITAN TRANSIT AUTHORITY,
DIVISION 6 BUS SERVICE FACILITY LOCATED AT
JEFFERSON BOULEVARD AND RODEO ROAD,
LOS ANGELES,
APRIL 30, 2004.

Metropolitan Transit Authority, Division 6 Bus Service Facility Located at Jefferson Boulevard and Rodeo Road, Los Angeles.

UTILITY STUDY

Project No. 18750

May 24th, 2004

Prepared by: Mollenhauer Group 411 West Fifth Street Los Angeles, CA 90013

Metropolitan Transit Authority, Division 6 Bus Service Facility Located at Jefferson Boulevard and Rodeo Road, Los Angeles. Storm Water Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority Division 6 Bus repair facility project consists of the following; one large bus repair shop building (48,300 SF), parking on the main building roof and second story parking facility located along the east side of the property, A large parking lot for Buses, Fuel facilities, cleaning facilities and other small support structures that are consistent with maintaining and operating a large bus fleet. This is based on plans provided by Whitfield Associates on March 10, 2004.

The Bus Service Facility is located on the east side of Jefferson Boulevard, just 660 feet north of the intersection of Rodeo Road at its southern most point. The site is composed of two lots, Numbers 17 and 18, with 3.08 and 1.545 acres respectively, for a total site area of 4.635 acres.

The existing site drains into two pipe systems (see attached storm water sketch ST-1). Runoff from the northern part of the site is collected into a 10 inch storm drain pipe. The pipe outlets into the back of a standard #40 Catch Basin located along the east side of Jefferson Boulevard. The catch basin has on 18-inch RCP storm drain outlet that drains to the west under Jefferson Boulevard and outlets into Ballona Creek just west of Jefferson Boulevard. This cross culvert is located approximately 100 feet south of the northern property line.

Runoff from the southern part of the site is collected into a 12 inch storm drain pipe. The pipe outlets into the back of a standard #40 Catch Basin located along the east side of Jefferson Boulevard. The catch basin has on 27-inch RCP storm drain outlet that drains southern property line.

The proposed storm drainage facilities will continue to divide the site into two complementary systems, each composed of a network of Roof Drains, Drain inlets, field drains. These systems will continue to tie into the existing catch basins along Jefferson Boulevard. Each system will employ at storm water treatment unit sized to treat its proportion of the total site design storm (0.75-inch) flow of 0.807 cubic feet per second. This will result in a total volume of 10,828 cubic feet of water treated per design storm.

Metropolitan Transit Authority, Division 6 Bus Service Facility Located at Jefferson Boulevard and Rodeo Road, Los Angeles. Water Service Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority Division 6 Bus repair facility project consists of the following; one large bus repair shop building (48,300 SF), parking on the main building roof and second story parking facility located along the east side of the property, A large parking lot for Buses, Fuel facilities, cleaning facilities and other small support structures that are consistent with maintaining and operating a large bus fleet.

The Bus Service Facility is located on the east side of Jefferson Boulevard, just 660 feet north of the intersection of Rodeo Road at its southern most point. The site is composed of two lots, Numbers 17 and 18, with 3.08 and 1.545 acres respectively, for a total site area of 4.635 acres. This is based on plans provided by Whitfield Associates on March 10, 2004.

Water service to the entire proposed project is provided by the City of Los Angeles Department of Water and Power.

City of Los Angeles Department of Water and Power (LADWP) water mains exist both along the west property frontage on Jefferson Boulevard and also on the north property line along the private road "Liberty Way" (See attach water sketch, W-1). The water main in Jefferson Boulevard is 8-inch Asbestos Concrete pipe across the whole frontage. The main is located 15 feet west out into Jefferson Boulevard from our west property line. The water main in Liberty Way is 6-inche pipe all the way from La Cienega Blvd to the northeast corner of the property. It then is reduced to a 2 inch main across the northern property line to where it joins the 8-inch main in Jefferson Blvd. These lines and the 8-inch main in Rodeo Road and 12-inch main in La Cienega Blvd form a loop.

There is an existing 6-inch water service off of the water main in Jefferson Boulevard up by the northwest corner that serves the subject property. There is an existing fire hydrant located just south of this water service. There is also an existing fire hydrant on Liberty Way located approximately 275 feet east of the northeast property corner.

For this report we have proposed that the facility will require, at maximum, 395 Gallons per minute (GPM) for domestic flow and 475 GPM for fire service flow. LADWP provided us with A Fire Service Pressure Flow Report in response to our Service Advisory Request. This report tells us the water is available and list what the pressure would be at various flow rates up to the maximum for the size of service. For this project location there is minimum of 97 pounds per square inch (PSI) pressure available at a flow rate of 600 GPM.

Metropolitan Transit Authority, Division 6 Bus Service Facility Located at Jefferson Boulevard and Rodeo Road, Los Angeles. Sewer Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority Division 6 Bus repair facility project consists of the following; one large bus repair shop building (48,300 SF), parking on the main building roof and second story parking facility located along the east side of the property, A large parking lot for Buses, Fuel facilities, cleaning facilities and other small support structures that are consistent with maintaining and operating a large bus fleet.

The Bus Service Facility is located on the east side of Jefferson Boulevard, just 660 feet north of the intersection of Rodeo Road at its southern most point. The site is composed of two lots, Numbers 17 and 18, with 3.08 and 1.545 acres respectively, for a total site area of 4.635 acres. This is based on plans provided by Whitfield Associates on March 10, 2004.

The sanitary service to the entire proposed project is provided by the City of Los Angeles Bureau of Public Works (LABPW).

There is the Sanitary Sewer La Cienega Trunk line that runs right through the property on an easement that starts at the north property line about the midpoint, heads down to the southeast for a short bit and then continues to about the Southwest corner of the property (see attached sewer sketch, S-1). There is an existing 8-inch sewer lateral off of this trunk line that starts at the North lot line jog area and continues to the east in Liberty Way for approximately 925 feet.

The proposed facilities will generate an estimated flow of 3,864 Gallons per day (GPD). This will connect to the existing 8-inch sewer lateral in Liberty Way. The City of Los Angeles Bureau of Sanitation gauged this sewer and recorded the existing flow at 20.0% of full. When the proposed estimate flow for the project is added to the existing the combined flow 20.6% of Full. The Bureau has determined that there is Capacity available in the system. A copy of the approved Sewer Availability Report is attached (SS-2).

Metropolitan Transit Authority, Division 6 Bus Service Facility Located at Jefferson Boulevard and Rodeo Road, Los Angeles. Gas Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority Division 6 Bus repair facility project consists of the following; one large bus repair shop building (48,300 SF), parking on the main building roof and second story parking facility located along the east side of the property, A large parking lot for Buses, Fuel facilities, cleaning facilities and other small support structures that are consistent with maintaining and operating a large bus fleet.

The Bus Service Facility is located on the east side of Jefferson Boulevard, just 660 feet north of the intersection of Rodeo Road at its southern most point. The site is composed of two lots, Numbers 17 and 18, with 3.08 and 1.545 acres respectively, for a total site area of 4.635 acres. This is based on plans provided by Whitfield Associates on March 10, 2004.

The existing gas facilities are based on City substructure map 4998. Gas facilities in the immediate vicinity of the project site are only present along the North property line on Liberty Way. Southern California Gas Company has a 3" main located in Liberty way that is 2.5 feet south of the North property line. (see attached gas. G-1) this main starts at the jog point of the North property line and continues to the east to La Cienega Boulevard. Once in La Cienega Boulevard the 3 inch gas main joins a 4-inch gas main that ties into a 6-inch distribution system.

Once the facility demand is proved by the Mechanical Engineer, the proper gas service size can be installed from the 3 inch gas line on Liberty Way.

Metropolitan Transit Authority, Division 6 Bus Service Facility Located at Jefferson Boulevard and Rodeo Road, Los Angeles. Electrical Service Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority Division 6 Bus repair facility project consists of the following; one large bus repair shop building (48,300 SF), parking on the main building roof and second story parking facility located along the east side of the property, A large parking lot for Buses, Fuel facilities, cleaning facilities and other small support structures that are consistent with maintaining and operating a large bus fleet.

The Bus Service Facility is located on the east side of Jefferson Boulevard, just 660 feet north of the intersection of Rodeo Road at its southern most point. The site is composed of two lots, Numbers 17 and 18, with 3.08 and 1.545 acres respectively, for a total site area of 4.635 acres. This is based on plans provided by Whitfield Associates on March 10, 2004.

Electrical service to the entire proposed project is provided by the City of Los Angeles Department of Water and Power.

City of Los Angeles Department of Water and Power (LADWP) electric maintains a transmission line along the north property line in Liberty Way "private drive". This line is a 4.8 KW line that connects to the distribution network on La Cienaga Boulevard to the west of our site and services properties that border Liberty Way. From this line a service line extends from the end of Liberty Way, to Jefferson Boulevard to the east. Then it turns south and then enters the property where it connects to 3 transformers. One of the existing transformers steps the electricity down to 240 volts at 1 Phase, the other two transformers are tied together and step the 4.8 KV line down to 240 volts at 3 phase. LADWP also maintains transmission lines along Rodeo Road to the south.

Under the proposed plans for the Bus facility these existing service transformers will have to be evaluated to see if they can deliver the projects load. The proposed building will have to evaluate to see if the service line has to be moved. The LADWP will conduct a capacity study once our total site electrical load is known by the electrician.

Sunset Avenue Project

G2 - UTILITY STUDY FOR METROPOLITAN TRANSIT AUTHORITY,
DIVISION 6 "THE DEPOT" APARTMENTS LOCATED AT 100 SUNSET AVENUE,
LOS ANGELES,
APRIL 30, 2004.

Metropolitan Transit Authority, Division 6 "The Depot" Apartments Located at 100 Sunset Avenues, Los Angeles.

UTILITY STUDY

Project No. 18636

May 24th, 2004

Prepared by: Mollenhauer Group 411 West Fifth Street Los Angeles, CA 90013

Metropolitan Transit Authority, The Depot Apartments Located at 100 Sunset Avenues, Los Angeles. Storm Water Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority "The Depot" Housing complex project consists of the following; two levels of subterranean parking, two main building of 4 levels facing Main Street on top of the parking and another 9 buildings, of levels each, through out the site on top of the parking. The two main buildings are composed of 1,350 Square feet of Commercial space on the ground level and 76 apartments. An additional 128 apartments are located in the other 9 buildings, for a total of 204 apartment units on the entire site. This is based on plans provided by Koning Eizenberg Architecture dated March 10, 2004.

The proposed building site is located on the west side of Sunset Avenue between Pacific Avenue and Main Street. The site is bordered by; Sunset Avenue to the west, Main Street to the north, Thornton Place to the east and Pacific Avenue to the south. The total site area is 3.13 acres.

The existing site drains in a catch basin located on Main Street in the Southeast corner of the property (see storm water Sketch, ST-1) The water form the site is collected in a series of Drain inlets and then conveyed to the catch basin by a pipe system. This Catch Basin is the low spot for the all the streets adjacent to the property. Form the high corner of Sunset Ave and Pacific Ave, water flows to the east on Sunset Ave and South on Main Street to the catch basin or South on Pacific Ave and east on Thornton Place. This catch basin outlets into a 12 inch storm drain that goes southeast to where it ties into a 30-inch storm Drain main line.

The proposed storm drainage facilities will be a network of pipes that connect all the Roof Drains, Drain Inlets and field drains and connect them to a storm water treatment unit. This system will continue to tie into the existing catch basin on the corner of Main Street and Thornton Place. The system will employ at storm water treatment unit sized to treat the design storm (0.75-inch) flow of 0.568 cubic feet per second. This will result in a total volume of 6985 cubic feet of water treated per design storm.

Metropolitan Transit Authority, Division 6 The Depot Apartments Located at 100 Sunset Avenues, Los Angeles. Water Service Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority "The Depot" Housing complex project consists of the following; two levels of subterranean parking, two main building of 4 levels facing Main Street on top of the parking and another 9 buildings, of levels each, through out the site on top of the parking. The two main buildings are composed of 1,350 Square feet of Commercial space on the ground level and 76 apartments. An additional 128 apartments are located in the other 9 buildings, for a total of 204 apartment units on the entire site. This is based on plans provided by Koning Eizenberg Architecture dated March 10, 2004.

The proposed building site is located on the west side of Sunset Avenue between Pacific Avenue and Main Street. The site is bordered by; Sunset Avenue to the west, Main Street to the north, Thornton Place to the east and Pacific Avenue to the south. The total site area is 3.13 acres.

Water service to the entire proposed project is provided by the City of Los Angeles Department of Water and Power.

City of Los Angeles Department of Water and Power (LADWP) water mains exist on three sides of the project, (see attach water sketch, W-1). There is an 8-inch cast iron pipe main located in Main Street. There are two water mains in Sunset, a 4-inch on the south side, and a 6 inch located on the north side of Sunset Avenue. There is a 12-inch main line located in Pacific Avenue.

The site is currently serviced by a 4-inch water service and a ¾-inch water service off of Main Street. As shown on Sketch W-1.

The proposed Developments maximum water demands will be 395 Gallons per minute (GPM) for domestic or 475 GPM for fire service. LADWP provided us with the Fire Service Pressure Flow Report in response to our SAR request. The report states there is 72 psi pressure available at the flow rate of 600 GPM. A copy of the City of Los Angeles Fire Service Pressure Report is attached (W-2).

Metropolitan Transit Authority, Division 6 The Depot Apartments Located at 100 Sunset Avenues, Los Angeles. Sewer Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority "The Depot" Housing complex project consists of the following; two levels of subterranean parking, two main building of 4 levels facing Main Street on top of the parking and another 9 buildings, of levels each, through out the site on top of the parking. The two main buildings are composed of 1,350 Square feet of Commercial space on the ground level and 76 apartments. An additional 128 apartments are located in the other 9 buildings, for a total of 204 apartment units on the entire site. This is based on plans provided by Koning Eizenberg Architecture dated March 10, 2004.

The proposed building site is located on the west side of Sunset Avenue between Pacific Avenue and Main Street. The site is bordered by; Sunset Avenue to the west, Main Street to the north, Thornton Place to the east and Pacific Avenue to the south. The total site area is 3.13 acres.

The sanitary service to the entire proposed project is provided by the City of Los Angeles Bureau Department of Public Works (LABPW).

The site is currently served by a sewer service located on the South east corner of the property by the intersection of Main Street and Thornton Place where it joins a 6" main line. There is a different sewer main that starts approximately 60 ft north on Main Street from the northeast property corner. This is also a 6-inch main line and it runs to the east up Sunset Avenue.

We were concerned about the capacity of these two existing 6-inch sewers due to their size, slope and the additional 35,000 Gallons per Day (GPD) from the project. The LABPW conducted a capacity study of the two near by systems (As shown on sketch SS-1). This study included gauging the existing flows in the main street system and the Sunset Ave system. Each system failed when evaluated on its own ability to carry the projects design flow. The LABPW has confirmed that there is enough total sewer capacity for the project if it is split between the two systems 50 / 50 (See attached approved sewer availability letter SS-2). The split criteria is noted in the remarks section of the signed Sewer Availability Report.

Metropolitan Transit Authority, Division 6 The Depot Apartments Located at 100 Sunset Avenues, Los Angeles. Gas Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority "The Depot" Housing complex project consists of the following; two levels of subterranean parking, two main building of 4 levels facing Main Street on top of the parking and another 9 buildings, of levels each, through out the site on top of the parking. The two main buildings are composed of 1,350 Square feet of Commercial space on the ground level and 76 apartments. An additional 128 apartments are located in the other 9 buildings, for a total of 204 apartment units on the entire site. This is based on plans provided by Koning Eizenberg Architecture dated March 10, 2004.

The proposed building site is located on the west side of Sunset Avenue between Pacific Avenue and Main Street. The site is bordered by; Sunset Avenue to the west, Main Street to the north, Thornton Place to the east and Pacific Avenue to the south. The total site area is 3.13 acres.

The existing gas facilities are based on City substructure map 110-144 & 108-141. Gas facilities in the immediate vicinity of the project site are only present along the west property line on Pacific Avenue. Southern California Gas Company has a 4" main located in Pacific Avenue that is 11 feet east of the west property line, (See attached gas sketch G-1). This main runs the whole length of Pacific Avenue adjacent to the property.

Metropolitan Transit Authority, Division 6 The Depot Apartments Located at 100 Sunset Avenues, Los Angeles. Electrical Infrastructure May 24th, 2004

The planned Metropolitan Transit Authority "The Depot" Housing complex project consists of the following; two levels of subterranean parking, two main building of 4 levels facing Main Street on top of the parking and another 9 buildings, of levels each, through out the site on top of the parking. The two main buildings are composed of 1,350 Square feet of Commercial space on the ground level and 76 apartments. An additional 128 apartments are located in the other 9 buildings, for a total of 204 apartment units on the entire site. This is based on plans provided by Koning Eizenberg Architecture dated March 10, 2004.

The proposed building site is located on the west side of Sunset Avenue between Pacific Avenue and Main Street. The site is bordered by; Sunset Avenue to the west, Main Street to the north, Thornton Place to the east and Pacific Avenue to the south. The total site area is 3.13 acres.

Electrical service to the entire proposed project is provided by the City of Los Angeles Department of Water and Power.

City of Los Angeles Department of Water and Power (LADWP) electric maintains a transmission lines along the west property line on Main Street. This transmission line is 4.8 KV. There is also Transmission lines on the far side of Pacific Avenue. This line is also a 4.8 KV line. The current service comes off the Main Street transmission line to a set of transformers on the northwest corner of Main Street and Thornton Place. These transformers service the property and supply 240 volts at 3 phase.

Under the proposed plans for "The Depot" the existing transformers will need to be moved to accommodate the proposed building. The existing service transformers will have to be evaluated to see if they can deliver the proposed projects new load or they will have to upgrade. The proposed load for the complete site will need to be submitted to LADWP as soon as our proposed electrical load is known. A capacity study will be conducted by LADWP at that time.

APPENDIX H - MOTIONS:

WEST LOS ANGELES TRANSPORTATION FACILITY

H1 - Motion by Los Angeles County
 Supervisor Yvonne B. Burke, Agenda Item No. 26,
 September 25, 2003.

H2 - Motion by City of Los Angeles
Mayor & Metro Board Director,

James K. Hahn, Regular Board Meeting,

December 4, 2003.

WEST LOS ANGELES TRANSPORTATION FACILITY H1 - MOTION BY LOS ANGELES COUNTY SUPERVISOR YVONNE B. BURKE, AGENDA ITEM No. 26, SEPTEMBER 25, 2003.

Agenda Item No. 26

While we all certainly realize how important it is for this agency to modernize and expand its bus facilities in order to incorporate new technology and meet growing demands for transit; it is equally important that we balance that need with the responsibility to ensure that such a facility will not only be compatible with the surrounding communities, but compliment them as well. After all, we are looking at a proposed facility that will operate 24 hours per day, 7 days-a-week being retrofitted into these surrounding communities. In essence, the MTA is undertaking the development and construction of a "prototype" for future bus and rail maintenance facilities that may be contemplated in the already developed densely populated urban areas.

As an MTA Board member, I also have a responsibility not only to the constituents of the surrounding communities, but also to my fellow elected representatives, city, state, and federal who represent this area, as well.

Over the past several months as MTA has sought to develop and bring this issue forward to the Board for consideration, I have voiced my concerns over the need to ensure that noise, traffic and air quality issues be mitigated to the fullest extend needed. I am willing to lend my conditional and qualified support to this project on the basis that in the preparation of the Environmental Impact Report (EIR) staff will return to this board with an EIR that clearly mitigates noise, traffic and air quality to the levels described in the recommendations stated below. It is imperative that we ensure the needs of the surrounding communities are being met.

I, Therefore, Move that the Board Approve the Development Exchange Agreements as reflected in item No. 26 subject to the following conditions:

MTA staff, and the developer will continue to work closely with the community throughout the EIR process and potential construction.

 MTA staff will assemble and convene a Design Review committee made up of representatives from Blair Hills, Cameo Woods and East Culver city as well as representatives from the neighboring commercial community.

Traffic impacts identified through the EIR must be fully mitigated, including (but not limited to)

- MTA buses not in service, must stay off La Cienega south of Jefferson, and off of Rodeo Road between La Cienega and Jefferson during peak periods.
- MTA busses shall further avoid using Rodeo Road, west of La Cienega, during the hours from 9:00PM to 7:00Am.

- Noise Mitigations must be put in place to ensure that the facility does not increase the ambient noise levels identified during the EIR in the neighboring residential areas, particularly Cameo Woods, Blair Hills, Baldwin Gardens, and East Culver City especially between the hours of 9:00 PM and 7:00 AM.
- Additionally, noise mitigations shall be included to prevent and avoid loud impact noises during those periods, as well.
- Noise mitigations shall also be included dealing specifically with noise associated with employees and cars entering and leaving the parking facility in the late night and early morning hours especially during the change of shift periods.

H2 - Motion by City of Los Angeles
Mayor & Metro Board Director,
James K. Hahn, Regular Board Meeting,
December 4, 2003.

Motion By Director James K. Hahn

37

Many complex environmental issues, such as air quality, stormwater runoff, and the push for renewable energy sources, impact Southern California. As a result, all business practices and new developments that affect the different environmental media are drawing increased scrutiny from the regulatory community. In response to these pressures, there have been many examples of great leadership within Southern California, and Los Angeles County in particular. Such examples include the MTA conversion of the majority of its diesel fleet to compressed natural gas (CNG), the City of Los Angeles and the Los Angeles Community College District adopting the Leadership in Energy and Environmental Design (LEEDTM) sustainable building rating system, and the Los Angeles Department of Water and Power increase in its renewable energy portfolio and sustained rebate offers for the use of solar power.

As a member of the MTA Board, I am interested in exploring the possibility of the MTA blazing more trails in the interest of the environment, especially with a 21st Century proposal like that for Division 6.

- I, Therefore, Move that the Board direct MTA Staff to explore the feasibility of, and report back in 60 days on, the inclusion of sustainable building practices into the design for this facility, and for subsequent MTA developments of this magnitude, including, but not limited to such measures as:
 - LEED certification for the design of the main building structure at the site.
 - The installation of photovoltaic (solar) panels for future energy savings.
 - Consider their use as mechanisms to provide shade for parked buses and/or employee vehicles.
 - Determine how much DWP rebates would be able to offset the installation costs.
 - The implementation of Stormwater Best Management Practices (BMPs) in order to reduce the amount of, and improve the quality of, runoff into the City storm drain system, which drains into Ballona Creek, and subsequently to the Santa Monica Bay.
 - o Consider options for on-site water retention and reuse.