4.1 TRANSPORTATION, PARKING AND SAFETY

This section provides an overview of transportation and traffic and evaluates the construction and operational impacts associated with *Mobility Plan 2035* (MP 2035 or proposed project). Topics addressed include the circulation system; congestion management plan; emergency access; public transit; bicycle, and pedestrian facilities; and safety.

The section is organized as follows:

- **Regulatory Framework** describes the pertinent federal, state, and local laws and guidelines.
- Existing Setting provides a general summary and overview of transportation systems as well as measures of existing travel patterns and operating conditions.
- Thresholds of Significance lists the thresholds used in identifying significant impacts.
- Impacts discusses the methodology used to assess impacts, including an overall discussion of methodology and assumptions, followed by a listing of thresholds and how the MP 2035 is expected to perform for each of them.
- **Mitigation Measures** are identified as necessary and feasible to reduce identified significant adverse impacts.
- Level of Significance after Mitigation identifies residual impacts after application of mitigation measures.

REGULATORY FRAMEWORK

Federal

Americans with Disabilities (ADA) Act of 1990. Titles I, II, III, and V of the ADA have been codified in Title 42 of the United States Code, beginning at section 12101. Title III prohibits discrimination on the basis of disability in "places of public accommodation" (businesses and non-profit agencies that serve the public) and "commercial facilities" (other businesses). The regulation includes Appendix A to Part 36 (Standards for Accessible Design), establishing minimum standards for ensuring accessibility when designing and constructing a new facility or altering an existing facility. Examples of key guidelines include detectable warnings for pedestrians entering traffic where there is no curb, a clear zone of 48 inches for the pedestrian travelway and a vibration-free zone for pedestrians.

State

Complete Streets Act. Assembly Bill 1358, the Complete Streets Act (Government Code Sections 65040.2 and 65302), was signed into law by Governor Arnold Schwarzenegger in September 2008. As of January 1, 2011, the law requires cities and counties, when updating the part of a local general plan that addresses roadways and traffic flows, to ensure that those plans account for the needs of all roadway users. Specifically, the legislation requires cities and counties to ensure that local roads and streets adequately accommodate the needs of bicyclists, pedestrians and transit riders, as well as motorists.

At the same time, the California Department of Transportation (Caltrans) unveiled a revised version of Deputy Directive 64, an internal policy document that now explicitly embraces Complete Streets as the policy covering all phases of state highway projects, from planning to construction to maintenance and repair.

Statewide Transportation Improvement Program (STIP). Caltrans administers transportation programming for the State. Transportation programming is the public decision-making process that sets priorities and funds projects envisioned in long-range transportation plans. It commits expected revenues

over a multi-year period to transportation projects. The STIP is a multi-year capital improvement program of transportation projects on and off the State Highway System, funded with revenues from the State Highway Account and other funding sources.

Congestion Management Program (CMP). To address the increasing public concern that traffic congestion is impacting the quality of life and economic vitality of the State of California, the CMP was enacted by Proposition 111, passed by voters in 1990. The intent of the CMP is to provide the analytical basis for transportation decisions through the STIP process.

Regional

A number of regional improvement plans affect transportation in the City of Los Angeles. They include the Los Angeles County CMP and the Long Range Transportation Plan (LRTP) prepared by Los Angeles County Metropolitan Transportation Authority (Metro), the Regional Transportation Plan and Sustainable Communities Strategy (RTP/SCS), the Regional Transportation Improvement Plan (RTIP), the Regional Comprehensive Plan (RCP), and the Compass Growth Vision prepared by the Southern California Association of Governments (SCAG), and the City of Los Angeles General Plan and 2010 Bicycle Plan.

Southern California Association of Governments (SCAG) 2012-2035 Regional Transportation Plan and Sustainable Communities Strategy (RTP/SCS) and Regional Transportation Improvement Program (RTIP). SCAG adopted the RTP/SCS in April 2012. The RTP/SCS is a planning document required under state and federal statute that encompasses the SCAG region, including six counties: Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial. The RTP/SCS forecasts long-term transportation demands and identifies policies, actions, and funding sources to accommodate these demands. The RTP/SCS consists of the construction of new transportation facilities, transportation systems management strategies, transportation demand management and land use strategies. The RTIP, also prepared by SCAG based on the RTP/SCS, lists all of the regional funded/programmed improvements over a six year period.

Southern California Association of Governments (SCAG) Regional Comprehensive Plan (RCP). SCAG has prepared the RCP in collaboration with its constituent members and other regional planning agencies. The SCAG Regional Council adopted the RCP in October 2008 as an advisory informational document only. The 2008 RCP is intended to serve as a framework to guide decision-making with respect to the growth and changes that can be anticipated in the region through the year 2035. The RCP features nine chapters that focus on specific areas of planning or resource management that includes: Land Use and Housing; Open Space and Habitat; Water; Energy; Air Quality; Solid Waste; Transportation; Security and Emergency Preparedness and Economy. Local governments are required to use the RCP as the basis for their own plans and are required to discuss the consistency of projects of regional significance with the RCP. The Transportation chapter of the RCP focuses on addressing demand on the transportation system from growth in population, employment and households; preserving, wisely utilizing, and, when necessary, expanding our infrastructure, and funding.

2010 Congestion Management Program (CMP) for Los Angeles County. Metro, the local CMP agency, has established an approach to implement the statutory requirements of the CMP. The Metro Board adopted the 2010 CMP in October 2010. The approach includes designating a highway network that includes all State highways and principal arterials within the County and monitoring the network's congestion. The CMP identifies a system of highways and roadways, with minimum levels of service performance measurements designated at Level of Service E (unless exceeded in base year conditions) for highway segments and key roadway intersections on this system. For all CMP facilities within the project study area a traffic impact analysis (TIA) is required. The analysis must: investigate measures which will mitigate the significant CMP system impacts; develop cost estimates, including the fair share costs to mitigate impacts of the proposed project; and, indicate the responsible agency. Selection of final mitigation measures is left at the discretion of

the local jurisdiction. Once a mitigation program is selected, the jurisdiction self-monitors implementation through the existing mitigation monitoring requirements of California Environmental Quality Act (CEQA).

Metro 2009 Long Range Transportation Plan (LRTP). The 2009 LRTP also includes funding for general categories of improvements, such as Arterial Improvements, Nonmotorized Transportation, Rideshare and Other Incentive Programs, Park-and-Ride Lot Expansion, and Intelligent Transportation System (ITS) improvements for which Call for Project Applications can be submitted for projects in the Plan area.

Local

City of Los Angeles General Plan – General Plan Transportation Element. The City of Los Angeles General Plan provides growth and development policies by providing a comprehensive long-range view of the City as a whole. The General Plan provides a comprehensive strategy for accommodating long-term growth should it occur as projected. The City of Los Angeles General Plan Transportation Element, adopted in 1999, includes a discussion of the existing roadway infrastructure in the City of Los Angeles. Goals, objectives, and policies are included in the Transportation Element to ensure the efficient circulation within the City and region.

City of Los Angeles Community Plans. Community Plans guide the physical development of neighborhoods by establishing the goals and policies for land use. The land use element is one of the state-required elements of a City's General Plan and is required to be updated periodically. While the General Plan sets out a long-range vision and guide to future development, the 35 Community Plans provide the specific, neighborhood-level detail, transportation network, relevant policies, and implementation strategies necessary to achieve the General Plan objectives.

City of Los Angeles 2010 Bicycle Plan (Bicycle Plan or 2010 Plan). The Bicycle Plan on March 1, 2011. The Bicycle Plan is a component of the Transportation Element of the City's General Plan. The purpose of the Bicycle Plan is to increase, improve, and enhance bicycling in the City as a safe, healthy, and enjoyable means of transportation and recreation. The Bicycle Plan establishes policies and programs to increase the number and type of bicyclists in the City and to make every street in the City a safe place to ride a bicycle.

The City is implementing the Bicycle Plan in a series of Five-Year Implementation Strategies, monitored, advised, and assisted by the Bicycle Advisory Council and the Bicycle Plan Implementation Team. The First Five-Year Implementation Strategy, started in 2011, prioritizes the first 253 miles of new bikeways for implementation. As the City updates each of its 35 Community Plans, it can include localized recommendations that address community-specific conditions and are consistent with and complementary to the 2010 Bicycle Plan. As each Community Plan is updated, future bicycle lanes in that planning area will be analyzed for potential environmental impacts.

The Bicycle Plan has been updated to reflect public input received since the 2010 Bicycle Plan was adopted on March 1, 2011. The 2010 Bicycle Plan, in its entirety, has been incorporated into the MP 2035 and is no longer a standalone chapter devoted to a single mode but instead reflects the City's commitment to a holistic and balanced complete street approach that acknowledges the role of multiple modes (pedestrians, bicycles, transit, and vehicles). The Technical Design Handbook has been incorporated into the new Complete Streets Manual and includes sections on design needs, bicycle paths, bicycle lanes, bicycle routes and neighborhood friendly streets, network gaps, signalized intersections, bicycle parking, bikeway signage, non-standard treatments, and street sections.

Los Angeles City Municipal Code (LAMC). LAMC Section 12.37 contains requirements related to highway and collector street dedication and improvement. LAMC Section 17.05 contains standards that would be updated to expand the role of the Street Standards Committee and to reflect the City's new focus on complete streets.

Ordinance No. 182242 amends LAMC Sections 12.04, 12.24, 12.32, and 13.15 and adds a new Section 13.17 to enable the establishment of Modified Parking Requirement (MPR) Districts. MPR Districts allow the modification of parking requirements within the MPR District to maintain the required number of parking spaces for any permitted use in the District, to allow off-site parking within 1,500 feet of the site, to reduce parking requirements for individual projects, to establish less restrictive parking requirements by use within the District, to create a commercial parking credit program, or to establish maximum parking requirements within the District.

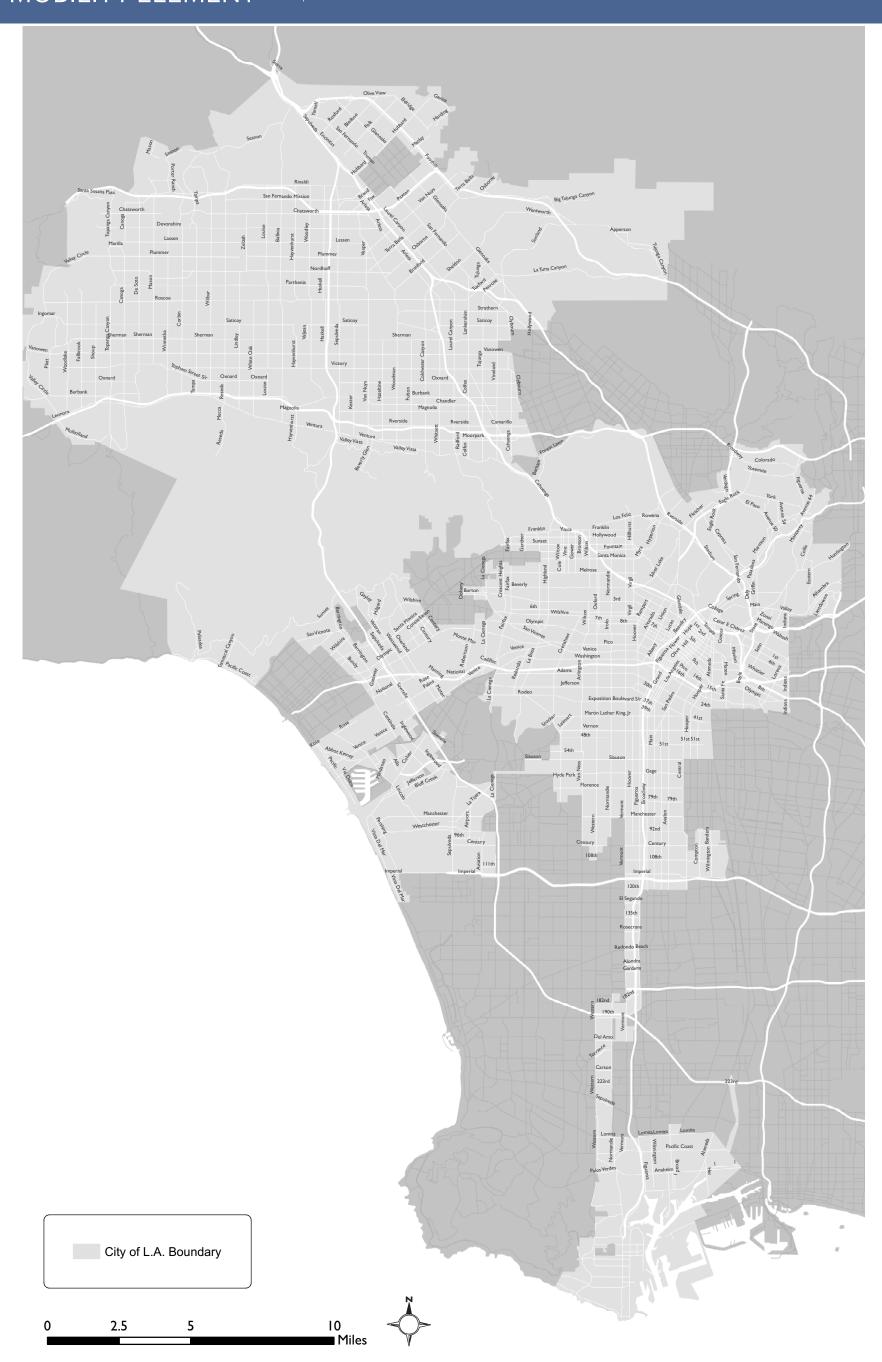
EXISTING SETTING

Circulation System

Overview

The study area is defined by the boundaries of the City of Los Angeles, illustrated in **Figure 4.1-1**. The City of Los Angeles is served by a circulation system that facilitates travel by multiple modes, including walking, bicycling, public transit, and motor vehicles. This circulation system includes an extensive network of freeways, highways, and local streets. The City of Los Angeles General Plan contains definitions, goals and objectives, and regulatory requirements for a variety of roadway classifications that make up the City's roadway system. The City has five general categories of roadway classifications, including Major Highway, Secondary Highway, Collector Street, and Local Street. These roadway classifications consider the level of traffic volume, roadway capacity, and its functions:

- Major highways generally provide four to eight lanes of travel and have access to intersecting freeways;
- Secondary highways typically have four travel lanes; and
- Collector and local streets provide two travel lanes.


The General Plan also recognizes Transit Priority Streets, Scenic Highways, and Non-Motorized Streets. Designations of Transit Priority Streets include Primary Transit Priority Streets, Transit Priority Streets, and Future Transit Priority Streets. Designations of Non-Motorized Streets include Class I, Class II, and Class III Bikeways, and Commuter Bikeways.

Regional Access

The City of Los Angeles includes seven freeways that traverse the 181 miles of the City and connect Los Angeles to its outer regions in the north-south and the east-west directions. They include Interstates (I) 5, 10, 105, 110, 210, 405, and United States Highway (US) 101. The City has eleven state highways (SR) 1, 2, 47, 60, 90, 103, 110, 118, 134, 170 and 187. Bicycles and pedestrians are not allowed on freeways, but are allowed on some state highways that function as arterial roads. Portions of state highways, including Pacific Coast Highway (SR-1), Santa Monica Boulevard (SR-2), Slauson Avenue (SR-90), and Venice Boulevard (SR-187), are currently designated as part of the citywide bikeway network. Freeways and state highways also accommodate transit vehicles.

Local Roadway Network

Los Angeles has over 7,500 miles of public streets that accommodate a variety of motorized vehicles, including private motor vehicles, taxis, freight vehicles, and transit vehicles. The experiences of pedestrians and bicyclists are also important users of the local roadway network. Pursuant to the California Vehicle Code, bicycles are allowed on any street within the local street system. The existing citywide bicycle network identifies a series of interconnected streets and pathways on which bicycling is encouraged. Most roadways are aligned on a grid system providing multiple route options for traveling throughout the City.

City of Los Angeles MP 2035 Draft EIR

The City's street system is currently divided into four functional classifications: Major Highways, Secondary Highways, Collector Streets, and Residential Streets, each described in Table 4.1-1. Residential Streets comprise approximately 60 percent of the City's street system, while Major Highways, Secondary Highways, and Collector Streets, collectively known as "select streets," comprise approximately 40 percent of the local roadway network.1

TABLE 4.1-1: CITY OF LOS ANGELES STREET SYSTEM FUNCTIONAL CLASSIFICATION			
Functional Classification	Approximate Share of Public Streets	Description	
Major Highways		Serve the major centers of activity of a metropolitan area, the highest traffic volume corridors, and the longest trip desires; carry a high proportion of the total urban area travel on a minimum of mileage. The system should be integrated, both internally and between major urban connections.	
Secondary Highways	40%	Interconnect with and augment the urban principal arterial system and provide service to trips of moderate length at a somewhat lower level of travel mobility than principal arterials. This system also distributes travel to geographic areas smaller than those identified with the Major Highway system.	
Collector Streets		Provide both land access service and traffic circulation within residential neighborhoods, commercial and industrial areas. It differs from the arterial system in that facilities on the collector system may penetrate residential neighborhoods, distributing trips from the arterials through the area to the ultimate destination.	
Residential Streets / Local Streets	60%	Comprises all facilities not on one of the higher systems. It serves primarily to provide direct access to abutting land and access to the higher order systems. It offers the lowest level of mobility and usually contains no bus routes. Service to through, traffic movement usually is deliberately discouraged.	
SOURCE: State of the St	reets, City of Los Angeles	s Department of Public Works Bureau of Street Services, 2011.	

Emergency Access

California state law requires that drivers yield the right-of-way to emergency vehicles and remain stopped until the emergency vehicles have passed. Generally, multi-lane arterial roadways allow the emergency vehicles to travel at higher speeds and permit other traffic to maneuver out of the path of the emergency vehicle.

The Los Angeles Fire Department in collaboration with Los Angeles Department of Transportation (LADOT) has developed a Fire Preemption System (FPS), a system that automatically turns traffic lights to green for emergency vehicles travelling on designated streets in the City. The City of Los Angeles has over 205 miles of routes equipped with FPS.²

Public Transit

The study areas are served by multiple transit operators, with networks connecting different communities within and outside of the City of Los Angeles. The primary transit operator in the City is Metro. Metro provides bus, light rail and heavy rail (subway) services within Los Angeles County. In addition, the LADOT operates local and commuter bus routes, which mainly connect the downtown area and the remaining parts of the City. There are also several regional rail and municipal bus operators which provide regional transit services between the City of Los Angeles and municipalities in the outer region.

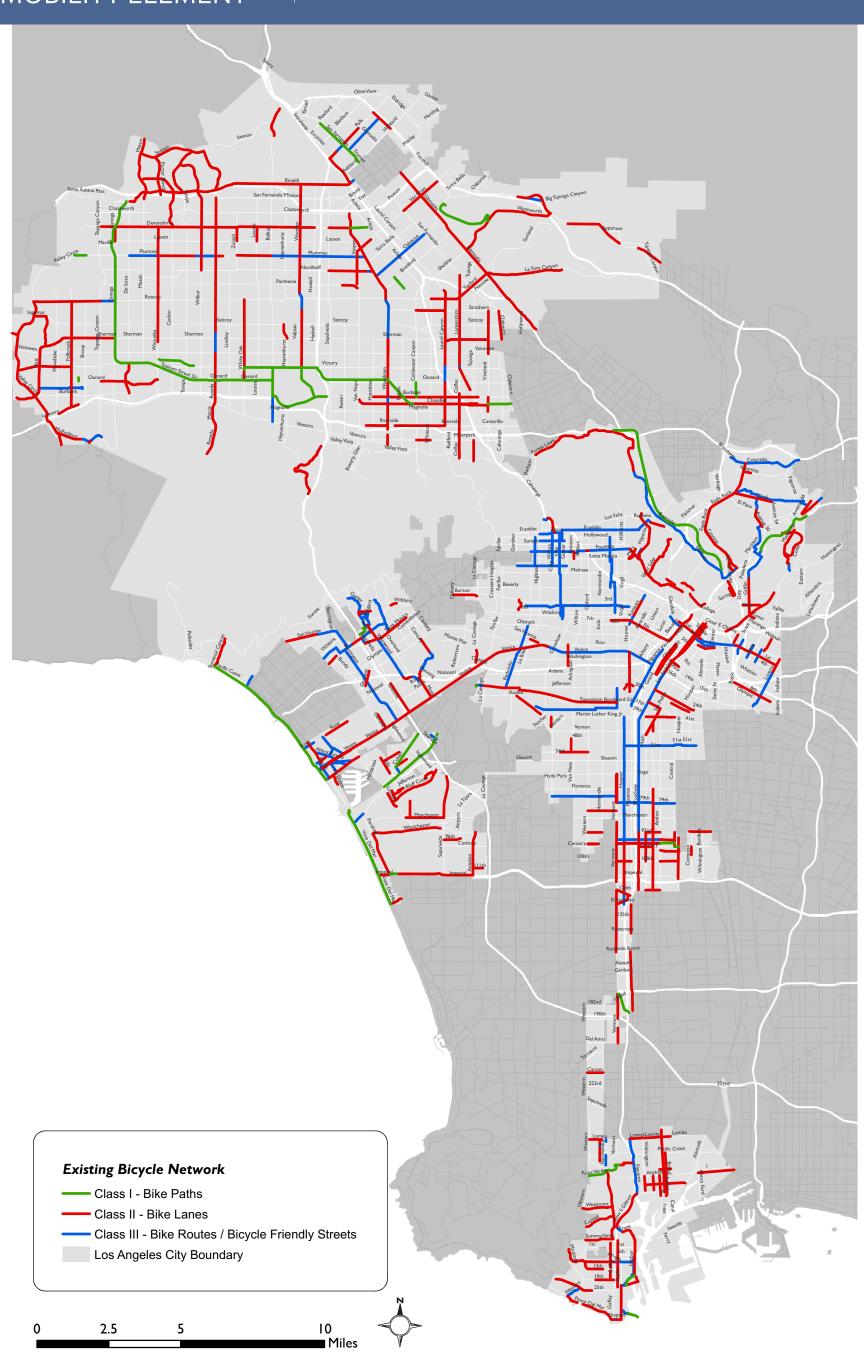
4 1-6 taha 2012-095

¹State of the Streets, City of Los Angeles Department of Public Works Bureau of Street Services, 2011.

²Training Bulletin: Traffic Signal Preemption System for Emergency Vehicles, Los Angeles Fire Department, Bulletin No. 133, October, 2008.

Los Angeles County Metropolitan Transportation Authority (Metro). Metro provides bus, light rail and heavy rail services within Los Angeles County. There are two Metro heavy rail lines (i.e., Red and Purple) that operate in a dedicated subway. Metro's four light rail lines (i.e., Blue, Green, Gold, and Expo) use shorter trains than heavy rail, generally operate at slower speeds, receive power from overhead wires, and run along rights-of-way ranging from complete grade separation to at-grade operation in mixed-flow traffic. Metro's six types of bus service can be divided by operating conditions. Metro Liner service (i.e., the Orange and Silver Lines) operates either in an exclusive right-of-way or along High Occupancy Vehicle (HOV) or High Occupancy Toll (HOT) lanes. During the weekday PM peak period, headways are generally 5 to 10 minutes for each line. Metro also operates approximately 180 bus routes in mixed traffic on its Rapid, Express, Limited Stop, Local, and Shuttle services. These bus services vary considerably in speed, frequency and capacity.

<u>Los Angeles Department of Transportation (LADOT)</u>. LADOT provides local and commuter express bus services in the City. The DASH (originally Downtown Area Short Hop) operates 31 local routes covering Downtown Los Angeles and many outlying communities within the City. The Commuter Express operates 14 routes making a limited number of stops and transporting passengers between Downtown Los Angeles and other major centers within the City. All Commuter Express routes except for one operate during the peak hours only in the peak direction.


Other Transit Operators. There are several other transit operators that provide transit services between the City of Los Angeles and outlying cities. These transit operators include Santa Monica Municipal Bus Lines (Big Blue Bus); Culver City Transit; Orange County Transportation Authority (OCTA); Riverside Transit Agency; OmniTrans, which serves the San Bernardino Valley; Santa Clarita Transit; Gardena Transit; Torrance Transit; and Montebello Bus Lines.

In addition, commuter rail services to Downtown are primarily provided by Metrolink and Amtrak. Metrolink covers six counties (Los Angeles County, Orange County, San Diego County, Riverside County, San Bernardino County and Ventura County) in Southern California with seven lines. Amtrak also serves communities along the coast in Southern California. Most passengers on Metrolink and Amtrak arrive at Union Station, from which connecting services to their destinations are provided by Metro or LADOT.

Bicycle Network

The existing bicycle network within the City of Los Angeles consists of 503 miles of on- and off-street facilities, shown in **Figure 4.1-2**. Bicycle facilities are classified based on the typology presented in **Table 4.1-2**

TABLE 4.1-2: BICYCLE CLASSIFICATION SYSTEM				
Bicycle Facility Classification	Length (miles)	Description		
Class I Bikeways (Bike Paths)	58	Exclusive, car-free facilities that are typically not located within a roadway area. They are located within or adjacent to river corridors (Arroyo Seco, Ballona Creek, Los Angeles River), transit corridors (Orange Line), City parks (Balboa Park), or the coast (Venice Beach/Marvin Braude).		
Class II Bikeways (Bike Lanes)	324	Part of the street design that is dedicated only for bicycles and identified by a striped lane separating vehicle lanes from bicycle lanes. Lanes are most commonly found on major arterials (Sunset and Venice Boulevard) and on wide collector streets (Chandler Boulevard, Griffith Park Boulevard).		
Class III Bikeways (Bike Routes and Bicycle Friendly Streets)	121	In-road bikeways where bicycles and motor vehicles share the roadway. They are typically intended for streets with low traffic volumes, signalized intersections at crossings or wide outside lanes. A Bicycle-Friendly Street shall be defined as a Local (Residential) and/or Collector Street that includes at least two traffic-calming engineering treatments in addition to signage and shared lane markings.		
		y of Los Angeles Bikeways, Los Angeles Department of Transportation, accessed a, September 2013; Description adapted from 2010 Bicycle Plan, Los Angeles Department of City Planning, 2011.		

Bicycle integration with transit allows cyclists to bring their bikes on board transit for a portion of their trips. Bicycles are allowed in designated areas on Metro trains at no extra charge at all times. Most Metro and LADOT buses are equipped with two bicycle racks at the front of the bus, and bicyclists are allowed to load their bicycles on the rack when there is space available at no extra charge. If the rack is full, bicyclists are asked to wait for the next bus.

Bikes are allowed on all Metrolink trains at all times with a capacity of up to three bikes per car. As part of its green initiative program, Metrolink also added special bike cars which could accommodate up to 18 bikes per car on select trains. Amtrak generally allows bikes onboard for free on select routes including Pacific Surfliner.

Pedestrian Facilities

In Los Angeles County, approximately 14 percent of trips are made by walking and nearly all trips require at least some amount of walking.³ There are 40,000 intersections in the City of Los Angeles, 4,300 of which are signalized, and approximately 22,000 marked crosswalks.⁴ An estimated 42 percent of the City's 10,750 miles of sidewalks are in disrepair.⁵

While nearly the entire City is heavily developed, development patterns and streetscape conditions vary considerably across the City. Parts of Downtown Los Angeles, Koreatown, Hollywood, and Westwood Village, for example, have a variety of pedestrian-oriented uses fronting the sidewalk. Some residential portions of the San Fernando Valley have narrower street widths and less-connected residential streets than other parts of the city, while other areas of the Valley are characterized by long blocks fronted by surface parking lots. Still other parts of the City are characterized by industrial land uses offering little in the way of pedestrian amenities.

The City of Los Angeles General Plan designates commercial and neighborhood activity centers that are characterized by ground floor retail and service uses oriented to pedestrians along the sidewalk as Pedestrian Priority Street segments. In general, sidewalks are 10 to 12 feet wide. Pedestrian Priority Street segments are recommended to have wider sidewalks of 15 to 17 feet in width and other pedestrian friendly features such as curb side parking, wide crosswalks with a minimum width of 15 feet, and traffic signal modifications to ensure longer pedestrian crossing times, where warranted.

Existing Travel Patterns and Operating Conditions

Mode Split

The City of Los Angeles' Travel Demand Forecasting Model (travel demand model or model) estimates the mode split of existing peak period person trips within the City. Overall, over 80 percent of peak period person trips are made by automobile, over 14 percent are made by walking, over 3 percent by transit, and nearly 1 percent by bicycle. **Table 4.1-3** provides additional existing mode split detail by APC and **Table 4.1-4** provides a summary of peak period person trips by mode for all trips occurring in the City. By comparison, the survey-based SCAG Profile of the City of Los Angeles reports that 82 percent of year 2012 journey-to-work trips were made by auto, 12 percent by public transit, and 6 percent by other modes. Since the purpose of most transit trips nationwide is work (59.2 percent), it is reasonable to expect a higher transit mode share for journey-to-work trips than for peak period trips of all purposes.

³Metro, Pedestrian Planning website, http://www.metro.net/projects/ped/, accessed March 1, 2012.

⁴The City of Los Angeles Transportation Profile, City of Los Angeles Department of Transportation, 2009.

⁵"A citizens sidewalk brigade for L.A.," *Los Angeles Times*, September 11, 2012.

⁶ *Profile of the City of Los Angeles.* Southern California Association of Governments. May 2013. http://www.scag.ca.gov/Documents/LosAngeles.pdf.

⁷2011 Public Transportation Fact Book. American Public Transportation Association. April 2011. http://www.apta.com/resources/statistics/Documents/FactBook/APTA 2011 Fact Book.pdf.

TABLE 4.1-3: EXISTING PEAK PERIOD MODE SPLIT						
Area Planning Commission	Auto	Transit	Bike	Walk		
North Valley	84.2%	2.3%	0.8%	12.7%		
2. South Valley	83.1%	2.5%	0.9%	13.5%		
3. Central	78.9%	4.4%	1.1%	15.6%		
4. East Los Angeles	81.7%	3.5%	0.9%	13.9%		
5. West Los Angeles	81.7%	2.4%	1.1%	14.9%		
6. South Los Angeles	80.5%	4.0%	0.9%	14.7%		
7. Harbor	83.9%	2.2%	0.8%	13.1%		
TOTAL	81.7%	3.1%	0.9%	14.2%		
SOURCE: City of Los Angeles Travel Demand Model, 2013.						

TABLE 4.1-4: EXISTING PEAK PERIOD PERSON TRIPS BY MODE (IN THOUSANDS)						
Area Planning Commission Auto Transit Bike Walk						
North Valley	962	27	9	146		
2. South Valley	1,161	35	12	188		
3. Central	1,252	70	17	248		
4. East Los Angeles	505	22	5	86		
5. West Los Angeles	773	22	10	141		
6. South Los Angeles	779	39	8	142		
7. Harbor	275	7	3	43		
TOTAL	5,710	219	65	993		
SOURCE: City of Los Angeles Travel Demand Model, 2013.						

Vehicular Travel Patterns

The travel demand model provides information about the type and number of trips and the amount of travel on the City's roadways. It should be noted that since traffic volumes are a result of the aggregate travel choices of thousands of individual drivers, variation in the daily and peak period volumes on any given facility is both expected and observed. The Federal Highway Administration (FHWA) and Caltrans guidelines recommend traffic models are calibrated to within 7 to 15 percent for arterials and freeway segments to account for this regular variation. This range is based on studies that show that this range represents the average daily fluctuation in traffic for major roadways. Accordingly, while specific and detailed LOS calculations are provided throughout this document, these estimates of both existing and operating conditions are subject to regular variation due to fluctuations in travel demand.

Trips Crossing City of Los Angeles Boundaries

Table 4.1-5 summarizes the share of trips in the City of Los Angeles by their origin and destination. Trips internal to the City (I-I) both begin and end within the City, though they might cross into other jurisdictions during some portion of the trip. Internal-to-External (I-X) trips begin in the City and end in another jurisdiction, while External-to-Internal (X-I) trips begin in a jurisdiction outside the City of Los Angeles and end within the City. Overall, more than half of the City's daily trips both begin and end within the City.

⁸Per the FHWA Calibration & Adjustment of System Planning Models (FHWA, December 1990); Caltrans Travel Forecasting Guidelines (Caltrans, 1992).

⁹Variability in Traffic Monitoring Data: Final Summary Report (US Department of Energy, August 1997).

TABLE 4.1-5: INTERNAL AND EXTERNAL DISTRIBUTION OF VEHICLE TRIPS WITH ORIGINS AND/OR DESTINATIONS IN THE CITY OF LOS ANGELES							
Area Planning Commission	Internal to City of L.A.	Internal-to-External	External-to-Internal				
North Valley	70%	15%	15%				
2. South Valley	75%	12%	13%				
3. Central	60%	20%	20%				
4. East Los Angeles	45%	27%	28%				
5. West Los Angeles	47%	27%	27%				
6. South Los Angeles	52%	24%	24%				
7. Harbor	30%	35%	35%				
TOTAL	58%	21%	21%				
SOURCE: City of Los Angeles Travel Demand Model, 2013.							

There are a few exceptions: in the East Los Angeles, West Los Angeles, and Harbor Area Planning Commissions (APC), less than half and as few as 30 percent of trips are internal to the City; these APCs share boundaries with neighboring jurisdictions that have many attractive trip origins and destinations.

Vehicle Trips

On a typical weekday, travelers take over 9 million trips by automobile that either start from a point within the City of Los Angeles, end at a point within the City of Los Angeles, or both. More than one third of these trips are taken during the four-hour PM Peak Period between 3:00 and 7:00 p.m. Table 4.1-6 provides additional vehicle trip information by APC.

TABLE 4.1-6: EXISTING VEHICLE TRIPS WITH ORIGINS AND/OR DESTINATIONS IN THE CITY OF LOS ANGELES							
Area Planning Commission	AM Peak Period (3-Hour)	PM Peak Period (4-Hour)	Off-Peak Period (17-Hour)	Daily Total			
North Valley	341,100	502,500	646,000	1,489,600			
2. South Valley	420,500	637,300	819,300	1,877,100			
3. Central	452,800	697,400	914,600	2,064,800			
4. East Los Angeles	184,100	265,100	333,900	783,100			
5. West Los Angeles	304,200	466,600	624,600	1,395,400			
6. South Los Angeles	266,100	373,400	483,400	1,122,900			
7. Harbor	98,000	140,800	180,400	419,200			
TOTAL	2,066,900	3,083,000	4,002,200	9,152,200			
SOURCE: City of Los Angeles Travel Demand Model, 2013.							

Vehicle Miles Traveled

Motorists travel over 75 million vehicle miles on roadways within the City of Los Angeles on an average weekday. Nearly one third of these vehicle miles are traveled during the four-hour PM Peak Period between 3:00 and 7:00 p.m. Although they comprise only 181 miles (3 percent) of the nearly 7,500 miles of roadways in the City of Los Angeles, freeways account for over half of all daily vehicle miles traveled within the City. **Table 4.1-7** provides additional vehicle miles traveled information by APC.

Table 4.1-8 provides additional detail on vehicle miles traveled on freeway mainline segments within the City of Los Angeles. Interstates 405, 5, and 110 and US-101 are the most-traveled freeways in the City. Collectively, the four freeways account for over 25 million vehicle miles traveled, nearly two thirds of all freeway vehicle miles traveled within the City and more than one third of total vehicle miles traveled within the City.

4 1-11 taha 2012-095

TABLE 4.1-7: EXISTING VEHICLE MILES TRAVELED IN THE CITY OF LOS ANGELES						
Area Planning Commission	AM Peak Period (3-Hour)	PM Peak Period (4-Hour)	Off-Peak Period (17-Hour)	Daily Total		
North Valley	1,526,300	2,214,500	2,308,300	6,049,100		
2. South Valley	1,641,900	2,441,500	2,682,800	6,766,200		
3. Central	1,589,300	2,404,200	2,496,000	6,489,500		
4. East Los Angeles	751,700	1,113,100	1,058,700	2,923,500		
5. West Los Angeles	1,275,200	1,907,000	2,305,700	5,487,900		
6. South Los Angeles	1,447,700	2,191,300	2,049,800	5,688,800		
7. Harbor	485,500	711,100	807,300	2,003,900		
Surface Streets	8,717,500	12,982,800	13,708,600	35,408,900		
Freeways (Mainline)	8,291,800	11,686,800	19,878,800	39,857,400		
TOTAL	17,009,400	24,669,600	33,587,200	75,266,200		
SOURCE: City of Los Angeles Travel De	emand Model, 2013.					

TABLE 4.1-8: EXISTING VEHICLE MILES TRAVELED ON FREEWAY MAINLINE SEGMENTS IN THE CITY OF LOS ANGELES					
Freeway	AM Peak Period (3-Hour)	PM Peak Period (4-Hour)	Off-Peak Period (17-Hour)	Daily Total	
I-5	1,207,500	1,673,500	2,943,700	5,824,700	
I-10	741,500	1,056,400	1,922,000	3,719,900	
US-101	1,226,100	1,725,800	3,079,900	6,031,800	
I-105	358,900	514,000	953,000	1,825,900	
I-110	1,058,400	1,504,200	2,510,100	5,072,700	
I-210	487,600	702,400	945,200	2,135,200	
I-405	1,685,600	2,372,300	4,390,100	8,448,000	
SR-2	153,100	221,300	287,100	661,500	
SR-60	94,700	129,500	207,300	431,500	
SR-118	489,300	700,900	1,000,800	2,191,000	
SR-134	524,000	719,100	1,075,200	2,318,300	
SR-170	211,100	292,500	449,600	953,200	
SR-47,103	54,000	75,100	114,400	243,500	
TOTAL	8,291,800	11,686,800	19,878,800	39,857,400	

Vehicle Hours Traveled

Motorists spend over 3.7 million vehicle hours on roadways within the City of Los Angeles on an average weekday. More than 40 percent of these vehicle hours are traveled during the four-hour PM Peak Period between 3:00 and 7:00 p.m. Although they account for over half of all daily vehicle miles traveled within the City, freeways account for only about 40 percent of all vehicle hours, reflecting their higher travel speeds. **Table 4.1-9** provides additional vehicle hours traveled information by APC.

Table 4.1-10 provides additional detail on vehicle hours traveled on freeway mainline segments within the City of Los Angeles. Motorists in the City spend the most time traveling on Interstates 405, 5, and 110 and US-10. Collectively, the four freeways account for over 1 million vehicle hours traveled, nearly 70 percent of all freeway vehicle hours traveled within the City. One out of every three minutes that motorists spend behind the wheel in the City is on these four freeways.

TABLE 4.1-9: EXISTING VEHICLE HOURS TRAVELED IN THE CITY OF LOS ANGELES						
AM Peak Period (3-Hour)	PM Peak Period (4-Hour)	Off-Peak Period (17-Hour)	Daily Total			
78,600	117,100	87,400	283,100			
93,900	146,000	112,500	352,400			
133,400	214,000	142,900	490,300			
56,100	87,200	50,800	194,100			
106,300	168,000	124,200	398,500			
92,300	149,900	95,100	337,300			
25,700	38,900	33,600	98,200			
586,300	921,100	646,400	2,153,800			
405,800	602,400	560,600	1,568,800			
992,100	1,523,400	1,207,100	3,722,600			
	AM Peak Period (3-Hour) 78,600 93,900 133,400 56,100 106,300 92,300 25,700 586,300 405,800	AM Peak Period (3-Hour) PM Peak Period (4-Hour) 78,600 117,100 93,900 146,000 133,400 214,000 56,100 87,200 106,300 168,000 92,300 149,900 25,700 38,900 586,300 921,100 405,800 602,400 992,100 1,523,400	AM Peak Period (3-Hour) PM Peak Period (4-Hour) Off-Peak Period (17-Hour) 78,600 117,100 87,400 93,900 146,000 112,500 133,400 214,000 142,900 56,100 87,200 50,800 106,300 168,000 124,200 92,300 149,900 95,100 25,700 38,900 33,600 586,300 921,100 646,400 405,800 602,400 560,600 992,100 1,523,400 1,207,100			

TABLE 4.1-10: EXISTING VEHICLE HOURS TRAVELED ON FREEWAY MAINLINE SEGMENTS IN THE CITY OF LOS ANGELES						
Freeway	AM Peak Period (3-Hour)	PM Peak Period (4-Hour)	Off-Peak Period (17-Hour)	Daily Total		
I-5	71,100	94,600	86,800	252,500		
I-10	38,400	60,700	55,200	154,300		
US-101	69,400	103,800	96,600	269,800		
I-105	13,800	21,800	23,600	59,200		
I-110	49,300	75,900	70,500	195,700		
I-210	15,100	22,500	18,100	55,700		
I-405	93,300	142,300	137,500	373,100		
SR-2	6,500	9,500	6,000	22,000		
SR-60	4,200	6,000	5,600	15,800		
SR-118	13,400	20,300	19,800	53,500		
SR-134	21,300	31,300	26,300	78,900		
SR-170	8,200	11,200	11,600	31,000		
SR-47,103	1,800	2,400	3,100	7,300		
TOTAL	405,800	602,400	560,600	1,568,800		

Level of Service Methodology

Level of Service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent conditions at LOS A to overloaded conditions at LOS F. LOS definitions for street segments are summarized in Table 4.1-11. The Los Angeles Department of Transportation (LADOT) has established LOS D as a minimum satisfactory LOS. LOS can be determined by dividing demand volume by capacity, and the resulting volume to capacity (V/C) ratio is then used to obtain the corresponding LOS. The capacity values for the analyzed roadway segments are obtained from the calibrated City of Los Angeles Travel Demand Model.

Plans that involve large areas and are not expected to be fully implemented until Year 2035 or beyond (such as mobility element updates) are not analyzed effectively by detailed intersection V/C analyses. In this case, roadway segment analysis is sufficient to determine the service capacity of the roadway network within the City.

4.1-13 taha 2012-095

Senate Bill 743 directs the Office of Planning and Research to develop revisions to the CEQA Guidelines by July 1, 2014 to establish new criteria for determining the significance of transportation impacts and define alternative metrics for traffic level of service. Since this guidance is not yet defined, the transportation analysis in this document relies on the legal context and policy framework in place at the time of project initiation. It is possible that some or all of the impacts related to vehicular LOS that are considered significant under the current legal and policy framework would no longer be considered significant if analyzed using the new criteria.

IABL		WAY SEGMENT LEVEL OF SERVICE DEFINITIONS
LOS	Volume/ Capacity Ratio	Definition
A	0.00 - 0.60	Describes primarily free flow-operations at average travel speeds usually about 90 percent of the free flow speed for the arterial class. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Stopped delay at signalized intersections is minimal.
В	0.61 - 0.70	Represents reasonably unimpeded operations at average travel speeds usually about 70 percent of the free flow speed for the arterial class. The ability to maneuver within the traffic stream is only slightly restricted and stopped delays are not bothersome.
С	0.71 - 0.80	Represents stable operations. However, ability to maneuver and change lanes in midblock locations may be more restricted than in LOS B, and longer queues and/or adverse signal coordination may contribute to lower average travel speeds of about 50 percent of the average free flow speed for the arterial class.
D	0.81 - 0.90	Borders on a range on which small increases in flow may cause substantial increases in approach delay and, hence, decreases in arterial speed. This may be due to adverse signal progression, inappropriate signal timing, high volumes, or some combination of these. Average travel speeds are about 40 percent of free flow speed.
E	0.91 - 1.00	Is characterized by significant approach delays and average travel speeds of one-third the free flow speed or lower. Such operations are caused by some combination of adverse progression, high signal density, extensive queuing at critical intersections, and inappropriate signal timing.
F	> 1.00	Characterizes arterial flow at extremely low speeds below one-third to one-quarter of the free flow speed. Intersection congestion is likely at critical signalized locations, with high approach delays resulting. Adverse progression is frequently a contributor to this condition.

Existing Transportation Conditions

The AM and PM peak period V/C and corresponding LOS for the roadways in the City of Los Angeles are summarized in **Tables 4.1-12 and 4.1-13** by APC. The results reported in these tables reflect the operating conditions of all roadway segments classified as major highways, secondary highways, and collector streets within the City of Los Angeles. In both the AM and PM peak periods, the Central Area Planning has the highest share of segments operating at LOS E or F, followed closely by East Los Angeles and West Los Angeles. In the AM peak period, over 20 percent of Central APC segments operate at LOS E or F, increasing to 30 percent in the PM peak period. Citywide, nearly 13 percent of street segments operate at LOS E or F in the AM peak period, rising to nearly 18 percent in the PM peak period.

0.815 (LOS D)

0.791 (LOS C)

0.715 (LOS C)

0.614 (LOS B)

0.712 (LOS C)

20.5%

20.4%

12.8%

5.1%

12.8%

TABLE 4.1-12: SUMMARY OF EXISTING AM PEAK PERIOD ROADWAY SEGMENTS OPERATING **CONDITIONS** Percent of Segments Operating at: /a/ Weighted Average LOS D or **Area Planning** Unsatisfactory V/C Ratio Commission **Better** LOS E LOS F LOS (E or F) (all segments) /a/ 1. North Valley 0.583 (LOS A) 95.7% 1.6% 2.6% 4.3% 2. South Valley 0.614 (LOS B) 95.1% 2.1% 2.9% 4.9% 3. Central 78.8% 8.6% 12.6% 21.2% 0.774 (LOS C)

6.0%

6.7%

5.4%

2.2%

4.8%

14.5%

13.8%

7.3%

2.9%

8.0%

/a/ Segments include major highways, secondary highways, and collector streets within the City of Los Angeles.

79.5%

79.6%

87.2%

94.9%

87.2%

SOURCE:	Fehr &	Peers,	2013.	

TOTAL

4. East Los Angeles

5. West Los Angeles

6. South Los Angeles

7. Harbor

	Perc	Weighted Average				
Area Planning Commission	LOS D or Better LOS E		LOS F	Unsatisfactory LOS (E or F)	V/C Ratio (all segments) /a/	
North Valley	94.8%	2.1%	3.1%	5.2%	0.599 (LOS A)	
2. South Valley	92.2%	3.9%	3.9%	7.8%	0.649 (LOS B)	
3. Central	70.0%	11.0%	19.0%	30.0%	0.814 (LOS D)	
4. East Los Angeles	73.8%	8.6%	17.6%	26.2%	0.806 (LOS D	
5. West Los Angeles	70.9%	9.3%	19.8%	29.1%	0.828 (LOS D)	
6. South Los Angeles	81.3%	7.5%	11.2%	18.7%	0.769 (LOS C)	
7. Harbor	93.5%	3.1%	3.4%	6.5%	0.624 (LOS B)	
TOTAL	82.1%	6.7%	11.3%	17.9%	0.743 (LOS C)	

Transit Ridership

Metro ridership data indicate a total of 1,117,000 daily boardings at transit stops within the City of Los Angeles under existing conditions. The Central Area Planning Commission, well connected by bus and rail transit, is home to 17 percent of the City's population and 29 percent of its jobs, but accounts for nearly half of its transit boardings.¹⁰ **Table 4.1-14** presents details by APC and time of day.

TABLE 4.1-14: EXISTING TRANSIT BOARDINGS								
Area Planning Commission	Peak Period (7-Hour)	Off-Peak Period (17-Hour)	Daily					
1. North Valley	33,100	28,000	61,100					
2. South Valley	77,200	62,900	140,100					
3. Central	280,800	245,700	526,500					
4. East Los Angeles	44,900	38,600	83,600					
5. West Los Angeles	19,100	16,300	35,400					
6. South Los Angeles	140,500	118,700	259,300					
7. Harbor	6,100	5,200	11,300					
TOTAL	601,800	515,500	1,117,200					
SOURCE: Metro, 2013.								

¹⁰SCAG's 2012-2035 Regional Transportation Plan/Sustainable Communities Strategy, Socioeconomic Data.

THRESHOLDS OF SIGNIFICANCE

Appendix G of the State CEQA Guidelines identifies the following criteria for significant impacts related to transportation/traffic:

- Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit;
- Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways;
- Substantially change transportation safety in the City of Los Angeles;
- Result in inadequate emergency access; and/or
- Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.

The following sections describe how the above criteria have been applied to MP 2035, a long-range transportation planning project.

Consistency with Plans

The proposed project would have a significant impact related to transportation if it would conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.

Circulation System

Based on the criteria set forth in the City of Los Angeles CEQA Thresholds Guide (2006), the determination of significance shall be made on a case-by-case basis. The roadway system is considered to be significantly impacted by traffic generated as a result of future development under the proposed project if one or both of the following criteria are met:

- The "volume-weighted" average of the volume-to-capacity (V/C) ratio under the Year 2035 Project conditions for all of the analyzed roadway segments exceeds that of the Existing traffic conditions and/or Future No Project (2035) traffic conditions; and/or
- The number of roadway links projected to operate at unsatisfactory levels of service (LOS E or F) under the Year 2035 Project conditions exceeds the number for Existing traffic conditions and/or Future No Project (2035) traffic conditions.

For the purposes of evaluating the significant impacts based on the above criteria, the analyzed roadway segments include freeways, major highways, secondary highways, and collector streets within the City of Los Angeles.

Congestion Management Plan

The Los Angeles County Metropolitan Transportation Authority's Congestion Management Program (CMP) was implemented by Metro to analyze the impacts of local land use decisions on the regional transportation system. Local jurisdictions are responsible for assessing the impacts of new development on the CMP system as part of the development review and entitlement process. Since the proposed project is not resulting in land use changes within the City of Los Angeles, the CMP analysis is not required. However, for the purposes of showing changes in travel demand on the state highway system within the City, the CMP analysis was conducted for the CMP freeway segments. The CMP defines a significant impact to a CMP freeway or arterial monitoring location as follows:

• For purposes of the CMP, a significant impact occurs when a project increases traffic demand on a CMP facility by 2 percent of capacity (V/C \geq 0.02), causing LOS F (V/C > 1.00); if the facility is already at LOS F, a significant impact occurs when a project increases traffic demand on a CMP facility by 2 percent of capacity (V/C \geq 0.02).

Emergency Access

The proposed project would have a significant impact if it would result in inadequate emergency vehicle access.

Public Transit, Bicycle, or Pedestrian Facilities

The proposed project would have a significant impact if it would disrupt existing public transit, bicycle, or pedestrian facilities or interfere with planned facilities, or create conflicts or inconsistencies with adopted public transit, bicycle, or pedestrian system plans, guidelines, policies, or standards.

Parking

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA, but there may be secondary physical environmental impacts, such as increased traffic congestion at intersections, air quality impacts, safety impacts, noise impacts caused by congestion, or land use impacts. The proposed project would have a significant impact if secondary effects related to parking contribute to impacts described by the other significance thresholds.

Safety

The proposed project would have a significant impact if it would substantially change transportation safety in the City of Los Angeles.

Additional Performance Metrics and Recommended Thresholds

California Senate Bill 743 directs the Office of Planning and Research to "prepare, develop, and transmit to the Secretary of the Natural Resources Agency for certification and adoption proposed revisions to the guidelines adopted pursuant to Section 21083 establishing criteria for determining the significance of transportation impacts of projects within transit priority areas ... Upon certification of the guidelines by the Secretary of the Natural Resources Agency pursuant to this section, automobile delay, as described solely by level of service or similar measures of vehicular capacity or traffic congestion within a transit priority area, shall not support a finding of significance pursuant to this division..."

In addition to vehicular Level of Service (LOS) and the other CEQA significance thresholds described above, the following performance metrics are also evaluated for informational purposes:

Mode Split

Any increase in the peak-period auto mode share would be an undesirable outcome.

Transit Boardings

Any decrease in the number of daily transit boardings would be an undesirable outcome.

Vehicle Trips

Any increase in the number of daily vehicle trips would be an undesirable outcome.

Vehicle Miles Traveled

Any increase in the total number of vehicle miles traveled Citywide would be an undesirable outcome.

Vehicle Hours Traveled

Any increase in the total number of vehicle hours traveled Citywide would be an undesirable outcome.

Accessibility

Any decrease in the percent of the City's total population or employment within one-quarter mile of the Bicycle Enhanced Network (BEN) would be an undesirable outcome.

Any decrease in the percent of the City's total population or employment within one-quarter mile of the Transit Enhanced Network (TEN) would be an undesirable outcome.

Accessibility to the Vehicle Enhanced Network (VEN) is presented for informational purposes; concentrating future growth in areas that can encourage travel by actives modes, such as in close proximity to the BEN and TEN, may result in a decrease in the percent of the City's total population or employment within one quarter mile of the VEN.

IMPACTS

Overview

This section describes the way this report assesses impacts on the transportation system. It includes an overall discussion of methodology and assumptions, followed by a discussion of how the proposed project is expected to perform for each of the thresholds described above.

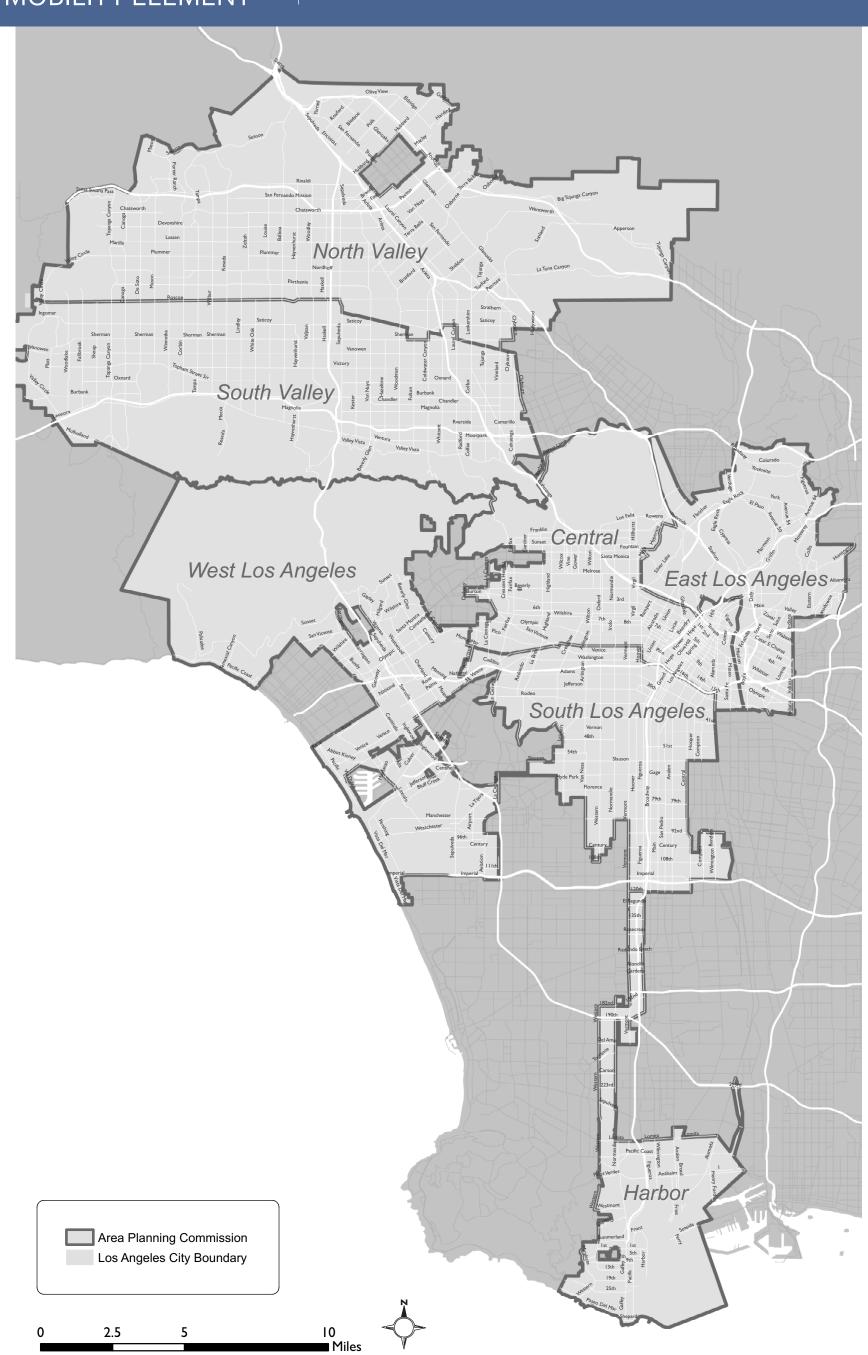
Planning in response to Climate Change has been underway for some time. In 2005 Executive Order (E.O.) S-3-05 set the following GHG emission reduction targets: by 2010, reduce GHG emissions to 2000 levels; by 2020, reduce GHG emissions to 1990 levels; and by 2050, reduce GHG emissions to 80 percent below 1990 levels. In September 2006, the State passed the California Global Warming Solutions Act of 2006, also known as Assembly Bill (AB) 32, into law. AB 32 focuses on reducing GHG emissions in California, and requires the California Air Resources Board (CARB) to adopt rules and regulations to achieve GHG emissions equivalent to Statewide levels in 1990 by 2020. California Senate Bill 375 was passed by the State Assembly on August 25, 2008 and signed by the Governor on September 30, 2008. Senate Bill 375 links regional planning for housing and transportation with the greenhouse gas reduction goals outlined in AB 32. Reductions in GHG emissions would be achieved by, for example, locating housing closer to jobs, retail, and transit.

On April 4, 2012, the Regional Council of the SCAG adopted the RTP/SCS. The RTP/SCS provides a regional plan to meet region-specific GHG reduction targets. The RTP/SCS identifies transportation corridors and transit routes, High Quality Transit Areas (HQTAs), and a variety of strategies to be employed across the region to link transportation and land use planning in order to reduce greenhouse gas emissions.

As part of its response to the RTP/SCS, the City of Los Angeles initiated MP 2035. MP 2035 provides a Citywide coherent transportation plan to provide the transportation framework on which to build balanced land use plans. The City undertakes land use planning through its 35 community plans (that are on an approximate 15-year update cycle). Presuming MP 2035 is approved (in a form deemed acceptable to decision-makers), future community plans would start with MP 2035 as one of the components around which land use plans are oriented. Priority would be given to updating community plans with high concentrations of transit in order to maximize the use of regional transit. The City is undertaking a number of complimentary, parallel planning efforts. Because these efforts are being undertaken in parallel they cannot be fully reflective of each other. Therefore, the environmental analyses for each project take a conservative view when analyzing traffic impacts. Land use plans are generally oriented towards reducing trips and trip lengths by locating uses in proximity to each other and in proximity to known transit. These land use planning efforts would enhance the beneficial effects of MP 2035.

It is anticipated that both transportation infrastructure planning (as presented in MP 2035) as well as future land use planning efforts (community plans, specific plans and occasionally individual projects) will be undertaken in an iterative manner. MP 2035 will provide the framework for future community plans and specific plans that will take a closer look at the MP 2035 VEN, BEN, TEN and Pedestrian Enhanced Districts (PED) in specific areas of the City and will recommend more-detailed implementation strategies to realize MP 2035. More detailed land use planning may reveal the need for changes to MP 2035, which will be undertaken (through a General Plan Amendment process) as needed to reflect these more detailed planning efforts.

The transportation analysis methods used in this document reflect the policy and legal context in place at the time of project initiation and input from the lead agency on methods. During the course of the project, Senate Bill 743 was considered and ultimately enacted into state law. Senate Bill 743 makes several changes to the CEQA related to both the location and analysis of transportation impacts. Most relevant to this document are changes to the criteria for determining the significance of transportation impacts by projects in transit priority areas and changes to congestion management law. The legislation directs the Office of Planning and Research to develop revisions to the CEQA Guidelines by July 1, 2014 that establish new criteria for determining the significance of transportation impacts and define alternative metrics for traffic level of service. The legislation does not preclude the application of local general plan policies, zoning codes, conditions of approval, thresholds, or any other planning requirements. Since this guidance is not yet defined, the transportation analysis in this document relies on the legal context and policy framework in place at the time of project initiation. It is possible that some or all of the impacts related to vehicular level of service that are considered significant under the current legal and policy framework would no longer be considered significant if analyzed using the new criteria.


Analysis Method and Assumptions

Study Area and Reporting Framework

The study area is generally defined by the boundaries of the City of Los Angeles. Analysis results are summarized both at the citywide level and by APC. **Figure 4.1-3** displays the seven APCs. Although MP 2035 policies do not directly apply to freeways in the City, the policies could influence motorists' decisions to use the freeway network; potential impacts at Congestion Management Program freeway monitoring stations within the City of Los Angeles are reported. Finally, because Los Angeles is an important part of the greater Southern California region and many trips that use facilities within Los Angeles originate or are destined for locations beyond the city boundaries, impacts to traffic on roadways in neighboring jurisdictions are also reported. The specific reporting framework for each analyzed threshold is described in more detail below.

Travel Demand Model Development

The potential impacts associated with implementation of MP 2035 are evaluated using an updated version of the City of Los Angeles' Travel Demand Model. The model developed for the Los Angeles Mobility Element Update stems from the Transportation Specific Plan (TSP) model, which uses the TransCAD Version 4.8 Build 500 modeling software and was initially calibrated and validated to 2008 conditions. The TSP Model Development Report can be found in Appendix C. The model has been updated subsequently to reflect traffic counts collected in 2009, 2010, and 2011 and to provide additional detail related to recent planning studies, such as the City's Wilmington EMPOWER and Westside Mobility Plan projects. In addition, the land uses were reviewed to ensure consistency with actual land uses within the City of Los Angeles reflecting 2010 conditions. The model has a future horizon year of 2035 and was designed to produce AM and PM peak period vehicle and transit flows on roadways within the study area based on comprehensive land use and socio-economic data (SED) developed for the RTP/SCS. For modeling purposes, the City of Los Angeles is divided into 1,411 Transportation Analysis Zones (TAZs), each with corresponding SED and connections to the roadway and transit networks.

The RTP/SCS forecasts long-term transportation demands and identifies policies, actions, and funding sources to accommodate these demands. The RTP/SCS Model provides a regionally consistent model of traffic conditions in the six-county SCAG region and serves as the platform for many sub-area models. The SED for the City's Travel Demand Model were updated to reflect the most recent RTP/SCS Model data for existing and future conditions. In addition, the roadway and transit networks have been updated to reflect the assumptions contained in the RTP/SCS. **Table 4.1-15** summarizes the existing and future model population values.

TABLE 4.1-15: SUMMARY OF MODEL POPULATION VALUES											
Area Planning Commission	Existing (2012)	Future (2035)	Growth	Percent Change							
North Valley	712,500	743,700	31,200	4.4%							
2. South Valley	763,700	819,200	55,500	7.3%							
3. Central	727,100	842,200	115,100	15.8%							
4. East Los Angeles	429,600	445,500	15,900	3.7%							
5. West Los Angeles	433,900	459,000	25,100	5.8%							
6. South Los Angeles	730,000	803,100	73,100	10.0%							
7. Harbor	207,600	210,200	2,600	1.3%							
TOTAL	4,004,400	4,322,900	318,500	8.0%							

The TSP Model future year network assumptions have been updated to include funded projects expected to be implemented by year 2035 from:

- The Metro 2013 Call for Projects;
- The Street and Transportation Projects Oversight Committee project list; and
- The RTP/SCS (financially constrained) Model.

The consolidated list of these projects that have been incorporated into the model Future No Project network assumptions is provided in Appendix C. The proposed project includes the same land use assumptions as the year Future No Project scenario. In order to analyze project impacts, a set of Future With Project assumptions was developed by modifying the network assumptions for Future No Project to incorporate new facilities associated with the proposed project. To determine changes in travel patterns and identify potential impacts, a reasonable set of assumptions needed to be made on how the network would change with the implementation of MP 2035. In addition, **Table 4.1-16** lists the modeling assumptions applied to the roadway network in areas covered by each of MP 2035's Enhanced Networks.

The model simulates existing conditions and can forecast future year conditions for the network, with and without the effects of the proposed project, allowing for evaluation of a range of automobile and transit performance measures. Because the travel demand model itself is not sensitive to certain effects of travel demand management (TDM) policies or of changes in bicycle and pedestrian infrastructure to be implemented as part of the proposed project, a mode split adjustment tool (MSAT) is applied to the model results to quantify the effect of these programs and projects on automobile travel. The MSAT applies mode share elasticities and vehicle trip reduction factors gathered from relevant academic and practitioner literature at the TAZ level to calculate the effects of MP 2035's TDM policies and active transportation network improvements on mode share and the level of vehicle trip-making.

Used together, the travel demand model and mode split adjustment tool outputs provide information on the performance of the transportation system at the APC level, including:

- Travel mode shares ("mode split")
- Transit boardings
- Vehicle trips

- Vehicle miles traveled
- Vehicle hours traveled
- Volume-to-capacity ratios

TABLE 4.1-16: PR	OJECT ENHANCE	D NETWORKS MODEL ASSUMPTIONS
Enhanced Network	Treatment Level	Model Assumptions
Vehicle-Enhanced	Moderate	Reduce vehicle travel times by 10 percent
Network (VEN)		 Add one vehicular travel lane per direction if all-day parking is available, or convert one off-peak parking lane per direction to a full-time vehicular travel lane
	Comprehensive	Reduce vehicle travel times by 10 percent
		Add one vehicular travel lane per direction if all-day parking is available – OR– convert one off-peak parking lane per direction to a full-time vehicular travel lane
		Increase effective vehicular capacity by 10 percent
Transit-Enhanced	Moderate	No change to lane configuration
Network (TEN)		Double frequency of bus service
	Moderate Plus	Convert one vehicular travel lane per direction to a bus only lane during peak periods
		Double frequency of bus service
	Comprehensive	Convert one vehicular travel lane per direction to a bus only lane for the full day
		Double frequency of bus service
Bicycle-Enhanced Network (BEN)	Moderate	 Remove one vehicular travel lane per direction to accommodate a buffered bicycle lane
	Comprehensive	Remove one vehicular travel lane per direction to accommodate a cycle track
SOURCE: Fehr & Peers, 20	13.	

There is a complex interplay between City actions and desired MP outcomes. Even with the best available forecasting and analytical methods, there are multiple possible outcomes. This analysis takes a conservative approach toward vehicle-related congestion impacts. Outcomes are related to a number of factors, many of which are outside of the City's direct influence. Additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations will likely lead to increasing mode shift to lower-energy and lower-cost transportation provision consistent with the regional SCS. If these outcomes are not realized with the proposed project actions described in MP 2035, the City may implement increased or additional travel demand management strategies including but not limited to congestion pricing, tolling, local fuel and/or VMT taxes, vehicle conversion incentives, transit passes, bike share passes, additional regional SCS strategies, and other strategies as appropriate to further shift travel to more efficient modes.

For CEQA purposes, significance of impacts is assessed based on a comparison between Project conditions and Future No Project conditions. In addition, a comparison to current transportation conditions (Existing (2013) conditions) is also provided to inform the decision-maker as to how impacts would change in the future with adoption of MP 2035 compared to existing conditions.

Accessibility Metrics

The accessibility metrics evaluate how well the Enhanced Networks proposed as part of MP 2035 provide access to employment and residential locations within the City of Los Angeles. For purposes of this analysis, the Enhanced Networks are defined as follows:

- Bicycle Enhanced Network (BEN)
 - o Future No Project includes all bicycle paths and protected bicycle lanes expected to be completed by year 2035 without the implementation of MP 2035.
 - o Project includes Future No Project, Neighborhood Streets, Moderate, and Comprehensive treatments from the Project Bicycle Enhanced Network.

- Transit Enhanced Network (TEN)
 - o Future No Project includes existing and funded rail, Metrolink, and fixed bus guideway facilities expected to be completed by year 2035 without the implementation of MP 2035.
 - o Project includes Future No Project, Moderate, Moderate Plus, and Comprehensive treatments from the Project TEN. For this analysis, the proposed heavy rail and light rail improvements are included in the Comprehensive treatment category.
- Vehicle Enhanced Network (VEN)
 - o Future No Project consists of the freeway network within the City of Los Angeles.
 - o Project includes Future No Project, Moderate, and Comprehensive treatments from the Project VEN.

Three accessibility metrics, Population Accessibility, Employment Accessibility, and Network Coverage, were calculated for each enhanced network, scenario, and treatment type described above.

Population and Employment Accessibility

The Population and Employment Accessibility metrics are expressed as the percentage of the City of Los Angeles' total 2035 population or employment located within a quarter-mile, street-network buffer of each combination of enhanced network, scenario, and treatment type. Calculations using a one-mile, street-network buffer are also provided for comparison.

Calculation of the BEN Project accessibility metrics can serve as an example of the process used to calculate accessibility. First, a separate quarter-mile, network-based buffer is created for each facility type identified for the Project BEN: Future No Project, Neighborhood Streets, Moderate, and Comprehensive. Rather than calculating a straight-line or "as the crow flies" buffer, each buffer searches out from the enhanced segment for a quarter-mile distance along the city's entire street network. 2035 population data from the Transportation Analysis Zones (TAZs) within these buffers are then aggregated and presented as a percentage of the total population of all TAZs within City of Los Angeles limits. The calculation process for employment accessibility is comparable, aggregating 2035 total employment instead of total population.

In situations where an area falls within the buffer of two or more treatment types for a given network and scenario, it is classified as having access only to the most intense treatment. For example, population and employment in a block that is within a quarter-mile of both a project Neighborhood Street and a project Comprehensive segment is included in the Comprehensive calculation only, not the Neighborhood Street calculation, to avoid double-counting population and employment. The hierarchy from highest to lowest priority is: Comprehensive, Moderate Plus, Moderate, Neighborhood Streets, Future No Project; not all treatments apply in all enhanced networks and scenarios.

Future No Project accessibility is initially calculated to capture all population and employment within the quarter-mile network buffer and again to capture only the population and employment that is not already covered by one of the other enhanced treatments. The same calculation process is repeated for the TEN and VEN.

Network Coverage

Network Coverage is a simple measure of the length of each enhanced network facility type, by scenario. The citywide value for the entire 7,500-mile Los Angeles street network is provided for comparison.

Consistency with Plans

Policies included in the proposed project are analyzed for consistency with the goals of the RTP/SCS and with the goals and objectives of the City of Los Angeles 1999 Transportation Element of the General Plan. **Table 4.1-17** presents the RTP/SCS goals and **Table 4.1-18** presents the City of Los Angeles 1999 Transportation Element goals and objectives, with corresponding discussion of consistency and potential conflicts. The proposed project would not conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities. Therefore, no impact related to consistency with other plans would occur.

Goal	Analysis
RTP/SCS G1: Align the plan investments and policies with improving regional economic development and competitiveness.	Consistent: The proposed Plan includes policies related to establishing a Great Streets Program including economic revitalization efforts; increasing public awareness about the economic value and necessity of goods movement; providing regionally significant transportation improvements for goods movement; facilitating the provision of adequate on- and off-street loading areas; and promoting economic revitalization through investments in the Great Streets Initiative and the development of transit-oriented development corridors.
RTP/SCS G2: Maximize mobility and accessibility for all people and goods in the region.	Consistent: The proposed Plan includes a goal of "Access for All Angelenos" that aligns directly with RTP/SCS G2. The Plan recommends policies for transportation improvements that support mobility for people and goods through enhancements of public transportation, walking and bicycling to make them viable alternatives to automobile travel. The Plan includes supporting policies that relate to considering walking as a component of all other transportation modes; accommodating the needs of disabled persons when modifying or installing infrastructure in the public right-of-way; providing efficient, convenient, affordable, and attractive transit services for all residents, workers, and visitors; supporting "first-mile, last-mile solutions"; promoting Union Station as the major regional rail hub; improving transit access to major regional destinations, job centers and intermodal facilities; and maintaining public alley access.
RTP/SCS G3: Ensure travel safety and reliability for all people and goods in the region.	Consistent: The proposed Plan includes a goal of "Safety First" that aligns directly with RTP/SCS G3. The Plan includes policies that relate to considering the safety of school children as a priority over vehicular movement; prioritizing the implementation of bicycling and pedestrian safety improvements around community facilities and locations with strong pedestrian presence; promoting awareness of safe driving, walking, and bicycling habits; promoting design and enforcement approaches to encourage motorist adherence to speed limits; evaluating the effectiveness of the state's speed limit requirements; reducing conflicts and improving safety at railroad crossings; and maintaining the street system in safe, good to excellent condition.
RTP/SCS G4: Preserve and ensure a sustainable regional transportation system.	Consistent: The proposed Plan includes policies related to seeking equitable and reliable resources for capital improvements; expanding funding to improve the built environment for bicyclists, pedestrians, and vulnerable users; and dedicating revenues generated by commercial vehicles to roadway related purposes.
RTP/SCS G5: Maximize the productivity of our transportation system.	Consistent: The proposed Plan includes policies that relate to supporting a comprehensive, integrated transportation database and digital platform that manages existing assets and dynamically updates users with new information; communicating and partnering with SCAG, Metro, adjacent cities and local transit operators to plan and operate a cohesive regional transportation system; facilitating the development of innovative mobility technologies and models in the private sector; evaluating the effectiveness of new strategies through the collection and analysis of information on the transportation system; and prioritizing future transportation, operations, and maintenance related improvements based upon the following criteria: person throughput, safety improvements, environmental benefits, population density served;
RTP/SCS G6: Protect the environment and health for our residents by improving air quality and encouraging active transportation (non-motorized transportation, such as bicycling and walking).	Consistent: The proposed Plan includes policies related to establishing a Great Streets Program including green street design features; reducing vehicle miles traveled per capita; preserving and enhancing a greenway network that provides opportunity for both leisure and active travel, ecological habitat and stormwater capture and infiltration; limiting exposure to air pollution from transportation-related sources; developing design standards for new and retrofitted parking lots and parking structures; facilitating regular "street opening" events and repurposing of the roadway; continuing to encourage the adoption of alternative fuels and vehicle technologies, and supporting infrastructure; considering walking as a component of all other transportation modes and ensure high-quality pedestrian access in all site planning and public roadway improvements; implementing a balanced transportation system using Complete Streets Standards to ensure the safety and mobility of all users, including pedestrians, cyclists, motorists, children, seniors, homeless, and people with disabilities; prioritizing the implementation of bicycling and pedestrian safety improvements around community facilities and locations with a strong presence of pedestrians; and expanding funding to improve the built environment for bicyclists, pedestrians, and vulnerable users by dedicating at least 20% of the Measure R local return set-asides for bicycle and pedestrian facilities.
RTP/SCS G7: Actively encourage and create incentives for energy efficiency, where possible.	Consistent: The proposed Plan includes policies relating to facilitating the development of innovative mobility technologies and models in the private sector; continuing to encourage the adoption of alternative fuels and vehicle technologies, and supporting infrastructure; and evaluating the effectiveness of new strategies through the collection and analysis of information on the transportation system.
RTP/SCS G8: Encourage land use and growth patterns that facilitate transit and non-motorized transportation.	Consistent: The proposed Plan includes policies relating to supporting land use decisions and design features that result in fewer vehicle trips by providing greater proximity and access to neighborhood services; encouraging a mix of land uses that serve residents', students', and/or employees' needs in areas near transit and prioritizing land uses that generate high levels of transit ridership at major transit stops; and prioritizing future transportation, operations, and maintenance related improvements based upon the following criteria: person throughput, safety improvements, environmental benefits, population density served.
RTP/SCS G9: Maximize the security of the regional transportation system through improved system monitoring, rapid recovery planning, and coordination with other security agencies.	Consistent: The proposed Plan includes policies relating to expanding the safety and security of truck related operations through the establishment of inspection stations, freeway service patrols and increased security measures at the Port of Los Angeles; and supporting a comprehensive, integrated transportation database and digital platform that manages existing assets and dynamically updates users with new information.

TABLE 4.1-	TABLE 4.1-18: ANALYSIS OF POTENTIAL CONFLICTS WITH CITY OF LOS ANGELES 1999 TRANSPORTATION ELEMENT GOALS AND OBJECTIVES							
Goal/Objective	Goal/Objective Description	Analysis						
Goal A	Adequate accessibility to work opportunities and essential services, and acceptable levels of mobility for all those who live, work, travel, or move goods in Los Angeles.	Consistent: The proposed Plan includes a goal of "Access for All Angelenos" that aligns directly with Goal A. The Plan recommends policies for transportation improvements that support mobility for people and goods through enhancements of public transportation, walking and bicycling to make them viable alternatives to automobile travel. The Plan includes supporting policies that relate to considering walking as a component of all other transportation modes; accommodating the needs of disabled persons when modifying or installing infrastructure in the public right-of-way; providing efficient, convenient, affordable, and attractive transit services for all residents, workers, and visitors; supporting "first-mile, last-mile solutions"; promoting Union Station as the major regional rail hub; improving transit access to major regional destinations, job centers and inter-modal facilities; and maintaining public alley access.						
Objective 1	Expand neighborhood transportation services and programs to enhance neighborhood accessibility.	Consistent: The proposed Plan includes policies relating to implementing a balanced transportation system using Complete Streets Standards to ensure the safety and mobility of all users, including pedestrians, cyclists, motorists, children, seniors, homeless, and people with disabilities; prioritizing the implementation of bicycling and pedestrian safety improvements around community facilities and locations with a strong presence of pedestrians; supporting "first-mile, last-mile solutions" such as multi-modal transportation services, organizations, and activities in the areas around transit stations and major bus stops (transit stops) to maximize multi-modal connectivity and access for transit riders; considering walking as a component of all other transportation modes and ensuring high-quality pedestrian access in all site planning and public roadway improvements; and continuing to preserve and enhance a series of interconnected scenic highways and byways, Neighborhood Friendly Streets, paths (walking, bicycle), and trails (hiking, walking, bicycle, equine) that provide opportunity for both leisure and active travel, ecological habitat and stormwater capture and infiltration that connects communities with open space parks, beaches, schools, and other community assets.						
Objective 2	Mitigate the impacts of traffic growth, reduce congestion, and improve air quality by implementing a comprehensive program of multimodal strategies that encompass physical and operational improvements as well as demand management.	Consistent: The proposed Plan includes policies relating to implementing a balanced transportation system using Complete Streets Standards to ensure the safety and mobility of all users, including pedestrians, cyclists, motorists, children, seniors, homeless, and people with disabilities; prioritizing the implementation of bicycling and pedestrian safety improvements around community facilities and locations with a strong presence of pedestrians; considering the installation of context sensitive, multi-modal improvements (transit, bicycle, pedestrian) to mitigate a project's traffic impacts before considering a roadway widening or other vehicle enhancing features; considering walking as a component of all other transportation modes and ensuring high-quality pedestrian access in all site planning and public roadway improvements; providing all residents, workers and visitors with efficient, convenient, affordable, and attractive transit services; supporting "first-mile, last-mile solutions" such as multi-modal transportation services, organizations, and activities in the areas around transit stations and major bus stops (transit stops) to maximize multi-modal connectivity and access for transit riders; improving transit access and service to major regional destinations, job centers, and inter-modal facilities; partnering with the private sector to foster the success of Transportation Management Organizations (TMOs) in the City's commercial districts; encouraging employers to adopt Transportation Demand Management (TDM) strategies such as commuter incentives, telecommuting programs, and flexible work schedules; continuing to encourage the adoption of alternative fuels and vehicle technologies, and supporting infrastructure; establishing a series of Pedestrian Enhanced Districts (PED) and accompanying evaluation criteria to prioritize areas for pedestrian improvements; establishing the Transit Enhanced Network (TEN) within the City's arterial system to improve the performance and reliability of existing and future						
Objective 3	Support development in regional centers, community centers, major economic activity areas and along mixed-use boulevards as designated in the Community Plans.	Consistent: The proposed Plan includes policies relating to supporting land use decisions and design features that result in fewer vehicle trips by providing greater proximity and access to neighborhood services; encouraging a mix of land uses that serve residents', students', and/or employees' needs in areas near transit and prioritize land uses that generate high levels of transit ridership at major transit stops; improving transit access and service to major regional destinations, job centers, and inter-modal facilities; and promoting economic revitalization and growth through smart investments in the Great Streets Initiative and the development of transit-oriented development (TOD) corridors.						
Objective 4	Preserve the existing character of lower density residential areas and maintain pedestrian-oriented environments where appropriate.	Consistent: The proposed Plan includes policies relating to designing streets and enforcing speed laws so that motorists adhere to intended speeds on all City roadways; evaluating the effectiveness of the State's speed limit requirements on street safety and performance; establishing a series of PED areas and accompanying evaluation criteria to prioritize areas for pedestrian improvements; continuing to preserve and enhance a series of inter-connected scenic highways and byways, Neighborhood Friendly Streets, paths (walking, bicycle), and trails (hiking, walking, bicycle, equine) that provide opportunity for both leisure and active travel, ecological habitat and stormwater capture and infiltration that connects communities with open space parks, beaches, schools, and other community assets; considering walking as a component of all other transportation modes and ensure high-quality pedestrian access in all site planning and public roadway improvements; and limiting exposure to air pollution from transportation-related sources.						

TABLE 4.1-18: ANALYSIS OF POTENTIAL CONFLICTS WITH CITY OF LOS ANGELES 1999 TRANSPORTATION ELEMENT GOALS AND OBJECTIVES							
Goal/Objective	Goal/Objective Description	Analysis					
Objective 5	Provide for the efficient movement of goods and for adequate access to intermodal facilities.	Consistent: The proposed Plan includes policies relating to reducing conflicts and improving safety at railroad crossings; expanding the safety and security of truck related operations through the establishment of inspection stations, freeway service patrols and increased security measures at the Port of Los Angeles; establishing the VEN on a sub-set of the City's arterial system to provide access to the regional freeway system; implementing projects that would provide regionally significant transportation improvements for goods movement; discouraging the vacation and/or closure of public alleys; increasing public awareness about the economic value and necessity of goods movement in the Los Angeles region; balancing on and off-street parking supply with other transportation and land-use objectives; facilitating the provision of adequate on and off-street loading areas; and dedicating revenues generated by commercial vehicles to roadway related purposes.					
Objective 6	Incorporate available local, state, and federal funding opportunities to provide sufficient financing for transportation improvements and programs.	Consistent: The proposed Plan includes policies relating to seeking equitable and reliable resources for capital improvements such as the maintenance and operations of streets, bridges, and stormwater management/green streets; expanding funding to improve the built environment for bicyclists, pedestrians, and vulnerable users by dedicating at least 20% of the Measure R local return set-asides for bicycle and pedestrian facilities; and dedicating revenues generated by commercial vehicles to roadway related purposes.					
Objective 7	Provide an ongoing evaluation of transportation programs to determine whether the goals and objectives of the Citywide General Plan Framework and this element are being met, or if these goals and objectives should be modified to reflect changing circumstances.	Consistent: The proposed Plan includes policies relating to evaluating the effectiveness of the State's speed limit requirements on street safety and performance; supporting a comprehensive, integrated transportation database and digital platform that manages existing assets and dynamically updates users with new information; facilitating communications between citizens and the City in reporting and receiving responses on non-emergency street improvements; communicating and partnering with SCAG, Metro, adjacent cities and local transit operators to plan and operate a cohesive regional transportation system; and evaluating the effectiveness of new strategies through the collection and analysis of information on the transportation system.					
Goal B	A street system maintained in a good to excellent condition adequate to facilitate the movement of those reliant on the system.	Consistent: The proposed Plan has a goal of "World Class Infrastructure that aligns directly with Goal B. The proposed Plan includes policies relating to enhancing roadway safety by maintaining the street system in good to excellent condition adequate to facilitate the movement of those reliant on the system; maintaining the City's Bridges in quality condition and incorporating pedestrian and bicycle enhancements when retrofitting or installing a new bridge; and supporting a comprehensive, integrated transportation database and digital platform that manages existing assets and dynamically updates users with new information.					
Objective 8	Operate a pavement management system designed to provide, on a continuing basis, the status of the maintenance needs of the City's street and bikeway systems.	Consistent: The proposed Plan includes policies relating to supporting a comprehensive, integrated transportation database and digital platform that manages existing assets and dynamically updates users with new information; and facilitating communications between citizens and the City in reporting and receiving responses on non-emergency street improvements.					
Objective 9	Ensure that adequate maintenance of the street system is provided to facilitate the movement of current and future traffic volumes, as well as emergency services.	Consistent: The proposed Plan includes policies relating to enhancing roadway safety by maintaining the street system in good to excellent condition adequate to facilitate the movement of those reliant on the system; maintaining the City's Bridges in quality condition and incorporating pedestrian and bicycle enhancements when retrofitting or installing a new bridge; and supporting a comprehensive, integrated transportation database and digital platform that manages existing assets and dynamically updates users with new information.					
Goal C	An integrated system of pedestrian priority street segments, bikeways, and scenic highways which strengthens the City's image while also providing access to employment opportunities, essential services, and open space.	Consistent: The proposed Plan includes policies relating to establishing a series of PED areas and accompanying evaluation criteria to prioritize areas for pedestrian improvements; establishing the BENwithin the City's arterial system to provide safe, convenient, and comfortable regional facilities for cyclists of all types and abilities; and continuing to preserve and enhance a series of inter-connected scenic highways and byways, Neighborhood Friendly Streets, paths (walking, bicycle), and trails (hiking, walking, bicycle, equine) that provide opportunity for both leisure and active travel, ecological habitat and stormwater capture and infiltration that connects communities with open space parks, beaches, schools, and other community assets.					
Objective 10	Make the street system accessible, safe, and convenient for bicycle, pedestrian, and school child travel.	Consistent: The proposed Plan includes policies relating to implementing a balanced transportation system using Complete Streets Standards to ensure the safety and mobility of all users, including pedestrians, cyclists, motorists, children, seniors, homeless, and people with disabilities; considering the safety of school children as a priority over vehicular movement on all streets regardless of highway classifications, especially near schools; prioritizing the implementation of bicycling and pedestrian safety improvements around community facilities and locations with a strong presence of pedestrians; promoting awareness on safe driving, walking, and bicycling habits to decrease transportation risks and increase safe, efficient and enjoyable travel in the City; maintaining the City's bridges in quality condition and incorporate pedestrian and bicycle enhancements when retrofitting or installing a new bridge; considering the installation of context sensitive, multi-modal improvements (transit, bicycle, pedestrian) to mitigate a project's traffic impacts before considering a roadway widening or other vehicle enhancing features; considering walking as a component of all other transportation modes and ensure high-quality pedestrian access in all site planning and public roadway improvements; accommodate the needs of disabled persons when modifying or installing infrastructure in the public right-of-way; supporting "first-mile, last-mile solutions" such as multi-modal transportation services, organizations, and activities in the areas around transit stations and major bus stops (transit stops) to maximize multi-modal connectivity and access for transit riders; facilitating regular "street opening" events and repurposing of the roadway; prioritizing future transportation, operations, and maintenance related improvements based upon person throughput, safety improvements, environment for bicyclists, pedestrians, and vulnerable users by dedicating at least 20% of the Measure R local return set-asides for bicycle and pe					

Circulation System

Volume-to-capacity (V/C) ratios and Level of Service (LOS) calculations were prepared for Future No Project and Project conditions using the same methodology as described in the Existing Setting section. The AM and PM peak period V/C and corresponding LOS for the roadways in the City of Los Angeles are summarized in **Table 4.1-19** and **Table 4.1-20** by APC for Existing Conditions, Future No Project, and Project conditions. Because of the large number of segments among the Existing conditions, Future No Project, and Project scenarios LOS calculations are presented on a percent-of-total basis.

TABLE 4.1-19: SUMMAR			ments /a/ Ope				
Area Planning Commission	ning LOS D or		LOS F	Unsatisfactory LOS (E or F)			
EXISTING CONDITIONS					, ,		
North Valley	95.7%	1.6%	2.6%	4.3%	0.583 (LOS A)		
2. South Valley	95.1%	2.1%	2.9%	4.9%	0.614 (LOS B)		
3. Central	78.8%	8.6%	12.6%	21.2%	0.774 (LOS C)		
4. East Los Angeles	79.5%	6.0%	14.5%	20.5%	0.815 (LOS D)		
5. West Los Angeles	79.6%	6.7%	13.8%	20.4%	0.791 (LOS C)		
6. South Los Angeles	87.2%	5.4%	7.3%	12.8%	0.715 (LOS C)		
7. Harbor	94.9%	2.2%	2.9%	5.1%	0.614 (LOS B)		
TOTAL	87.2%	4.8%	8.0%	12.8%	0.712 (LOS C)		
FUTURE NO PROJECT							
1. North Valley	94.8%	1.7%	3.5%	5.2%	0.664 (LOS B)		
2. South Valley	93.1%	3.1%	3.8%	6.9%	0.649 (LOS B)		
3. Central	73.3%	9.0%	17.7%	26.7%	0.824 (LOS D)		
4. East Los Angeles	77.1%	6.8%	16.1%	22.9%	0.835 (LOS D)		
5. West Los Angeles	74.0%	8.1%	17.9%	26.0%	0.849 (LOS D)		
6. South Los Angeles	83.8%	6.7%	9.5%	16.2%	0.750 (LOS C)		
7. Harbor	93.2%	2.8%	4.1%	6.8%	0.648 (LOS B)		
TOTAL	83.9%	5.6%	10.5%	16.1%	0.759 (LOS C)		
FUTURE WITH PROJECT							
1. North Valley	93.1%	2.4%	4.4%	6.9%	0.679 (LOS B)		
2. South Valley	90.7%	4.1%	5.2%	9.3%	0.676 (LOS B)		
3. Central	68.6%	10.4%	21.0%	31.4%	0.857 (LOS D)		
4. East Los Angeles	73.9%	7.2%	18.9%	26.1%	0.874 (LOS D)		
5. West Los Angeles	72.7%	8.0%	19.3%	27.3%	0.863 (LOS D)		
6. South Los Angeles	81.0%	6.2%	12.7%	19.0%	0.780 (LOS C)		
7. Harbor	90.7%	3.7%	5.7%	9.3%	0.674 (LOS B)		
TOTAL	80.8%	6.3%	12.9%	19.2%	0.785 (LOS C)		

/a/ Segments include major highways, secondary highways, and collector streets within the City of Los Angeles. Weighted Average V/C Ratios reflect the average V/C ratio of all segments in a given category, weighted proportionally by the volume of vehicular travel that occurs on each segment.

SOURCE: Fehr & Peers, 2013.

Under Existing conditions in both the AM and PM peak periods, the Central Area Planning has the highest share of segments operating at LOS E or F, followed closely by East Los Angeles and West Los Angeles. In the AM peak, over 20 percent of Central APC segments operate at LOS E or F, increasing to 30 percent in the PM peak. Citywide, nearly 13 percent of street segments operate at LOS E or F in the AM peak period, rising to nearly 18 percent in the PM peak period.

Under Future No Project conditions, the percent of segments operating at LOS E or F increases in all APCs during both the AM and PM peak periods, except in the West Los Angeles APC during the PM peak, where the share of segments operating at LOS E or F decreases slightly from 29.1 percent to 28.6 percent. Citywide, the share of segments operating at LOS E or F increases from 12.8 percent to 16.1 percent in the AM peak period and from 17.9 percent to 21.9 percent in the PM peak period.

	Pe	rcent of Sea	ments /a/ Ope	rating at:	
Area Planning Commission	LOS D or Better LOS E		LOS F	Unsatisfactory LOS (E or F)	Weighted Average V/C Ratio (all segments) /a/
EXISTING CONDITIONS					·
1. North Valley	94.8%	2.1%	3.1%	5.2%	0.599 (LOS A)
2. South Valley	92.2%	3.9%	3.9%	7.8%	0.649 (LOS B)
3. Central	70.0%	11.0%	19.0%	30.0%	0.814 (LOS D)
4. East Los Angeles	73.8%	8.6%	17.6%	26.2%	0.806 (LOS D)
5. West Los Angeles	70.9%	9.3%	19.8%	29.1%	0.828 (LOS D)
6. South Los Angeles	81.3%	7.5%	11.2%	18.7%	0.769 (LOS C)
7. Harbor	93.5%	3.1%	3.4%	6.5%	0.624 (LOS B)
TOTAL	82.1%	6.7%	11.3%	17.9%	0.743 (LOS C)
FUTURE NO PROJECT					
1. North Valley	92.9%	2.7%	4.4%	7.1%	0.705 (LOS C)
2. South Valley	90.3%	4.0%	5.8%	9.7%	0.712 (LOS C)
3. Central	58.5%	12.9%	28.6%	41.5%	0.917 (LOS E)
4. East Los Angeles	63.5%	9.8%	26.7%	36.5%	0.944 (LOS E)
5. West Los Angeles	71.4%	8.8%	19.8%	28.6%	0.913 (LOS E)
6. South Los Angeles	81.0%	8.0%	11.0%	19.0%	0.855 (LOS D)
7. Harbor	93.1%	3.3%	3.6%	6.9%	0.712 (LOS C)
TOTAL	78.1%	7.3%	14.6%	21.9%	0.839 (LOS D)
FUTURE WITH PROJECT					
North Valley	90.5%	3.4%	6.1%	9.5%	0.725 (LOS C)
2. South Valley	87.2%	5.2%	7.6%	12.8%	0.740 (LOS C)
3. Central	55.1%	12.1%	32.8%	44.9%	0.951 (LOS E)
4. East Los Angeles	60.2%	10.5%	29.3%	39.8%	0.985 (LOS E)
5. West Los Angeles	68.7%	9.3%	22.0%	31.3%	0.935 (LOS E)
6. South Los Angeles	78.0%	8.5%	13.5%	22.0%	0.886 (LOS D)
7. Harbor	90.2%	3.7%	6.1%	9.8%	0.741 (LOS C)
TOTAL	74.5%	7.9%	17.6%	25.5%	0.868 (LOS D)

Under Project conditions, the share of roadway links projected to operate at LOS E or F exceeds the share for both Existing (2013) traffic conditions and Future No Project conditions in both the AM and PM peak periods. The "volume-weighted" average of the V/C ratio under Project conditions for all of the analyzed roadway segments also exceeds that of both the Existing traffic conditions and Future No Project conditions in both the AM and PM peak periods. On BEN and TEN roadways, converting selected vehicle travel lanes to transit lanes or bicycle lanes reduces the capacity available to vehicular traffic, increasing the V/C ratio. Although some of this increase is offset by a reduction in vehicular traffic due to shifts to other modes and routes (see discussion of "Vehicle Trips, below), motorists will continue to drive on BEN and TEN roadways. V/C ratios also increase on some roadways parallel to the BEN and TEN when motorists divert to other routes. Therefore, without mitigation, the proposed project would result in a significant impact to the vehicular circulation system based on peak period LOS and V/C ratios.

The model-estimated changes in circulation system conditions are conservative, vehicle-centric estimates based on historical travel behavior patterns and do not account for additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations that would lead to decreasing vehicular volumes. Transportation demand models are largely dependent on historical travel patterns and mode choices when forecasting future traffic projections. Recent research in this area suggests that factors correlated with annual VMT over the last sixty years include the economy, demographics, technology, and the urban form of the built environment. Specifically, this research shows both cyclical recession effects and a structural leveling of the economy and travel.

Senate Bill 743 directs the Office of Planning and Research to develop revisions to the CEQA Guidelines by July 1, 2014 to establish new criteria for determining the significance of transportation impacts and define alternative metrics for traffic level of service. Since this guidance is not yet defined, the transportation analysis in this document relies on the legal context and policy framework in place at the time of project initiation. It is possible that some or all of the impacts related to vehicular LOS that are considered significant under the current legal and policy framework would no longer be considered significant if analyzed using the new criteria.

Redistribution of Trips

Along roadways where the proposed project would cause significant traffic congestion, diversion of trips could occur onto adjacent parallel routes. It is anticipated that diversion would not occur on streets that operate at LOS D or better during peak periods because the average delay is not substantial. However, for the street segments where the LOS would degrade from D to E or F, some trips could divert to adjacent streets to avoid longer travel times through congested locations. Travel route changes on the City's arterial and collector roadways have been captured through the travel model's peak hour forecasts and LOS results. The extent to which trips would divert to adjacent local roadways is not reasonably foreseeable given the broad framework of MP 2035 and the Enhanced Networks, and therefore, impacts cannot be precisely determined. However, it is anticipated that increased traffic could occur on these roadways.

Congestion Management Plan

Freeway CMP Analysis

The CMP is a state-mandated program administered by Metro's 2010 Congestion Management Program for Los Angeles County that provides a mechanism for coordinating land use and development decisions. CMP requires establishment of LOS standards to measure congestion at specific monitoring locations on the freeway and arterial systems. LOS ranges from LOS A to F, with LOS A representing free-flow conditions and LOS F representing a high level of congestion. As previously described, the CMP was implemented by Metro to analyze the impacts of local land use decisions on the regional transportation system. Since the proposed project is not resulting in land use changes within the City of Los Angeles, the CMP analysis is not required. However, for the purposes of showing changes in travel demand on the state highway system within the City, the CMP analysis was conducted for the CMP freeway segments.

There are 28 CMP freeway monitoring locations within the City of Los Angeles. Data from the Performance Measurement System (PeMS) along with the City of Los Angeles' Travel Demand Model were used for evaluating freeway mainline segments at the CMP locations in the City of Los Angeles. Morning and evening peak hour information and traffic volumes per direction were collected from the model.

In accordance with the CMP guidelines, freeway (mainline) operating conditions during peak periods were evaluated using the general procedures established by the CMP. Freeway mainline LOS is estimated with calculation of the demand-to-capacity (D/C) ratio. Calculation of LOS based on D/C ratios is a surrogate for the speed-based LOS used by Caltrans for traffic operational analysis. The LOS criteria for freeway segments using D/C ratios as the performance measure are shown in **Table 4.1-21**. Capacity was determined based on the existing number of lanes and a single-lane capacity of 2,200 vehicles per hour per lane. Highways and roadways designated in the CMP network are required to operate at LOS E, except where Future No Project LOS is worse than LOS E. In such cases, the Future No Project LOS is the standard.

TABLE 4.1-21: LEVEL OF SERVICE THRESHOLI	OS FOR CMP FREEWAY MAINLINE SEGMENTS
Level of Service	Demand-to-Capacity Ratio
A	0.00-0.35
В	>0.35-0.54
С	>0.54-0.77
D	>0.77-0.93
E	>0.93-1.00
F(0)	>1.00-1.25
F(1)	>1.25-1.35
F(2)	>1.35-1.45
F(3)	>1.45
SOURCE: Congestion Management Program, Metro, 2010	•

Freeway segment volumes based on Caltrans PeMS data were used to establish the CMP LOS conditions during the PM peak hour for existing conditions. The analysis was then performed to evaluate project conditions for the 28 CMP freeway-monitoring locations within the City of Los Angeles. Data from the City of Los Angeles' Travel Demand Model were used for evaluating freeway mainline segments at the CMP locations in the City of Los Angeles under Project conditions. Evening peak hour information and traffic volumes per direction were collected from the model. Future No Project volumes were calculated as the difference between the model Future No Project volumes and the model Existing volumes added to the existing freeway segment volumes based on PeMS data. Similarly, Future With Project volumes were calculated as the difference between the model Future With Project volumes and the model Existing volumes added to the existing freeway segment volumes based on PeMS data. Southbound data were not available for CMP freeway monitoring location 1045 on Harbor Freeway (I-110) south of C Street from PeMS.

Table 4.1-22 presents the freeway segment LOS for each of the 28 CMP freeway monitoring locations within the City of Los Angeles under both Existing and Future With Project conditions. This analysis concludes that the CMP freeway segments in the City of Los Angeles are expected to operate LOS E or better during the PM peak hour at all analyzed locations under Project conditions, except at CMP freeway monitoring location 1036, the Hollywood Freeway (101) north of Vignes Street, where the LOS is F(0) during the PM peak period in the northbound direction (highlighted in grey in **Table 4.1-22**).

Table 4.1-23 presents the freeway segment LOS for each of the 28 CMP freeway monitoring locations within the City of Los Angeles under both Future No Project and Future With Project conditions. This analysis concluded that the CMP freeway segments in the City of Los Angeles are expected to operate at acceptable LOS (LOS E or better) during the PM peak hour at all analyzed locations under both Future No Project and Future With Project conditions, except at CMP freeway monitoring location 1036, the Hollywood Freeway (101) north of Vignes Street, where the LOS is F(0) during the PM peak period in the northbound direction (highlighted in grey in **Table 4.1-23**).

CMP freeway monitoring location 1036, the Hollywood Freeway (101) north of Vignes Street is expected to operate at LOS F(0) during the PM peak period in the northbound direction under both Future No Project and Future With Project conditions. The incremental change in the V/C ratio between Future No Project conditions and Future With Project conditions is less than 0.02. Other CMP freeway monitoring locations are expected to operate at LOS E or better based on the CMP methodology.

				Exist	ting Condition	ons	Future Wit	h Project Co	onditions	
CMP Station	Direction	Lanes	Capacity	Volume (Demand)	D/C	CMP LOS	Volume (Demand)	D/C	CMP LOS	Change in D/C
1001 Glendale Freeway (SR-2)	NB	5	11,000	6,702	0.609	С	6,311	0.574	С	-0.03
Round Top Drive Postmile R17.78	SB	5	11,000	3,623	0.329	Α	4,016	0.365	В	0.03
1004 Golden State Fwy (I-5)	NB	5	11,000	9,155	0.832	D	9,426	0.857	D	0.02
Stadium Wy Postmile 21.8	SB	5	11,000	5,613	0.510	В	6,467	0.588	С	0.0
1005 Golden State Fwy (I-5)	NB	5	11,000	8,264	0.751	С	8,450	0.768	С	0.0
s/o Colorado Blvd Ext Postmile 25.5	SB	5	11,000	7,491	0.681	С	8,517	0.774	D	0.09
1007 Golden State Fwy (I-5)	NB	6	13,200	6,784	0.514	В	6,045	0.458	В	-0.0
n/o Jct Rte 170 @ Osborne St Postmile 36.9	SB	6	13,200	8,132	0.616	С	8,517	0.645	С	0.0
1011 Santa Monica Fwy (I-10)	EB	5	11,000	5,661	0.515	В	6,200	0.564	С	0.04
e/o Overland Ave Postmile R6.75	WB	4	8,800	7,024	0.798	D	7,299	0.829	D	0.0
1012 Santa Monica Fwy (I-10)	EB	5	11,000	6,174	0.561	С	6,644	0.604	С	0.0
e/o La Brea Ave ÚĈ Postmile R10.71	WB	5	11,000	7,231	0.657	С	7,597	0.691	С	0.0
1013 Santa Monica Fwy (I-10)	EB	6.25	13,750	6,418	0.467	В	6,864	0.499	В	0.0
Budlong Ave Postmile R13.53	WB	6.25	13,750	6,958	0.506	В	7,324	0.533	В	0.02
1014 San Bernadino Fwy (I-10)	EB	6	13,200	1,215	0.092	Α	1,781	0.135	Α	0.0
@ East LA City Limit Postmile 19.67	WB	6	13,200	1,215	0.092	Α	2,201	0.167	Α	0.0
1036 Hollywood Fwy (I-101) n/o Vignes St Postmile 0.46	NB	4	8,800	8,287	0.942	Е	9,003	1.023	F(0)	0.0
	SB	4	8,800	6,199	0.704	С	6,613	0.752	С	0.0
1037 Hollywood Fwy (I-101)	NB	4	8,800	6,147	0.699	С	6,519	0.741	С	0.0
s/o Santa Monica Blvd Postmile 5.2	SB	4	8,800	4,680	0.532	В	5,424	0.616	С	0.0

TABLE 4.1-22: CMP FREEWAY	Y ANALYSIS -	– EXISTII	NG AND FU	TURE WITI	H PROJEC	CT PM PE	AK HOUR	CONDITIC	ONS	
			Capacity	Existing Conditions			Future With Project Conditions			
CMP Station	Direction	Lanes		Volume (Demand)	D/C	CMP LOS	Volume (Demand)	D/C	CMP LOS	Change in D/C
1038 Ventura Fwy (I-101)	NB	5	11,000	8,109	0.737	С	8,370	0.761	С	0.024
Coldwater Canyon Ave Postmile 13.98	SB	5	11,000	7,757	0.705	С	8,192	0.745	С	0.040
1039 Ventura Fwy (I-101)	NB	5	11,000	7,980	0.725	С	9,083	0.826	D	0.100
Winnetka Ave Postmile 23.4	SB	5	11,000	8,353	0.759	С	8,674	0.789	D	0.029
1041 Century Fwy (I-105)	EB	3	6,600	2,617	0.397	В	2,803	0.425	В	0.028
e/o Sepulveda Blvd (Jct Rte 1) Postmile R1.00	WB	3	6,600	2,717	0.412	В	2,677	0.406	В	-0.006
1045 Harbor Fwy (I-110)	NB	4	8,800	2,629	0.299	Α	2,786	0.317	Α	0.018
Wilmington s/o C St Postmile 2.77	SB	4	8,800	N/A	N/A	N/A	N/A	N/A	N/A	
1046 Harbor Fwy (I-110)	NB	6	13,200	6,963	0.528	В	7,533	0.571	С	0.043
Manchester Blvd Postmile 15.88	SB	6	13,200	8,224	0.623	С	8,387	0.635	С	0.012
1047 Harbor Fwy (I-110)	NB	6	13,200	6,665	0.505	В	7,236	0.548	С	0.043
Slauson Ave Postmile 17.95	SB	6	13,200	6,726	0.510	В	6,989	0.529	В	0.020
1048 Harbor Fwy (I-110)	NB	4	8,800	6,878	0.782	D	7,262	0.825	D	0.044
s/o Rte 101 Postmile 23.96	SB	4	8,800	3,991	0.454	В	4,640	0.527	В	0.074
1049 Harbor Fwy (I-110)	NB	3	6,600	5,061	0.767	С	5,220	0.791	D	0.024
@ Alpine St Postmile 23.96	SB	3	6,600	5,328	0.807	D	5,800	0.879	D	0.071
1052 Ronald Reagan Fwy (SR-118)	EB	6	13,200	5,959	0.451	В	6,922	0.524	В	0.073
e/o Woodley Ave Postmile R9.10	WB	6	13,200	7,327	0.555	С	8,377	0.635	С	0.080
1053 Ronald Reagan Fwy (SR-118)	EB	4	8,800	5,126	0.583	С	5,289	0.601	С	0.019
w/o Jct Rte 210 Postmile R13.44	WB	4	8,800	4,948	0.562	С	6,203	0.705	С	0.143

		Lanes	Capacity	Exist	ing Condition	ons	Future With Project Conditions			
CMP Station	Direction			Volume (Demand)	D/C	CMP LOS	Volume (Demand)	D/C	CMP LOS	Change in D/C
1054 SR-134	EB	5	11,000	5,959	0.542	С	5,998	0.545	С	0.00
@ Forman Ave Postmile 1.26	WB	5	11,000	6,130	0.557	С	6,490	0.590	С	0.03
1057 Hollywood Fwy (SR-170)	NB	5	11,000	4,188	0.381	В	4,552	0.414	В	0.03
s/o Sherman Wy Postmile R17.62	SB	5	11,000	3,549	0.323	Α	3,462	0.315	А	-0.00
1058 Foothill Fwy (I-210) e/o Polk St Postmile R3.57	EB	3	6,600	2,023	0.307	Α	161	0.024	Α	-0.28
	WB	3	6,600	4,013	0.608	С	5,643	0.855	D	0.24
1059 Foothill Fwy (I-210) @ Terra Bella St Postmile R7.19	EB	4	8,800	5,575	0.634	С	5,050	0.574	С	-0.06
	WB	4	8,800	4,205	0.478	В	5,493	0.624	С	0.14
1069 San Diego Fwy (I-405)	NB	5	11,000	6,829	0.621	С	6,870	0.625	С	0.00
n/o La Tijera Blvd Postmile 24.27	SB	5	11,000	8,001	0.727	С	7,612	0.692	С	-0.03
1070 San Diego Fwy (I-405) n/o Venice Blvd Postmile 28.3	NB	5	11,000	6,054	0.550	С	6,377	0.580	С	0.02
	SB	5	11,000	7,852	0.714	С	7,614	0.692	С	-0.02
1071 San Diego Fwy (I-405) s/o Mullholland Dr Postmile 35.81	NB	5	11,000	7,811	0.710	С	8,217	0.747	С	0.03
	SB	5	11,000	5,369	0.488	В	6,123	0.557	С	0.06
1072 San Diego Fwy (I-405) n/o Roscoe Blvd Postmile 44.27	NB	5	11,000	5,818	0.529	В	5,875	0.534	В	0.00
	SB	5	11,000	4,974	0.452	В	5,029	0.457	В	0.00

,

TABLE 4.1-23: CMP FREEWAY ANALYSIS – FUTURE NO PROJECT AND FUTURE WITH PROJECT PM PEAK HOUR CONDITIONS										
			Capacity		lo Project Co	nditions	Future With Project Conditions			
CMP Station	Direction	Lanes		Volume (Demand)	D/C	CMP LOS	Volume (Demand)	D/C	CMP LOS	Change in D/C
1001 Glendale Freeway (SR-2)	NB	5	11,000	6,430	0.585	С	6,311	0.574	С	-0.011
Round Top Drive Postmile R17.78	SB	5	11,000	4,038	0.367	В	4,016	0.365	В	-0.002
1004 Golden State Fwy (I-5)	NB	5	11,000	9,149	0.832	D	9,426	0.857	D	0.025
Stadium Wy Postmile 21.8	SB	5	11,000	6,221	0.566	С	6,467	0.588	С	0.022
1005 Golden State Fwy (I-5)	NB	5	11,000	8,522	0.775	D	8,450	0.768	С	-0.007
s/o Colorado Blvd Ext Postmile 25.5	SB	5	11,000	8,477	0.771	D	8,517	0.774	D	0.004
1007 Golden State Fwy (I-5)	NB	6	13,200	5,937	0.450	В	6,045	0.458	В	0.008
n/o Jct Rte 170 @ Osborne St Postmile 36.9	SB	6	13,200	8,306	0.629	С	8,517	0.645	С	0.016
1011 Santa Monica Fwy (I-10)	EB	5	11,000	6,038	0.549	С	6,200	0.564	С	0.015
e/o Overland Ave Postmile R6.75	WB	4	8,800	7,050	0.801	D	7,299	0.829	D	0.028
1012 Santa Monica Fwy (I-10)	EB	5	11,000	6,567	0.597	С	6,644	0.604	С	0.007
e/o La Brea Ave UC Postmile R10.71	WB	5	11,000	7,473	0.679	С	7,597	0.691	С	0.011
1013 Santa Monica Fwy (I-10)	EB	6.25	13,750	6,855	0.499	В	6,864	0.499	В	0.001
Budlong Ave Postmile R13.53	WB	6.25	13,750	7,210	0.524	В	7,324	0.533	В	0.008
1014 San Bernadino Fwy (I-10)	EB	6	13,200	1,698	0.129	Α	1,781	0.135	А	0.006
@ East LA City Limit Postmile 19.67	WB	6	13,200	1,942	0.147	Α	2,201	0.167	А	0.020
1036 Hollywood Fwy (I-101) n/o Vignes St Postmile 0.46	NB	4	8,800	9,045	1.028	F(0)	9,003	1.023	F(0)	-0.005
	SB	4	8,800	6,472	0.735	С	6,613	0.752	С	0.016
1037 Hollywood Fwy (I-101)	NB	4	8,800	6,327	0.719	С	6,519	0.741	С	0.022
s/o Santa Monica Blvd Postmile 5.2	SB	4	8,800	5,317	0.604	С	5,424	0.616	С	0.012

CMP Station		Lanes	Capacity	Future No Project Conditions			Future With Project Conditions			
	Direction			Volume (Demand)	D/C	CMP LOS	Volume (Demand)	D/C	CMP LOS	Change in D/C
1038 Ventura Fwy (I-101) Coldwater Canyon Ave Postmile 13.98	NB	5	11,000	8,268	0.752	С	8,370	0.761	С	0.009
	SB	5	11,000	8,105	0.737	С	8,192	0.745	С	0.008
1039 Ventura Fwy (I-101)	NB	5	11,000	8,932	0.812	D	9,083	0.826	D	0.014
Winnetka Ave Postmile 23.4	SB	5	11,000	8,591	0.781	D	8,674	0.789	D	0.008
1041 Century Fwy (I-105)	EB	3	6,600	2,779	0.421	В	2,803	0.425	В	0.004
e/o Sepulveda Blvd (Jct Rte 1) Postmile R1.00	WB	3	6,600	2,646	0.401	В	2,677	0.406	В	0.005
1045 Harbor Fwy (I-110)	NB	4	8,800	2,724	0.310	А	2,786	0.317	А	0.007
Wilmington s/o C St Postmile 2.77	SB	4	8,800	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1046 Harbor Fwy (I-110) Manchester Blvd Postmile 15.88	NB	6	13,200	7,507	0.569	С	7,533	0.571	С	0.002
	SB	6	13,200	8,391	0.636	С	8,387	0.635	С	0.000
1047 Harbor Fwy (I-110)	NB	6	13,200	7,183	0.544	С	7,236	0.548	С	0.004
Slauson Ave Postmile 17.95	SB	6	13,200	6,920	0.524	В	6,989	0.529	В	0.005
1048 Harbor Fwy (I-110)	NB	4	8,800	7,101	0.807	D	7,262	0.825	D	0.018
s/o Rte 101 Postmile 23.96	SB	4	8,800	4,453	0.506	В	4,640	0.527	В	0.021
1049 Harbor Fwy (I-110) @ Alpine St Postmile 23.96	NB	3	6,600	5,180	0.785	D	5,220	0.791	D	0.006
	SB	3	6,600	5,658	0.857	D	5,800	0.879	D	0.022
1052 Ronald Reagan Fwy (SR-118) e/o Woodley Ave Postmile R9.10	EB	6	13,200	6,663	0.505	В	6,922	0.524	В	0.020
	WB	6	13,200	8,047	0.610	С	8,377	0.635	С	0.025
1053 Ronald Reagan Fwy (SR-118)	EB	4	8,800	5,218	0.593	С	5,289	0.601	С	0.008
n/o Jct Rte 210 Postmile R13.44	WB	4	8,800	6,145	0.698	С	6,203	0.705	С	0.007

CMP Station		Lanes	Capacity	Future No Project Conditions			Future With Project Conditions			
	Direction			Volume (Demand)	D/C	CMP LOS	Volume (Demand)	D/C	CMP LOS	Change in D/C
1054 SR-134	EB	5	11,000	5,910	0.537	В	5,998	0.545	С	0.008
@ Forman Ave Postmile 1.26	WB	5	11,000	6,435	0.585	С	6,490	0.590	С	0.005
1057 Hollywood Fwy (SR-170)	NB	5	11,000	4,459	0.405	В	4,552	0.414	В	0.008
s/o Sherman Wy Postmile R17.62	SB	5	11,000	3,546	0.322	А	3,462	0.315	А	-0.008
1058 Foothill Fwy (I-210)	EB	3	6,600	128	0.019	А	161	0.024	А	0.005
e/o Polk St Postmile R3.57	WB	3	6,600	5,609	0.850	D	5,643	0.855	D	0.005
1059 Foothill Fwy (I-210) @ Terra Bella St Postmile R7.19	EB	4	8,800	5,017	0.570	С	5,050	0.574	С	0.004
	WB	4	8,800	5,449	0.619	С	5,493	0.624	С	0.005
1069 San Diego Fwy (I-405) n/o La Tijera Blvd Postmile 24.27	NB	5	11,000	6,671	0.606	С	6,870	0.625	С	0.018
	SB	5	11,000	7,454	0.678	С	7,612	0.692	С	0.014
1070 San Diego Fwy (I-405)	NB	5	11,000	6,327	0.575	С	6,377	0.580	С	0.005
n/o Venice Blvd Postmile 28.3	SB	5	11,000	7,482	0.680	С	7,614	0.692	С	0.012
1071 San Diego Fwy (I-405) s/o Mullholland Dr Postmile 35.81	NB	5	11,000	8,143	0.740	С	8,217	0.747	С	0.007
	SB	5	11,000	5,965	0.542	С	6,123	0.557	С	0.014
1072 San Diego Fwy (I-405) n/o Roscoe Blvd Postmile 44.27	NB	5	11,000	5,902	0.537	В	5,875	0.534	В	-0.002
	SB	5	11,000	5,000	0.455	В	5,029	0.457	В	0.003

Emergency Access

The proposed project is considered to have a significant impact if it would result in inadequate emergency vehicle access. The proposed project would involve the loss of travel lanes along parts of the TEN and BEN, which would cause additional traffic delays on these roadways. Nonetheless, the proposed project would not cause any complete roadway closures or disruptions to emergency access. Where segment-level LOS would not be significantly impacted, there would be no significant impacts on emergency vehicles. Where segment-level LOS would be significantly impacted, emergency vehicles would not be significantly impacted because California state law requires that drivers yield the right-of-way to emergency vehicles and remain stopped until the emergency vehicles have passed. Generally, multi-lane roadways allow the emergency vehicles to travel at higher speeds and permit other traffic to maneuver out of the path of the emergency vehicle. In addition, emergency service vehicles would be able to utilize the bus-only lanes when responding to an emergency which could help to improve travel times along the TEN corridors. Therefore, no impact related to emergency access would occur.

Public Transit, Bicycle, or Pedestrian Facilities

The proposed project establishes a variety of multi-modal initiatives to provide a system that offers multiple transportation options, supports the strong link between land use and transportation, and advocates for continued growth, to accommodate a variety of uses, in proximity to transit stations and major bus stops. The Plan contains goals, objectives, and policies that support travel by all modes, including public transit, bicycling, and walking.

Public Transit Facilities

The TEN includes improvements such as infrastructure improvements in the right-of-way, signal timing and technology improvements, and stop enhancements that would help to reduce delays for transit vehicles; provide reliable and frequent transit service that is convenient and safe; increase transit mode share; reduce single-occupancy vehicle trips; and integrate transit infrastructure investments with the identity of the surrounding street.

The proposed project contains numerous policies designed to increase the access to and effectiveness of the City's public transit facilities, including a multimodal access campaign, bus arrival information, improved boarding and alighting locations, transit coordination with neighboring jurisdictions, feeder bus service, transit coordination with major events, shuttle bus programs, multimodal mobility hubs, reduced parking requirements in transit areas, and transit neighborhood plans. The proposed project would not disrupt any existing or planned transit facilities or create conflicts or inconsistencies with adopted transit plans, guidelines, policies, or standards. Therefore, no impact related to the circulation system would occur.

Bicycle Facilities

The proposed project includes a BEN that would work in conjunction with existing paths and lanes to provide a low-stress network of bikeways for all types of riders. While many bicycle facilities would be implemented as envisioned by the Bicycle Plan, streets on the Bicycle-Enhanced Network would receive treatments beyond a regular bicycle lane or shared lane marking, such as buffered lanes, cycle tracks, and intersection enhancements.

The proposed project establishes policies and actions that create support for bicycling and use of the bicycle network, including a multimodal access campaign, improved wayfinding, annual bicycle counts, bicycle parking, on-street bicycle corrals, street openings, programming to support bicycling by students, bike racks on-board transit vehicles, bicycle path enhancements, bicycle valet at special events, a bicycle sharing program, and multimodal mobility hubs. The proposed project would not disrupt any existing or planned bicycle facilities, or create conflicts or inconsistencies with adopted bicycle system plans, guidelines, policies, or standards. Therefore, no impact related to the bicycle circulation system would occur.

Pedestrian Facilities

The proposed project includes PEDs near schools, transit stations, areas of high pedestrian activity, areas with high collision frequency, or other placemaking opportunities. The PEDs typically include way-finding, street trees, pedestrian-scaled street lighting, enhanced crosswalks at all legs of the intersection, automatic pedestrian signals, reduced crossing lengths, wider sidewalks, and specialty paving and seating areas where special maintenance funding exists.

The proposed project places a major emphasis on walking in Los Angeles, acknowledging that every trip, regardless of mode, includes walking and that pedestrians are the most vulnerable roadway users. The proposed project supports walking through numerous specific policies for streets, land uses, and urban design that all support an active and high quality pedestrian environment. Some of these improvements include pedestrian street lighting, annual pedestrian counts, collision monitoring and analysis, streamlined installation standards for pedestrian facilities, mid-block crossing enhancements, standards to ensure safe pedestrian passage through construction areas, adjustment of signal timing to allow more time for pedestrian crossings, incentives to retrofit parking lots and structures with pedestrian design features, and partnering with Safe Routes to School initiatives. The proposed project would not disrupt existing pedestrian facilities or interfere with planned pedestrian facilities, or create conflicts or inconsistencies with adopted pedestrian system plans, guidelines, policies, or standards. Therefore, no impact related to the pedestrian circulation system would occur.

Parking

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA. Under CEQA, a project's social impacts need not be treated as significant impacts on the environment. Environmental documents must address the secondary physical impacts that would be triggered by a social impact (CEQA Guidelines Section 15131). The social inconvenience of parking deficits, such as having to hunt for scare parking spaces, is not an environmental impact, but there may be secondary physical environmental impacts, such as increased traffic congestion at intersections, air quality impacts, safety impacts, noise impacts caused by congestion, or land use impacts. Also, loss of parking could result in land use changes (see Section 4.2 Land Use).

Transportation analysis accounts for potential secondary effects, such as cars circling and looking for a parking space in areas of limited parking supply, by assuming that all drivers would attempt to find parking along study streets and then seek parking farther away if convenient parking is unavailable. Moreover, the secondary effects of drivers searching for parking is typically off-set by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area. Hence, any secondary environmental impacts which may result from a shortfall in parking are anticipated to be minor and other transportation analyses reasonably address potential secondary impacts.

Analysis of the transportation network generally assumes that implementing the BEN and TEN would result in the conversion of vehicle travel lanes, not on-street parking, to bicycle or transit lanes. Implementation of the VEN does include conversion of on-street parking to vehicle travel lanes during peak periods in the case of the moderate-treatment section of Balboa Boulevard and during the full day in the case of comprehensive-treatment sections of Alameda Street, Balboa Boulevard, Gaffey Street, La Cienega Boulevard, Nordoff Street, Olympic Boulevard, Pacific Coast Highway, Slauson Avenue, Sunset Boulevard, Topanga Canyon Boulevard, Victory Boulevard, to the extent that on-street parking currently exists along those sections.

The proposed project would result in a loss of parking spaces that could increase VMT if people drive farther to find parking or seek an alternate destination with more convenient parking. However, this increased VMT would typically be off-set by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area. Therefore, the proposed project would result in less-than-significant impacts related to parking.

In addition, the City's establishment of Modified Parking Requirement (MPR) Districts (Ordinance No. 182242) allows for the modification of parking requirements within the MPR District to maintain the required number of parking spaces for any permitted use in the District, to allow off-site parking within 1,500 feet of the site, to reduce parking requirements for individual projects, to establish less restrictive parking requirements by use within the District, to establish more restrictive parking requirements by use within the District, to create a commercial parking credit program, or to establish maximum parking requirements within the District. Potential land use impacts resulting from changes in parking are addressed by Mitigation Measure **LU1** in Section 4.2 Land Use & Planning.

Safety

There are no roadway-specific plans at this time. It is anticipated that as Community Plans are revised and refined, the roadway network within each planning area will be refined in concert with land use changes. Without such detail, it is not possible, using available traffic analysis procedures, to estimate some types of impacts. In addition, ongoing individual development proposals must be reviewed on a case-by-case basis as they arise and as details such as driveway locations or intersection modifications become known. The City cannot address these project impacts in this Draft EIR as it would be too speculative to try to determine how any particular development would be constructed. In addition, Section 15145 of the CEQA Guidelines specifically states that if a particular impact or project is too speculative for evaluation, then analysis in the EIR is not required.

Other Metrics

Mode Split

Table 4.1-24 summarizes changes in peak period mode split among the Existing conditions, Future No Project, and Future With Project scenarios by Area APC and for the City as a whole, and **Table 4.1-25** summarizes the peak period person trips by mode.

Under Existing conditions, auto is the dominant mode of transportation across the City, ranging from 78.9 percent to 84.2 percent of all peak period person trips, averaging 81.7 percent citywide. The Central APC has the lowest share of auto trips and highest share of transit, bike, and walk trips, while the North Valley APC has the highest auto mode share and lowest bike and walk mode shares; the Harbor APC has the lowest transit mode share.

Under Future No Project conditions, the average auto mode share declines slightly from 81.7 percent to 80.4 percent citywide. The Central APC continues to have the lowest auto mode share and the highest share of transit, bike, and walk modes. Shifts in the North Valley APC from driving to walking, biking, and transit leave the Harbor APC in the position of having the highest auto mode share of 83.0 percent.

Future With Project conditions reduce the average auto mode share more than 6 percent from Existing conditions and more than 5 percent from Future No Project conditions, to 75.3 percent citywide. The largest absolute increases in the share of other modes accrue to walking, followed by transit and biking. On a relative basis, biking increases the most, more than 145 percent over Existing conditions, followed by transit (45 percent) and walking (26 percent). These changes in mode split are conservative, vehicle-centric estimates based on historical travel behavior patterns and do not account for additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations that would lead to increasing mode shift to lower-energy and lower-cost transportation modes.

Anna Diamaina Camminaian		Mod	de Split			Percent	Change	
Area Planning Commission	Auto	Transit	Bike	Walk	Auto	Transit	Bike	Walk
EXISTING	_		·					
North Valley	84.2%	2.3%	0.8%	12.7%	_	-	-	_
2. South Valley	83.1%	2.5%	0.9%	13.5%	_	_	-	_
3. Central	78.9%	4.4%	1.1%	15.6%	-	-	-	_
4. East Los Angeles	81.7%	3.5%	0.9%	13.9%	1	-	-	_
5. West Los Angeles	81.7%	2.4%	1.1%	14.9%	-	-	-	-
6. South Los Angeles	80.5%	4.0%	0.9%	14.7%	_	-	-	_
7. Harbor	83.9%	2.2%	0.8%	13.1%	-	-	-	-
TOTAL	81.7%	3.1%	0.9%	14.2%	-	-	-	-
FUTURE NO PROJECT (COMP.	ARISON TO	EXISTING)						
1. North Valley	82.5%	2.5%	1.0%	14.1%	-2.0%	7.3%	29.4%	10.4%
2. South Valley	81.8%	2.7%	1.0%	14.5%	-1.6%	8.0%	16.5%	7.4%
3. Central	77.7%	4.5%	1.2%	16.6%	-1.6%	3.5%	9.1%	6.3%
4. East Los Angeles	80.9%	3.5%	0.9%	14.7%	-1.0%	0.9%	7.4%	5.2%
5. West Los Angeles	79.8%	3.0%	1.3%	15.9%	-2.3%	28.1%	16.4%	7.0%
6. South Los Angeles	79.9%	4.1%	0.9%	15.1%	-0.7%	2.9%	5.1%	2.9%
7. Harbor	83.0%	2.4%	0.9%	13.8%	-1.0%	7.3%	4.8%	5.1%
TOTAL	80.4%	3.4%	1.1%	15.2%	-1.6%	7.8%	13.8%	6.8%
FUTURE WITH PROJECT (COM	IPARISON T	O EXISTING	G)					
North Valley	78.4%	3.5%	1.8%	16.3%	-6.9%	50.5%	135.2%	28.1%
2. South Valley	78.0%	3.7%	1.9%	16.4%	-6.1%	45.8%	117.4%	21.8%
3. Central	71.1%	5.8%	3.0%	20.1%	-9.9%	32.4%	171.4%	28.7%
4. East Los Angeles	75.6%	4.7%	2.1%	17.5%	-7.5%	35.8%	152.5%	25.5%
5. West Los Angeles	74.6%	4.2%	2.8%	18.4%	-8.6%	78.7%	153.6%	23.5%
6. South Los Angeles	73.7%	5.7%	2.0%	18.6%	-8.5%	41.5%	137.0%	27.19
7. Harbor	78.9%	3.4%	1.7%	16.0%	-5.9%	53.9%	107.3%	22.19
TOTAL	75.3%	4.6%	2.3%	17.9%	-7.9%	45.0%	145.4%	25.9%
FUTURE WITH PROJECT (COM	IPARISON T		NO PROJEC					
North Valley	78.4%	3.5%	1.8%	16.3%	-4.9%	40.2%	81.7%	16.19
2. South Valley	78.0%	3.7%	1.9%	16.4%	-4.6%	35.0%	86.7%	13.4%
3. Central	71.1%	5.8%	3.0%	20.1%	-8.4%	28.0%	148.7%	21.19
4. East Los Angeles	75.6%	4.7%	2.1%	17.5%	-6.5%	34.5%	135.0%	19.3%
5. West Los Angeles	74.6%	4.2%	2.8%	18.4%	-6.5%	39.6%	117.9%	15.4%
6. South Los Angeles	73.7%	5.7%	2.0%	18.6%	-7.8%	37.6%	125.4%	23.5%
7. Harbor	78.9%	3.4%	1.7%	16.0%	-4.9%	43.4%	97.9%	16.19
TOTAL	75.3%	4.6%	2.3%	17.9%	-6.4%	34.5%	115.7%	17.9%

TABLE 4.1-25: PEAK PE								
			Split		• .	Percent		
Area Planning Commission	Auto	Transit	Bike	Walk	Auto	Transit	Bike	Walk
EXISTING							ı	
1. North Valley	962	27	9	146	_	-	-	
2. South Valley	1,161	35	12	188	_	_		
3. Central	1,252	70	17	248	1	_	-	_
4. East Los Angeles	505	22	5	86	1	_	-	_
5. West Los Angeles	773	22	10	141	-	-	-	_
6. South Los Angeles	779	39	8	142	_	-	-	_
7. Harbor	275	7	3	43	_	-	_	-
TOTAL	5,710	219	65	993	-	-	_	_
FUTURE NO PROJECT (COMP								
North Valley	960	29	12	164	-0.3%	9.3%	31.7%	12.4%
2. South Valley	1,250	42	15	221	7.6%	18.1%	27.4%	17.5%
3. Central	1,373	80	21	293	9.7%	15.2%	21.5%	18.4%
4. East Los Angeles	533	23	6	97	5.7%	7.7%	14.7%	12.3%
West Los Angeles	804	31	13	160	4.0%	36.3%	23.9%	13.9%
6. South Los Angeles	855	44	10	162	9.8%	13.8%	16.3%	13.8%
7. Harbor	273	8	3	45	-0.6%	7.8%	5.2%	5.6%
TOTAL	6,050	255	80	1,142	6.0%	16.2%	22.6%	15.0%
FUTURE WITH PROJECT (COM	IPARISON	TO EXISTIN	G)					
North Valley	912	41	21	190	-5.2%	53.2%	139.4%	30.4%
2. South Valley	1,192	56	29	251	2.6%	59.5%	137.8%	33.2%
3. Central	1,258	103	52	355	0.4%	47.5%	202.4%	43.4%
4. East Los Angeles	499	31	14	115	-1.2%	44.9%	169.5%	33.9%
5. West Los Angeles	752	43	28	185	-2.7%	90.3%	170.1%	31.5%
6. South Los Angeles	789	61	22	200	1.3%	56.5%	162.2%	40.6%
7. Harbor	260	11	6	53	-5.5%	54.5%	108.3%	22.6%
TOTAL	5,666	343	172	1,347	-0.8%	56.2%	164.4%	35.6%
FUTURE WITH PROJECT (COM	PARISON	TO FUTURE	NO PROJE	CT)				
North Valley	912	41	21	190	-4.9%	40.2%	81.8%	16.1%
2. South Valley	1,192	56	29	251	-4.6%	35.0%	86.7%	13.4%
3. Central	1,258	103	52	355	-8.4%	28.0%	148.8%	21.1%
4. East Los Angeles	499	31	14	115	-6.5%	34.5%	135.1%	19.3%
5. West Los Angeles	752	43	28	185	-6.5%	39.6%	117.9%	15.5%
6. South Los Angeles	789	61	22	200	-7.8%	37.6%	125.5%	23.5%
7. Harbor	260	11	6	53	-4.9%	43.4%	97.9%	16.1%
TOTAL	5,666	343	172	1,347	-6.3%	34.5%	115.7%	17.9%
SOURCE: City of Los Angeles Travel	•			,				70

Transit Boardings

Table 4.1-26 summarizes changes in transit boardings among the Existing conditions, Future No Project, and Future With Project scenarios by Area Planning Commission (APC) and for the City as a whole. The table includes transit boardings at all stop locations in the City of Los Angeles. Existing ridership numbers reflect Metro data from 2013. Future No Project and Future With Project ridership numbers reflect the percent increases in transit ridership estimated by the travel demand model applied to the Existing ridership numbers.

The model-estimated changes in transit ridership are conservative, vehicle-centric estimates based on historical travel behavior patterns and do not account for additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations that would lead to increasing transit use.

	Tı	ansit Boardings			Percent Change	
	Peak Period	Off Peak Period		Peak Period	Off Peak Period	
Area Planning Commission	(7-Hour)	(17-Hour)	Daily	(7-Hour)	(17-Hour)	Daily
EXISTING						
1. North Valley	33,100	28,000	61,100	-	_	-
2. South Valley	77,200	62,900	140,100	-	-	-
3. Central	280,800	245,700	526,500	-	-	_
4. East Los Angeles	44,900	38,600	83,600	-	-	-
5. West Los Angeles	19,100	16,300	35,400	-	_	_
6. South Los Angeles	140,500	118,700	259,300	-	_	-
7. Harbor	6,100	5,200	11,300	-	_	_
TOTAL	601,800	515,500	1,117,200	-	_	-
FUTURE NO PROJECT (CO	MPARISON TO	EXISTING)				
North Valley	34,100	30,800	64,300	3.0%	10.0%	5.2
South Valley	88,200	72,100	160,300	14.2%	14.6%	14.4
3. Central	290,100	278,100	560,700	3.3%	13.2%	6.5
4. East Los Angeles	49,900	42,700	92,700	11.1%	10.6%	10.9
5. West Los Angeles	30,300	24,300	54,800	58.6%	49.1%	54.8
6. South Los Angeles	181,000	147,900	329,800	28.8%	24.6%	27.2
7. Harbor	6,100	5,400	11,500	0.0%	3.8%	1.8
TOTAL	677,000	603,700	1,274,700	12.5%	17.1%	14.1
FUTURE WITH PROJECT (OMPARISON '	TO EXISTING)				
North Valley	57,200	50,400	107,000	72.8%	80.0%	75.1
2. South Valley	111,700	89,700	201,700	44.7%	42.6%	44.0
3. Central	345,400	325,100	663,400	23.0%	32.3%	26.0
4. East Los Angeles	65,600	53,700	119,900	46.1%	39.1%	43.4
5. West Los Angeles	56,200	43,300	100,200	194.2%	165.6%	183.1
6. South Los Angeles	243,900	192,500	439,300	73.6%	62.2%	69.4
7. Harbor	9,300	7,100	16,500	52.5%	36.5%	46.0
TOTAL	905,700	789,200	1,691,400	50.5%	53.1%	51.4
FUTURE WITH PROJECT (OMPARISON T	TO FUTURE NO	PROJECT)			
North Valley	57,200	50,400	107,000	67.7%	63.6%	66.4
2. South Valley	111,700	89,700	201,700	26.6%	24.4%	25.8
3. Central	345,400	325,100	663,400	19.1%	16.9%	18.3
4. East Los Angeles	65,600	53,700	119,900	31.5%	25.8%	29.3
5. West Los Angeles	56,200	43,300	100,200	85.5%	78.2%	82.8
6. South Los Angeles	243,900	192,500	439,300	34.8%	30.2%	33.2
7. Harbor	9,300	7,100	16,500	52.5%	31.5%	43.5
TOTAL	905,700	789,200	1,691,400	33.8%	30.7%	32.7

Under Existing conditions, there are over 1,117,000 daily transit boardings in the City of Los Angeles; nearly half of these boardings occur in the Central APC. Under Future No Project conditions, boardings increase about 14 percent overall to nearly 1.3 million daily boardings; the Central APC continues to contribute the highest number of boardings, with over 40 percent of the citywide total.

Future With Project conditions increase the total number of transit boardings in the City by more than 50 percent compared with Existing conditions and by nearly 33 percent compared with Future No Project conditions, to nearly 1.7 million daily boardings. Both the Central and West Los Angeles APCs add over 100,000 daily boardings each between the Existing conditions and Project conditions; in total over 570,000 new boardings occur. The Central APC continues to contribute the largest number of boardings, with nearly 40 percent of the citywide total. The South Los Angeles APC adds the most new boardings, increasing from nearly 260,000 to nearly 440,000 daily boardings. The West Los Angeles APC experiences the greatest relative increase in transit ridership compared with Existing conditions, adding nearly 65,000 trips for an increase of over 180 percent between Existing and Future With Project conditions.

Vehicle Trips

Table 4.1-27 summarizes changes in vehicle trips among the Existing, Future No Project, and Future With Project scenarios by Area Planning Commission (APC) and for the City as a whole. The table includes all vehicle trips that originate in the City of Los Angeles, are destined for the City, or both, but excludes trips that both start and end outside the City.

Area Planning Commission EXISTING 1. North Valley 2. South Valley 3. Central 4. East Los Angeles 5. West Los Angeles	843,600 1,057,800 1,150,200	646,000 819,300	Daily	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily
EXISTING 1. North Valley 2. South Valley 3. Central 4. East Los Angeles 5. West Los Angeles	843,600 1,057,800 1,150,200	646,000		(7-Hour)	(17-Hour)	Daily
1. North Valley 2. South Valley 3. Central 4. East Los Angeles 5. West Los Angeles	1,057,800 1,150,200	,	1.489.600			Dany
2. South Valley 3. Central 4. East Los Angeles 5. West Los Angeles	1,057,800 1,150,200	,	1.489.600			
3. Central 4. East Los Angeles 5. West Los Angeles	1,150,200	819,300		-	-	_
4. East Los Angeles 5. West Los Angeles			1,877,100	-	-	
5. West Los Angeles		914,600	2,064,800	-	-	_
	449,200	333,900	783,100	_	-	
	770,800	624,600	1,395,400	-	-	_
6. South Los Angeles	639,500	483,400	1,122,900	_	-	
7. Harbor	238,800	180,400	419,200	-	-	_
TOTAL	5,149,900	4,002,200	9,152,200	-	-	
FUTURE NO PROJECT (CC		EXISTING)				
North Valley	916,900	710,400	1,627,300	8.7%	10.0%	9.2%
2. South Valley	1,124,600	898,600	2,023,200	6.3%	9.7%	7.8%
3. Central	1,248,400	1,016,300	2,264,700	8.5%	11.1%	9.7%
4. East Los Angeles	478,400	364,200	842,600	6.5%	9.1%	7.69
5. West Los Angeles	800,000	652,700	1,452,700	3.8%	4.5%	4.19
6. South Los Angeles	704,200	544,200	1,248,400	10.1%	12.6%	11.29
7. Harbor	246,100	190,700	436,800	3.1%	5.7%	4.29
TOTAL	5,518,600	4,377,100	9,895,800	7.2%	9.4%	8.1%
FUTURE WITH PROJECT (COMPARISON	TO EXISTING)				
North Valley	897,300	701,600	1,598,900	6.4%	8.6%	7.3%
2. South Valley	1,099,700	886,200	1,985,900	4.0%	8.2%	5.8%
3. Central	1,193,400	989,500	2,182,900	3.8%	8.2%	5.7%
4. East Los Angeles	463,300	357,400	820,700	3.1%	7.0%	4.8%
5. West Los Angeles	771,700	638,400	1,410,100	0.1%	2.2%	1.19
6. South Los Angeles	679,700	532,500	1,212,200	6.3%	10.2%	8.0%
7. Harbor	240,900	188,500	429,400	0.9%	4.5%	2.4%
TOTAL	5,346,000	4,294,100	9,640,135	3.8%	7.3%	5.3%
FUTURE WITH PROJECT (COMPARISON	TO FUTURE NO	PROJECT)			
North Valley	897,300	701,600	1,598,900	-2.1%	-1.2%	-1.79
2. South Valley	1,099,700	886,200	1,985,900	-2.2%	-1.4%	-1.8%
3. Central	1,193,400	989,500	2,182,900	-4.4%	-2.6%	-3.6%
4. East Los Angeles	463,300	357,400	820,700	-3.2%	-1.9%	-2.6%
5. West Los Angeles	771,700	638,400	1,410,100	-3.5%	-2.2%	-2.9%
6. South Los Angeles	679,700	532,500	1,212,200	-3.5%	-2.1%	-2.9%
7. Harbor	240,900	188,500	429,400	-2.1%	-1.2%	-1.79

Under Existing conditions, there are over 9.1 million daily vehicle trips in the City of Los Angeles; nearly 23 percent of these vehicle trips begin or end in the Central APC.

Under Future No Project conditions, vehicle trips increase over 8 percent overall to nearly 9.9 million daily vehicle trips, reflecting increases in the number of residents and the level of economic activity in the City; the Central APC continues to contribute the highest number of vehicle trips, with nearly 23 percent of the citywide total.

Future With Project conditions reduce the total number of vehicle trips 2.6 percent from Future No Project conditions to approximately 9.6 million, representing a 5 percent increase over Existing conditions. The South Los Angeles APC experiences the greatest increase in vehicle trips with an 8 percent increase relative to Existing conditions, though this change represents a 2.9 percent decrease relative to Future No Project conditions. The same socio-demographic increases that apply to the Future No Project conditions also apply to the Project conditions, resulting in an increase in the number of vehicle trips over Existing conditions; however, proposed project improvements to transit, walk, and bicycle modes shift travelers from vehicles to those modes, reducing the number of vehicle trips under Project conditions relative to Future No Project conditions.

Vehicle Miles Traveled (VMT)

Table 4.1-28 summarizes changes in vehicle miles traveled among the Existing, Future No Project, and Future With Project scenarios on surface streets by APC and for the City as a whole, as well as for mainline freeway segments citywide. The table includes all vehicle miles traveled on roadways in the City of Los Angeles.

	Ve	hicle Miles Traveled			Percent Change	
Area Planning Commission	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily
EXISTING CONDITIONS	(7 Hour)	(17 Hour)		(7 Hour)	(17 Hour)	
1. North Vallev	3.740.800	2,308,300	6,049,100			
2. South Valley	4,083,400	2,682,800	6,766,200	_	_	
3. Central	3,993,500	2,496,000	6,489,500	_	_	
4. East Los Angeles	1,864,800	1,058,700	2,923,500	_	_	
5. West Los Angeles	3,182,200	2.305.700	5,487,900	_	_	
6. South Los Angeles	3,639,000	2,049,800	5,688,800	_	_	
7. Harbor	1,196,600	807,300	2,003,900	_	_	_
Surface Streets	21.700.300	13,708,600	35,408,900	_	_	
Freeways (Mainline)	19,978,600	19,878,800	39,857,400	_	_	
Total, City of Los Angeles	41,678,900	33,587,400	75,266,300	_	_	
FUTURE NO PROJECT (CO			. 0,200,000			
1. North Vallev	4.080.300	2,614,400	6,694,700	9.1%	13.3%	10.7
2. South Valley	4,341,900	2,614,400	7,272,100	6.3%	9.2%	7.5
3. Central	4,341,900	2,930,200	6,959,200	6.4%	8.7%	7.2
4. East Los Angeles	2,008,700	1,162,300	3,171,000	7.7%	9.8%	8.5
5. West Los Angeles	3,436,200	2,486,000	5,922,200	8.0%	7.8%	7.9
6. South Los Angeles	3,958,800	2,292,100	6,250,900	8.8%	11.8%	9.9
7. Harbor	1,287,700	905,900	2,193,600	7.6%	12.2%	9.5
Surface Streets	23,360,800	15,102,900	38,463,700	7.7%	10.2%	8.0
Freeways (Mainline)	21,643,500	22,520,500	44,164,000	8.3%	13.3%	10.8
Total, City of Los Angeles	45,004,300	37,623,400	82,627,700	8.0%	12.0%	9.8
FUTURE WITH PROJECT (02,021,100	0.070	121070	
I. North Valley	3,916,300	2,559,200	6,475,500	4.7%	10.9%	7.0
2. South Valley	4,214,000	2,886,600	7,100,600	3.2%	7.6%	4.9
3. Central	3,930,200	2,623,100	6,553,300	-1.6%	5.1%	1.0
I. East Los Angeles	1,809,900	1,060,800	2,870,700	-2.9%	0.2%	-1.8
5. West Los Angeles	3.330,200	2.444.000	5.774.200	4.7%	6.0%	5.2
6. South Los Angeles	3,644,500	2,178,100	5,822,600	0.2%	6.3%	2.4
7. Harbor	1,175,500	853,600	2,029,100	-1.8%	5.7%	1.3
Surface Streets	22.020.600	14.605.400	36.626.000	1.5%	6.5%	3.4
Freeways (Mainline)	21,814,700	22,514,800	44,329,500	9.2%	13.3%	11.2
Total, City of Los Angeles	43,835,300	37,120,200	80,955,500	5.2%	10.5%	7.0
UTURE WITH PROJECT (5.270		
. North Vallev	3.916.300	2.559,200	6,475,500	-4.0%	-2.1%	-3.3
2. South Valley	4.214.000	2,886,600	7.100.600	-2.9%	-1.5%	-2.4
B. Central	3,930,200	2,623,100	6,553,300	-7.5%	-3.3%	-5.8
4. East Los Angeles	1,809,900	1,060,800	2,870,700	-9.9%	-8.7%	-9.t
5. West Los Angeles	3,330,200	2,444,000	5,774,200	-3.1%	-1.7%	-2.5
6. South Los Angeles	3,644,500	2,178,100	5,822,600	-7.9%	-5.0%	-6.9
7. Harbor	1,175,500	853,600	2,029,100	-8.7%	-5.8%	-7.5
Surface Streets	22.020.600	14,605,400	36,626,000	-5.7%	-3.3%	-4.
Freeways (Mainline)	21,814,700	22,514,800	44,329,500	0.8%	0.0%	0.
Total, City of Los Angeles	43.835.300	22,017,000	17,020,000	0.070	0.070	0.

Under Existing conditions, motorists travel over 75 million vehicle miles on roadways within the City of Los Angeles on an average weekday. Nearly one third of these vehicle miles are traveled during the four-hour PM Peak Period between 3:00 and 7:00 p.m. Although they comprise only 181 miles (3 percent) of the nearly 6,700 miles of roadways in the City of Los Angeles, freeways account for over half of all daily vehicle miles traveled within the City.

Under Future No Project conditions, daily VMT increases to 82.6 million, 8 percent above Existing Base levels. The increase occurs disproportionately on Freeways, where VMT increases by 8.3 percent, compared with surface streets, where VMT increases by 7.7 percent.

Future With Project conditions reduce daily VMT to 81 million, 7.6 percent greater than Existing levels, but 2.0 percent lower than Future No Project levels. VMT on surface streets is only 3.4 percent greater than Existing conditions, while freeway VMT exceeds Existing conditions by 11.2 percent. Relative to Future No Project conditions, freeway VMT increases by only 0.4 percent, while surface street VMT decreases by 4.8 percent. The same socio-demographic increases that apply to the Future No Project conditions also apply to the Project conditions, resulting in an increase in the level of VMT over Existing conditions; however, Project improvements to transit, walk, and bicycle modes shift travelers from vehicles to those modes, reducing the level of VMT under Project conditions relative to Future No Project conditions. Freeway VMT increases more than surface street VMT likely because reductions in capacity on some BEN and TEN surface streets divert some arterial through-trips to the freeways.

Table 4.1-29 summarizes changes in vehicle miles traveled on a per-capita basis by dividing total vehicle miles traveled in the City of Los Angeles by the total number of people in the City, including both residents and workers.

Under Existing conditions, motorists in the City of Los Angeles travel a daily average of 13.0 miles per capita. Under Future No Project conditions, daily VMT per capita increases to 13.3 miles, 2.1 percent above Existing Base levels. Future With Project conditions reduce daily VMT per capita to 13.0 miles, comparable to Existing levels and 2.0 percent lower than Future No Project levels.

Table 4.1-30 provides additional detail on vehicle miles traveled on freeway mainline segments within the City of Los Angeles. Interstates 405, 5, and 110 and US-101 remain the most-traveled freeways in the City. Collectively, the four freeways account for over 28 million vehicle miles traveled, nearly two thirds of all freeway vehicle miles traveled within the City and more than one third of total vehicle miles traveled within the City under the Future With Project conditions. Freeway VMT increases by 11.2 percent relative to Existing conditions. Interstate 405 experiences the largest absolute increase in VMT over Existing conditions, with an increase of 1.2 million (14 percent), while Interstate 5 experiences the largest relative increase with 1.1 million new trips (19 percent) compared with Existing conditions. Relative to Future No Project conditions, freeway VMT increases by 0.4 percent overall, including a 3.6 percent decrease in VMT on State Route 2. Freeway VMT increases slightly under Project compared with Future No Project conditions likely because reductions in capacity on some BEN and TEN surface streets divert some arterial, and non-local, through-trips to the freeways.

Table 4.1-31 provides information on vehicle miles traveled in jurisdictions adjacent to the City of Los Angeles. Vehicle miles traveled on roadways within one mile of the City border are presented for Existing conditions, Future No Project, and Future With Project conditions. Vehicle miles traveled increases by 9.9 percent overall from Existing conditions to Future No Project conditions. Simi Valley and Long Beach experience the largest relative increases of 60.2 percent and 28.9 percent, respectively. VMT declines slightly on nearby roadways in Ventura County and Rancho Palos Verdes.

TABLE 4.1-29: VEHICLE THE CIT	E MILES TRAY Y OF LOS AN		PITA (EMPL	OYMENT P	LUS POPULATIO	ON) IN
	Ve	hicle Miles Traveled			Percent Change	
Area Planning Commission	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily
EXISTING CONDITIONS	(7-nour)	(17-Hour)	Daily	(7-nour)	(17-nour)	Daily
North Valley	4.0	2.4	6.4	_	_	_
South Valley	3.7	2.4	6.4		_	
3. Central	3.1	1.9	5.0		_	
Gentral 4. East Los Angeles	3.4	1.9	5.3		_	
	4.3	3.1	7.4		_	
West Los Angeles South Los Angeles	4.3	2.3	6.5			
7. Harbor	4.1	2.3	7.1		_	
Surface Streets	3.7	2.9	6.1		_	
Freeways (Mainline) Total, City of Los Angeles	3.4 7.2	3.4 5.8	6.9 13.0		-	_
FUTURE NO PROJECT (COMPA			13.0		-	
North Valley	4.1	2.6	6.7	2.8%	6.8%	4.3%
South Valley	3.6	2.4	6.0	-2.3%	0.4%	-1.2%
3. Central	3.0	1.9	5.0	-2.3% -1.6%	0.4%	-0.8%
Central 4. East Los Angeles	3.5	2.0	5.5	2.9%	4.8%	3.6%
West Los Angeles West Los Angeles					-2.9%	-2.8%
West Los Angeles South Los Angeles	4.2 4.2	3.0	7.2 6.6	-2.8% 0.8%	-2.9% 3.6%	-2.8% 1.8%
7. Harbor	4.2	3.2	7.8	8.0%	3.6% 12.7%	9.9%
Surface Streets	3.7			0.1%	2.5%	1.0%
Freeways (Mainline)	3.7	2.4 3.6	6.2 7.1	0.7%	5.4%	3.0%
Total, City of Los Angeles	7.2	6.0	13.3	0.7%	4.2%	2.1%
FUTURE WITH PROJECT (COM			13.3	0.4 /6	4.2 /0	2.1 /0
North Valley	3.9	2.6	6.5	-1.3%	4.5%	0.9%
2. South Valley	3.5	2.4	5.9	-5.2%	-1.1%	-3.6%
3. Central	2.8	1.9	4.7	-9.0%	-2.8%	-6.6%
Gentral Los Angeles	3.2	1.8	5.0	-7.3%	-4.3%	-6.2%
5. West Los Angeles	4.1	3.0	7.0	-5.8%	-4.6%	-5.3%
6. South Los Angeles	3.8	2.3	6.1	-7.2%	-1.6%	-5.2%
7. Harbor	4.2	3.0	7.2	-1.4%	6.2%	1.7%
Surface Streets	3.5	2.3	5.9	-5.6%	-0.9%	-3.8%
Freeways (Mainline)	3.5	3.6	7.1	1.5%	5.3%	3.4%
Total, City of Los Angeles	7.0	6.0	13.0	-2.2%	2.8%	0.0%
FUTURE WITH PROJECT (COM			13.0	-Z.Z /0	2.070	0.070
1. North Valley	3.9	2.6	6.5	-4.0%	-2.1%	-3.3%
South Valley	3.5	2.4	5.9	-2.9%	-1.5%	-2.4%
3. Central	2.8	1.9	4.7	-7.5%	-3.3%	-5.8%
East Los Angeles	3.2	1.8	5.0	-9.9%	-8.7%	-9.5%
5. West Los Angeles	4.1	3.0	7.0	-3.1%	-1.7%	-2.5%
6. South Los Angeles	3.8	2.3	6.1	-7.9%	-5.0%	-6.9%
7. Harbor	4.2	3.0	7.2	-8.7%	-5.8%	-7.5%
Surface Streets	3.5	2.3	5.9	-5.7%	-3.3%	-4.8%
Freeways (Mainline)	3.5	3.6	7.1	0.8%	0.0%	0.4%
Total, City of Los Angeles	7.0	6.0	13.0	-2.6%	-1.3%	-2.0%
SOURCE: City of Los Angeles Trave				2.070	110 /0	

Relative to Future No Project conditions, Project conditions represent a 0.4 percent decrease in vehicle miles traveled on nearby roadways in all neighboring jurisdictions. While some neighboring jurisdictions may experience a slight increase in VMT under Project conditions (up to 2.3 percent), the overall decrease in vehicle miles traveled on roadways within 1-mile of the City's border is due to changes in travel modes with the implementation of the TEN and BEN facilities that can also promote non-vehicular travel between nearby communities and the City.

TABLE 4.1-30: VEHICLE LOS AN		/ELED ON FREI	EWAY MAIN	ILINE SEGM	ENTS IN THE C	TY OF
	Vel	hicle Miles Traveled	ı		Percent Change	
Area Planning Commission	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily	Peak Period (7-Hour)	Off Peak Period (17-Hour)	Daily
EXISTING CONDITIONS				<u> </u>		
I-5	2,881,000	2,943,700	5,824,700	_	_	_
I-10	1,797,900	1,922,000	3,719,900	_	_	_
US-101	2,951,900	3,079,900	6,031,800	_	_	_
I-105	872,900	953,000	1,825,900	_	_	_
I-110	2,562,600	2,510,100	5,072,700	_	_	_
I-210	1,190,000	945,200	2,135,200	_	_	_
1-405	4,057,900	4,390,100	8,448,000	_	_	_
SR-2	374,400	287,100	661,500	_	_	_
SR-60	224,200	207,300	431,500	_	_	
SR-118	1,190,200	1,000,800	2,191,000		_	
SR-134	1,190,200	1,075,200	2,318,300		_	
SR-170	503,600	449,600	953,200		_	
SR-47,103		,			_	_
	129,100	114,400	243,500		_	
TOTAL	19,978,600	19,878,800	39,857,400		-	
FUTURE NO PROJECT (COM			0.045.700	40.007	04.007	40.001
I-5	3,367,400	3,578,300	6,945,700	16.9%	21.6%	19.2%
I-10	1,901,600	2,111,100	4,012,700	5.8%	9.8%	7.9%
US-101	3,062,900	3,339,600	6,402,500	3.8%	8.4%	6.1%
I-105	928,800	1,015,400	1,944,200	6.4%	6.5%	6.5%
I-110	2,672,800	2,704,500	5,377,300	4.3%	7.7%	6.0%
I-210	1,238,300	1,224,100	2,462,400	4.1%	29.5%	15.3%
I-405	4,503,400	5,094,000	9,597,400	11.0%	16.0%	13.6%
SR-2	373,600	286,200	659,800	-0.2%	-0.3%	-0.3%
SR-60	233,100	219,200	452,300	4.0%	5.7%	4.8%
SR-118	1,362,400	1,154,500	2,516,900	14.5%	15.4%	14.9%
SR-134	1,332,800	1,173,600	2,506,400	7.2%	9.2%	8.1%
SR-170	515,300	486,700	1,002,000	2.3%	8.3%	5.1%
SR-47,103	150,800	133,600	284,400	16.8%	16.8%	16.8%
TOTAL	21,643,500	22,520,500	44,164,000	8.3%	13.3%	10.8%
FUTURE WITH PROJECT (CO		XISTING)				
I-5	3,377,300	3,568,300	6,945,600	17.2%	21.2%	19.2%
I-10	1,924,900	2,129,200	4,054,100	7.1%	10.8%	9.0%
US-101	3,097,800	3,342,400	6,440,200	4.9%	8.5%	6.8%
I-105	931,800	1,019,800	1,951,600	6.7%	7.0%	6.9%
I-110	2,690,600	2,694,900	5,385,500	5.0%	7.4%	6.2%
I-210	1,245,500	1,223,400	2,468,900	4.7%	29.4%	15.6%
1-405	4,546,500	5,079,200	9,625,700	12.0%	15.7%	13.9%
SR-2	362,500	273,700	636,200	-3.2%	-4.7%	-3.8%
SR-60	233,800	218,900	452,700	4.3%	5.6%	4.9%
SR-118 SR-134	1,388,300	1,163,800	2,552,100	16.6%	16.3%	16.5%
	1,346,500	1,180,000	2,526,500	8.3%	9.7%	9.0%
SR-170	516,300	486,900	1,003,200	2.5%	8.3%	5.2%
SR-47,103	152,800	134,400	287,200	18.4%	17.5%	17.9%
TOTAL	21,814,700	22,514,800	44,329,500	9.2%	13.3%	11.2%
FUTURE WITH PROJECT (CO			•		1 1	
I-5	3,377,300	3,568,300	6,945,600	0.3%	-0.3%	0.0%
I-10	1,924,900	2,129,200	4,054,100	1.2%	0.9%	1.0%
US-101	3,097,800	3,342,400	6,440,200	1.1%	0.1%	0.6%
I-105	931,800	1,019,800	1,951,600	0.3%	0.4%	0.4%
I-110	2,690,600	2,694,900	5,385,500	0.7%	-0.4%	0.2%
I-210	1,245,500	1,223,400	2,468,900	0.6%	-0.1%	0.3%
I-405	4,546,500	5,079,200	9,625,700	1.0%	-0.3%	0.3%
SR-2	362,500	273,700	636,200	-3.0%	-4.4%	-3.6%
SR-60	233,800	218,900	452,700	0.3%	-0.1%	0.1%
SR-118	1,388,300	1,163,800	2,552,100	1.9%	0.8%	1.4%
SR-134	1,346,500	1,180,000	2,526,500	1.0%	0.5%	0.8%
SR-170	516,300	486,900	1,003,200	0.2%	0.0%	0.1%
SR-47,103	152,800	134,400	287,200	1.3%	0.6%	1.0%
TOTAL	21,814,700	22,514,800	44,329,500	0.8%	0.0%	0.4%
IJIAL	, ,	,,,,,,	,5=0,000	2.0,0	, /-	

TABLE 4.1-31: DA Wi		ILES TRAVELED THE CITY OF LO			CTIONS OI	N ROADWAYS
	Daily	Vehicle Miles Trave		Percent C Exis	•	Percent Change vs. Future No Project
City or County	Existing	Future No Project	Future With Project	Future No Project	Project	Future With Project
Los Angeles County	1,988,800	2,171,800	2,187,700	9.2%	10.0%	0.7%
Ventura County	95,600	88,100	87,500	-7.8%	-8.5%	-0.7%
Alhambra	163,100	164,400	162,700	0.8%	-0.2%	-1.0%
Beverly Hills	629,600	620,800	613,400	-1.4%	-2.6%	-1.2%
Burbank	474,300	506,800	504,400	6.9%	6.3%	-0.5%
Calabasas	5,700	6,000	5,700	5.3%	0.0%	-5.0%
Carson	621,300	701,200	702,200	12.9%	13.0%	0.1%
Commerce	15,900	15,700	15,600	-1.3%	-1.9%	-0.6%
Culver City	535,600	630,800	627,300	17.8%	17.1%	-0.6%
El Segundo	190,400	213,100	211,300	11.9%	11.0%	-0.8%
Gardena	302,500	325,400	333,000	7.6%	10.1%	2.3%
Glendale	684,600	729,200	719,600	6.5%	5.1%	-1.3%
Hawthorne	90,900	95,800	94,700	5.4%	4.2%	-1.1%
Huntington Park	103,700	115,200	113,800	11.1%	9.7%	-1.2%
Inglewood	617,200	687,800	664,300	11.4%	7.6%	-3.4%
Long Beach	273,600	352,700	352,700	28.9%	28.9%	0.0%
Lynwood	119,300	131,000	131,200	9.8%	10.0%	0.2%
Monterey Park	41,300	42,300	42,700	2.4%	3.4%	0.9%
Pasadena	103,200	117,400	118,200	13.8%	14.5%	0.7%
San Fernando	93,600	117,300	119,100	25.3%	27.2%	1.5%
Santa Monica	549,400	657,600	654,300	19.7%	19.1%	-0.5%
South Gate	102,700	114,500	112,000	11.5%	9.1%	-2.2%
South Pasadena	216,100	228,400	226,300	5.7%	4.7%	-0.9%
Torrance	311,100	322,900	328,000	3.8%	5.4%	1.6%
Vernon	215,400	240,700	239,000	11.7%	11.0%	-0.7%
West Hollywood	313,000	351,600	344,700	12.3%	10.1%	-2.0%
TOTAL	8,857,900	9,748,500	9,711,400	10.1%	9.6%	-0.4%

Vehicle Hours Traveled

Table 4.1-32 summarizes changes in vehicle hours traveled on freeway mainline segments within the City of Los Angeles among the Existing, Future No Project, and Future with Project scenarios. Motorists spend the most vehicle hours traveling on Interstates 405, 5, and 110 and US-101.

Collectively, the four freeways account for nearly 1.3 million daily vehicle hours of travel under Future With Project conditions, over 70 percent of all freeway vehicle hours traveled within the City. This represents a 16.8 percent increase over Existing conditions and a 2.2 percent increase over Future No Project conditions. Freeway vehicle hours traveled increases slightly under Project compared with Future No Project conditions due to reductions in capacity on some BEN and TEN surface streets that divert some arterial through-trips to the freeways.

The model-estimated changes in vehicle hours traveled are conservative, vehicle-centric estimates based on historical travel behavior patterns and do not account for additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations that would lead to decreasing vehicle hours traveled. Recent research in this area suggests that factors correlated with annual VMT over the last sixty years include the economy, demographics, technology, and the urban form of the built environment. Specifically, this research shows both cyclical recession effects and a structural leveling of the economy and travel.

TABLE 4.1-32: VEHICLE LOS ANG		VELED ON FRE	EEWAY MAI	NLINE SEGM	ENTS IN THE	CITY OF
	Vel	nicle Hours Traveled	d	P	ercent Change	
	Peak Period	Off Peak Period		Peak Period	Off Peak Period (17-	
Area Planning Commission EXISTING CONDITIONS	(7-Hour)	(17-Hour)	Daily	(7-Hour)	Hour)	Daily
I-5	165,700	86,800	252,500	_	_	
I-10	99,100	55,200	154,300			
US-101	173,200	96,600	269,800	_	_	_
I-105	35,600	23,600	59,200	_	_	_
I-110	125,200	70,500	195,700	1	_	-
I-210	37,600	18,100	55,700	_	_	_
I-405	235,600	137,500	373,100		1	1
SR-2	16,000	6,000	22,000	_	-	-
SR-60	10,200	5,600	15,800	_	-	_
SR-118	33,700	19,800	53,500	_	_	
SR-134	52,600	26,300	78,900	_	_	
SR-170	19,400	11,600	31,000	_	-	-
SR-47,103 TOTAL	4,200 1,008,200	3,100	7,300	_	_	1
FUTURE NO PROJECT (COM	1,000,200	560,600	1,568,800	_	_	
I-5	228,500	114,200	342,700	37.9%	31.6%	35.7%
I-10	106,500	60,800	167,300	7.5%	10.1%	8.4%
US-101	187,300	106,300	293,600	8.1%	10.0%	8.8%
I-105	38,900	25,000	63,900	9.3%	5.9%	7.9%
I-110	130,500	76,200	206,700	4.2%	8.1%	5.6%
I-210	42,400	24,900	67,300	12.8%	37.6%	20.8%
I-405	263,100	157,600	420,700	11.7%	14.6%	12.8%
SR-2	14,100	5,900	20,000	-11.9%	-1.7%	-9.1%
SR-60	10,200	5,800	16,000	0.0%	3.6%	1.3%
SR-118	41,700	23,700	65,400	23.7%	19.7%	22.2%
SR-134	60,000	29,300	89,300	14.1%	11.4%	13.2%
SR-170	18,600	12,000	30,600	-4.1%	3.4%	-1.3%
SR-47,103	5,000	3,700	8,700	19.0%	19.4%	19.2%
TOTAL FUTURE WITH PROJECT (CO	1,146,800	645,300	1,792,100	13.7%	15.1%	14.2%
I-5	231,400	114,100	345,500	39.6%	31.5%	36.8%
I-10	112,000	62,000	174,000	13.0%	12.3%	12.8%
US-101	196,100	107,300	303,400	13.2%	11.1%	12.5%
I-105	39,300	25,200	64,500	10.4%	6.8%	9.0%
I-110	136,100	76,400	212,500	8.7%	8.4%	8.6%
I-210	43,000	25,000	68,000	14.4%	38.1%	22.1%
I-405	272,800	158,000	430,800	15.8%	14.9%	15.5%
SR-2	13,100	5,600	18,700	-18.1%	-6.7%	-15.0%
SR-60	10,200	5,900	16,100	0.0%	5.4%	1.9%
SR-118	43,700	23,900	67,600	29.7%	20.7%	26.4%
SR-134	61,800	29,700	91,500	17.5%	12.9%	16.0%
SR-170	18,700	11,900	30,600	-3.6%	2.6%	-1.3%
SR-47,103 TOTAL	5,100 1,183,600	3,700	8,800	21.4% 17.4%	19.4% 15.7%	20.5% 16.8%
FUTURE WITH PROJECT (CO		648,500	1,832,100	17.4%	15.7%	16.8%
I-5	231,400	114.100	345,500	1.3%	-0.1%	0.8%
I-10	112,000	62,000	174,000	5.2%	2.0%	4.0%
US-101	196,100	107,300	303,400	4.7%	0.9%	3.3%
I-105	39,300	25,200	64,500	1.0%	0.8%	0.9%
I-110	136,100	76,400	212,500	4.3%	0.3%	2.8%
I-210	43,000	25,000	68,000	1.4%	0.4%	1.0%
I-405	272,800	158,000	430,800	3.7%	0.3%	2.4%
SR-2	13,100	5,600	18,700	-7.1%	-5.1%	-6.5%
SR-60	10,200	5,900	16,100	0.0%	1.7%	0.6%
SR-118	43,700	23,900	67,600	4.8%	0.8%	3.4%
SR-134	61,800	29,700	91,500	3.0%	1.4%	2.5%
SR-170	18,700	11,900	30,600	0.5%	-0.8%	0.0%
SR-47,103 TOTAL	5,100 1,183,600	3,700 648 500	8,800 1 832 100	2.0% 3.2%	0.0% 0.5%	1.1% 2.2%
IUIAL	1,103,000	648,500	1,832,100	3.2%	0.5%	2.270

Accessibility Metrics and Network Coverage

Tables 4.1-33, **4.1-34**, and **4.1-35** provide detail on the Population and Employment Accessibility metrics, calculated with quarter-mile and one-mile buffers, as a percentage of total City of Los Angeles 2035 population and employment, as well as the Network Coverage of each enhanced network and treatment type in miles. Network coverage is reported in terms of the highest level of coverage provided and coverage is not double-counted. For example, an area covered by the Future No Project network and the Moderate network will be counted under the Moderate category; hence, the area reported in the Future No Project category tends to decrease under Future With Project conditions, under which new, higher-level facilities have been added. **Figures 4.1-4** through **4.1-6** provide an overview of the quarter-mile buffer areas included in the Population and Employment Accessibility metrics. The tables compare Future With Project against Future No Project conditions. Since some bicycle and transit facilities will be completed between the time of Existing conditions and that of Future No Project Conditions, Future No Project accessibility to the TEN and BEN is expected to be generally higher than Existing accessibility to the TEN and BEN. As a result, the relative increases in accessibility to the TEN and BEN between Existing conditions and Future with Project conditions are expected to be generally larger than those shown in the table.

			Future	No Project	Future V	Vith Project
/leas	sure	Facility Type	Count	% of Total City	Count	% of Total Cit
		Future No Project /a/	408,600	9.5%	267,400	6.2%
	L	Neighborhood Streets	0	0.0%	289,200	6.7%
	tio	Moderate	0	0.0%	10,000	0.2%
	ula	Comprehensive	0	0.0%	1,107,500	25.7%
	Population	TOTAL	408,600	9.5%	1,674,100	38.9%
guar ter-imile	Д.	TOTAL CITY POPULATION	4,305,600	100.0%	4,305,600	100.0%
arte		Future No Project /a/	210,700	11.2%	116,400	6.2%
Š,	nt	Neighborhood Streets	0	0.0%	97,600	5.2%
_	me	Moderate	0	0.0%	3,000	0.2%
	oyı	Comprehensive	0	0.0%	607,600	32.2%
	Employment	TOTAL	210,700	11.2%	824,600	43.7%
	Ē	TOTAL CITY EMPLOYMENT	1,887,800	100.0%	1,887,800	100.0%
		Future No Project /a/	2,120,900	49.3%	271,100	6.3%
	L	Neighborhood Streets	0	0.0%	200,200	4.6%
	tio	Moderate	0	0.0%	5,000	0.1%
	ula	Comprehensive	0	0.0%	3,362,200	78.1%
	Population	TOTAL	2,120,900	49.3%	3,838,500	89.2%
	ъ	TOTAL CITY POPULATION	4,305,600	100.0%	4,305,600	100.0%
		Future No Project /a/	1,058,500	56.1%	165,300	8.8%
•	Ħ	Neighborhood Streets	0	0.0%	64,200	3.4%
	me	Moderate	0	0.0%	500	0.0%
	loy	Comprehensive	0	0.0%	1,468,000	77.8%
	Employment	TOTAL	1,058,500	56.1%	1,698,000	89.9%
	Ш	TOTAL CITY EMPLOYMENT	1,887,800	100.0%	1,887,800	100.0%
		Future No Project /a/	65	0.9%	57	0.8%
		Neighborhood Streets	0	0.0%	49	0.7%
٩))	Moderate	0	0.0%	2	0.0%
Mileage	2	Comprehensive	0	0.0%	279	3.7%
Ξ		TOTAL	65	0.9%	387	5.2%
		TOTAL CITY STREET MILEAGE	7,500	100.0%	7,500	100.0%

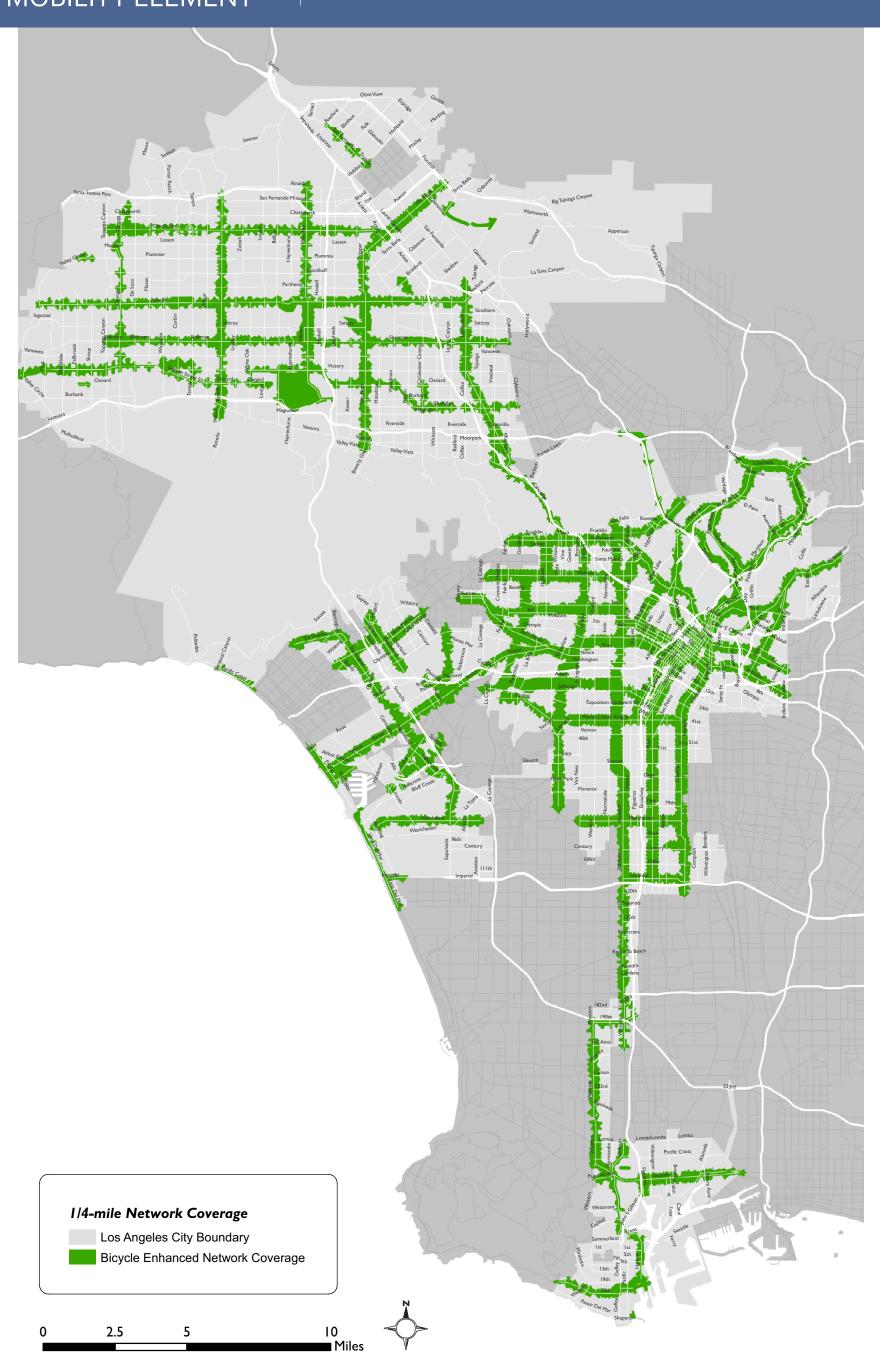
/a/ Future No Project includes all bicycle paths and protected bicycle lanes expected to be completed by year 2035 without the implementation of Mobility Plan 2035. Under Future with Project conditions, many areas covered by the Future No Project network gain access to a higher-level network; therefore, the reduction in percent of population or employment with access to the Future No Project network is offset by an increase in the percent with access to a higher-level network.

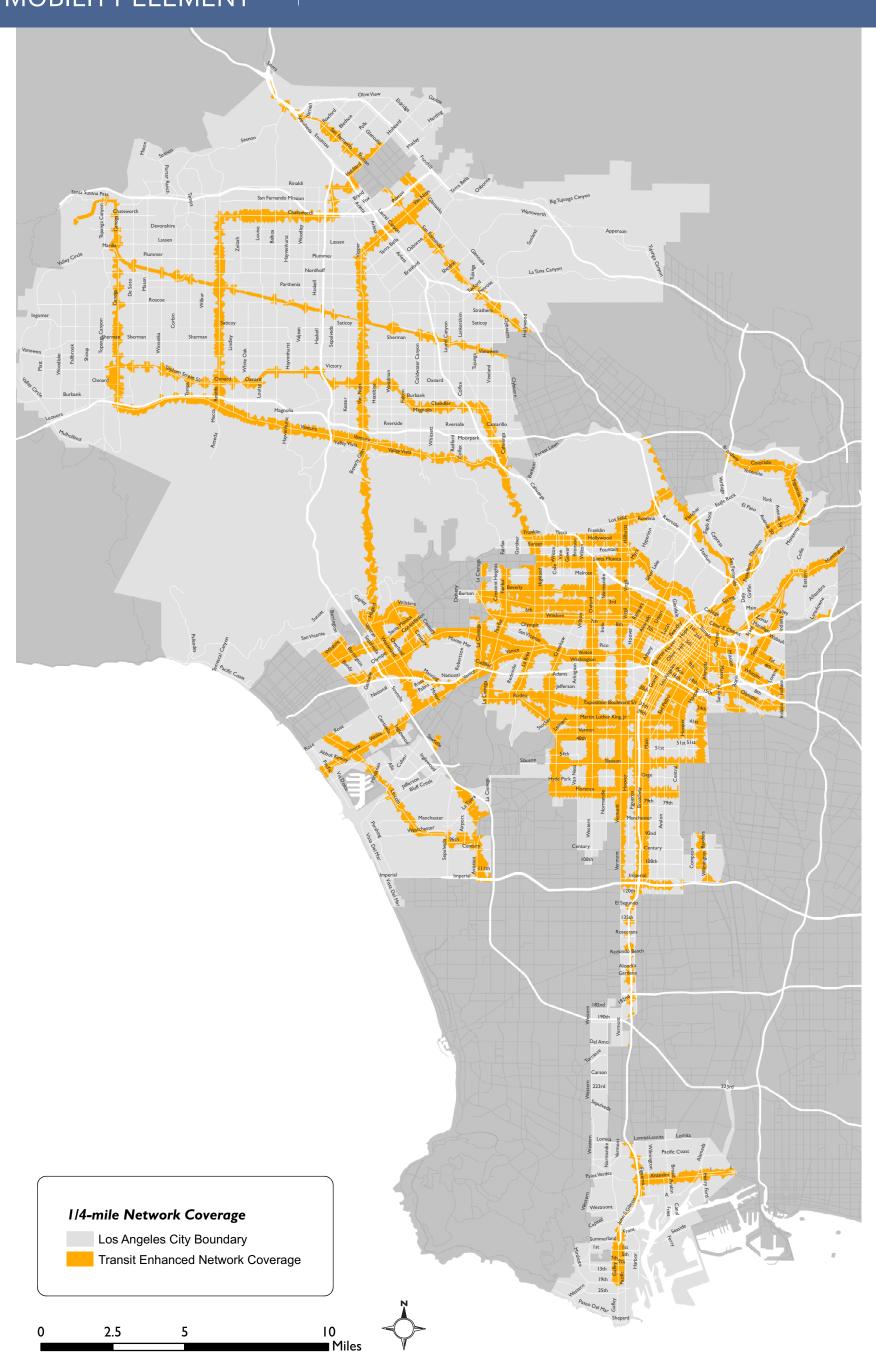
SOURCE: Fehr & Peers, 2013.

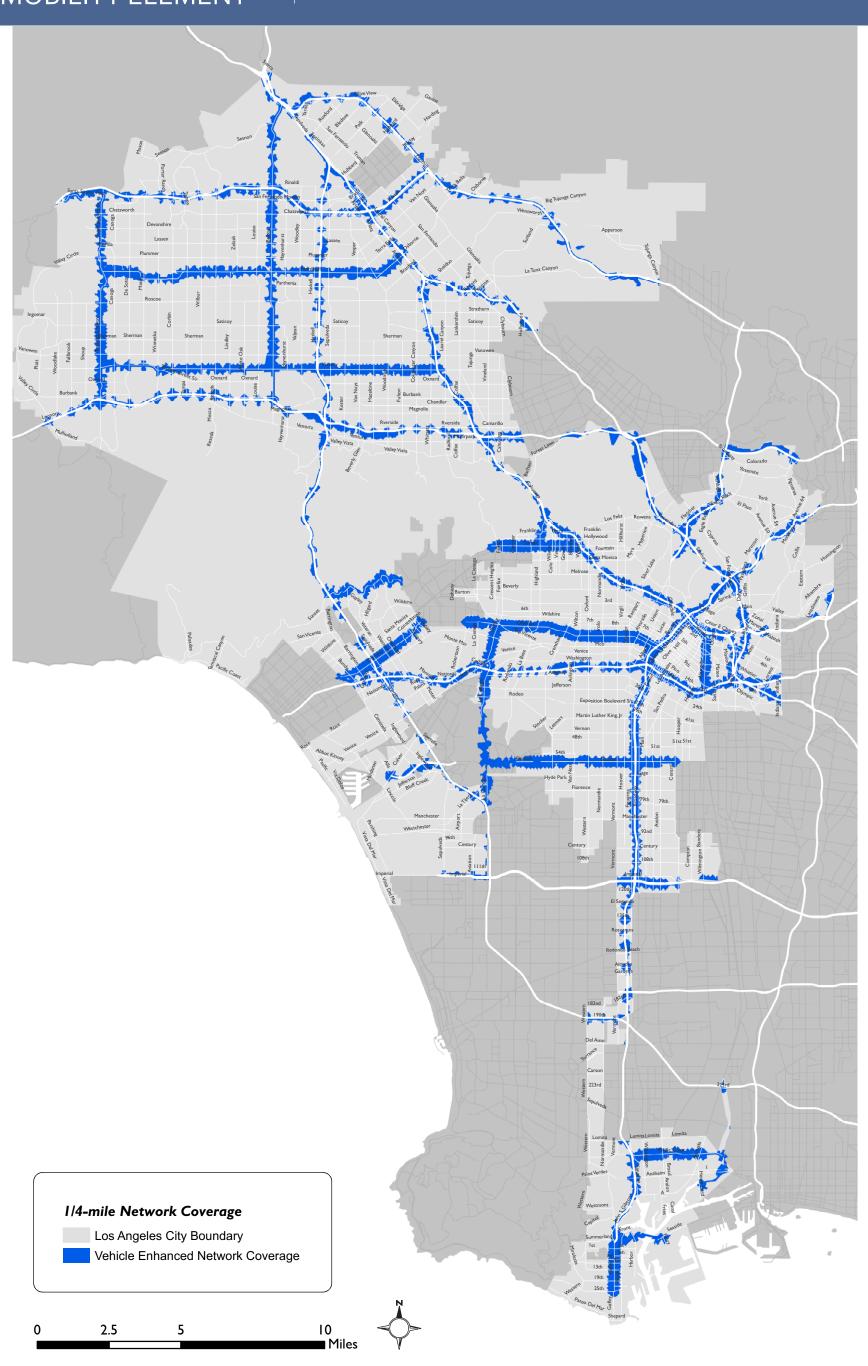
TAE	3LE 4	.1-34: TRANSIT ENHANCED	NETWORK AC	CESSIBILITY AND	NETWORK C	OVERAGE
			Future	No Project	Future V	/ith Project
Mea	sure	Facility Type	Count	% of Total City	Count	% of Total City
		Future No Project /a/	509,300	11.8%	260,100	6.0%
	_	Moderate	0	0.0%	187,300	4.4%
	ţį	Moderate Plus	0	0.0%	415,200	9.6%
	n <u>a</u>	Comprehensive	0	0.0%	648,700	15.1%
	Population	TOTAL	509,300	11.8%	1,511,300	35.1%
Quarter-Mile		TOTAL CITY POPULATION	4,305,600	100.0%	4,305,600	100.0%
ırte		Future No Project /a/	463,500	24.6%	163,100	8.6%
gng	Ħ	Moderate	0	0.0%	65,500	3.5%
0	ne	Moderate Plus	0	0.0%	201,100	10.7%
	\ <u>\</u>	Comprehensive	0	0.0%	474,800	25.2%
	Employment	TOTAL	463,500	24.6%	904,500	47.9%
	ш	TOTAL CITY EMPLOYMENT	1,887,800	100.0%	1,887,800	100.0%
		Future No Project /a/	2,378,700	55.2%	494,000	11.5%
	_	Moderate	0	0.0%	190,800	4.4%
	Ęį	Moderate Plus	0	0.0%	653,400	15.2%
	ula	Comprehensive	0	0.0%	2,116,300	49.2%
	Population	TOTAL	2,378,700	55.2%	3,454,500	80.2%
One Mile	•	TOTAL CITY POPULATION	4,305,600	100.0%	4,305,600	100.0%
ne		Future No Project /a/	1,241,400	65.8%	225,300	11.9%
0	Ħ	Moderate	0	0.0%	69,300	3.7%
	me	Moderate Plus	0	0.0%	313,500	16.6%
	ò	Comprehensive	0	0.0%	1,027,100	54.4%
	Employment	TOTAL	1,241,400	65.8%	1,635,200	86.6%
	Ü	TOTAL CITY EMPLOYMENT	1,887,800	100.0%	1,887,800	100.0%
		Future No Project /a/	141	1.9%	141	1.9%
		Moderate	0	0.0%	41	0.5%
1	8	Moderate Plus	0	0.0%	88	1.2%
3	Mileage	Comprehensive	0	0.0%	111	1.5%
	Ξ	TOTAL	141	1.9%	381	5.1%
		TOTAL CITY STREET MILEAGE	7,500	100.0%	7,500	100.0%

SOURCE: Fehr & Peers, 2013.

(a/ Future No Project includes existing and funded rail, Metrolink, and fixed bus guideway facilities expected to be completed by year 2035 without the implementation of Mobility Plan 2035. Under Future with Project conditions, many areas covered by the Future No Project network gain access to a higher-level network; therefore, the reduction in percent of population or employment with access to the Future No Project network is offset by an increase in the percent with access to a higher-level network.


Meas	sure		Future I	No Project	Future V	/ith Project
		Facility Type	Count	% of Total City	Count	% of Total City
		Future No Project /a/	391,422	9.1%	373,850	8.7%
	o	Moderate	0	0.0%	288,934	6.7%
	ati	Comprehensive	0	0.0%	14,667	0.3%
.	Population	TOTAL	391,422	9.1%	677,451	15.7%
Quarter-Mille	ď	TOTAL CITY POPULATION	4,305,600	100.0%	4,305,600	100.0%
		Future No Project /a/	228,184	12.1%	207,807	11.0%
ğ	ent	Moderate	0	0.0%	194,915	10.3%
	ΕŽ	Comprehensive	0	0.0%	3,268	0.2%
	Employment	TOTAL	228,184	12.1%	405,990	21.5%
	<u></u>	TOTAL CITY EMPLOYMENT	1,887,800	100.0%	1,887,800	100.0%
		Future No Project /a/	2,240,137	52.0%	1,513,410	35.1%
	u O	Moderate	0	0.0%	1,490,563	34.6%
	Population	Comprehensive	0	0.0%	64,798	1.5%
		TOTAL	2,240,137	52.0%	3,068,771	71.3%
	ď	TOTAL CITY POPULATION	4,305,600	100.0%	4,305,600	100.0%
ש		Future No Project /a/	1,044,874	55.3%	595,962	31.6%
7	ent	Moderate	0	0.0%	868,182	46.0%
	ΕŽ	Comprehensive	0	0.0%	16,498	0.9%
	Employment	TOTAL	1,044,874	55.3%	1,480,642	78.4%
	Ē	TOTAL CITY EMPLOYMENT	1,887,800	100.0%	1,887,800	100.0%
		Future No Project /a/	187	2.5%	187	2.5%
a	,	Moderate	0	0.0%	3	0.0%
90	, S	Comprehensive	0	0.0%	75	1.0%
Mileage		TOTAL	187	2.5%	265	3.5%
_	•	TOTAL CITY STREET MILEAGE	7,500	100.0%	7,500	100.0%


SOURCE: Fehr & Peers, 2013.


/a/ Future No Project consists of the freeway network within the City of Los Angeles. Under Future with Project conditions, some areas covered by the Future No Project network gain access to a higher-level network; therefore, the reduction in percent of population or employment with access to the Future No Project network is offset by an increase in the percent with access to a higher-level network.

Population and Employment accessibility to high-quality bicycle facilities within a quarter mile increases approximately four-fold between the Future No Project and Project scenarios, while the number of facility miles increases nearly six-fold. More than 40 percent of jobs and nearly 40 percent of residents are within one-quarter mile of a high-quality bicycle facility under the Project scenario, compared to approximately 11 percent and 10 percent under Future No Project conditions. The relative increase in population and employment within one mile of a high-quality bicycle facility is smaller than the relative increase at the quarter-mile level; nevertheless, nearly 90 percent of population and employment are within one mile of a high-quality bicycle facility under Future With Project conditions.

Accessibility to high-quality transit facilities within a quarter mile increases nearly three-fold for population and nearly doubles for employment between the Future No Project and Project scenarios, while the number of facility miles increases by 170 percent. More than 45 percent of jobs and 35 percent of residents are within one-quarter mile of a high-quality transit facility under the Project scenario, compared to approximately 25 percent and 12 percent under Future No Project conditions. The relative increase in population and employment within one mile of a high-quality transit facility is smaller than the relative increase at the quarter-mile level; nevertheless, more than 80 percent of population and more than 85 percent of employment are within one mile of a high-quality transit facility under Future With Project conditions.

Population and Employment accessibility to freeways and the VEN increases approximately 75 percent between the Future No Project and Project scenarios, while the number of facility miles increases more than 40 percent. The Future No Project freeway network passes through relatively less-populated areas of the City, while the added VEN streets traverse more densely populated areas. More than 20 percent of jobs and 15 percent of residents are within one-quarter mile of a freeway or VEN under the Project scenario, compared to approximately 12 percent and 9 percent under Future No Project conditions. The relative increase in population and employment within one mile of the freeways and VEN is smaller than the relative increase at the quarter-mile level; nevertheless, more than 70 percent of population and nearly 80 percent of employment are within one mile of a freeway or VEN under Future With Project conditions. Future No Project conditions include the same freeways analyzed under Existing conditions.

Construction

Construction-related impacts generally would not be considered significant due to their temporary and limited duration. Implementation of on-street improvements related to the enhanced networks would mostly consist of roadway restriping and limited changes to the physical configuration of curbs, and thus, would likely be short in duration lasting up to a few weeks. Therefore, temporary and short-term construction related impacts would occur; however, these impacts would be less than significant.

Summary of Potential Impacts

Consistency with Plans

The proposed project would not conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities. Therefore, no impact related to consistency with other plans would occur.

Circulation System

Under Project conditions, the share of roadway links projected to operate at LOS E or F exceeds the share for both Existing (2013) traffic conditions and Future No Project (2035) conditions in both the AM and PM peak periods. The "volume-weighted" average of the volume-to-capacity (V/C) ratio under Project conditions for all of the analyzed roadway segments also exceeds that of both the Existing traffic conditions and Future No Project conditions in both the AM and PM peak periods. In addition, along roadways where the proposed project would cause significant traffic congestion, diversion of trips could occur onto adjacent parallel routes. The extent to which trips would divert to adjacent local roadways is not reasonably foreseeable given the broad framework of MP 2035 and the Enhanced Networks, and therefore, impacts cannot be precisely determined. In addition, the model-estimated changes in circulation system conditions are conservative, vehicle-centric estimates based on historical travel behavior patterns and do not account for additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations that would lead to decreasing vehicular volumes. However, it is anticipated that increased traffic could occur on these roadways. Therefore, without mitigation, the proposed project would result in a significant impact related to the circulation system.

Congestion Management Plan

CMP freeway monitoring location 1036, the Hollywood Freeway (101) north of Vignes Street is expected to operate at LOS F(0) during the PM peak period in the northbound direction under both Future No Project and Future With Project conditions. The incremental change in the V/C ratio between Future No Project conditions and Future With Project conditions is less than 0.02. However, the incremental change in the V/C ratio between Existing conditions and Future With Project conditions is greater than 0.02 (highlighted in grey in **Table 4.1-22**). The model-estimated changes in V/C ratios are conservative, vehicle-centric estimates based on historical travel behavior patterns and do not account for additional changes in demographics, vehicle ownership patterns, energy prices, and migration to walkable and transit-served locations that would

lead to decreasing V/C ratios. However, it is anticipated that increased traffic could occur on these roadways. Therefore, without mitigation, the proposed project would result in a significant impact related to the circulation system. Other CMP freeway monitoring locations are expected to operate at LOS E or better.

Emergency Access

Where segment-level LOS would not be significantly impacted, there would be no significant impacts on emergency vehicles. Where segment-level LOS would be significantly impacted, emergency vehicles would not be significantly impacted because California state law requires that drivers yield the right-of-way to emergency vehicles and remain stopped until the emergency vehicles have passed. Generally, multi-lane roadways allow the emergency vehicles to travel at higher speeds and permit other traffic to maneuver out of the path of the emergency vehicle. Therefore, no impact related to emergency access would occur.

Public Transit, Bicycle, or Pedestrian Facilities

The proposed project contains numerous policies designed to increase the access to and effectiveness of the City's public transit facilities. The proposed project would not disrupt any existing or planned transit facilities or create conflicts or inconsistencies with adopted transit plans, guidelines, policies, or standards. Therefore, no impact related to the transit system would occur.

The proposed project establishes policies and actions that create support for bicycling and use of the bicycle network. The proposed project would not disrupt any existing or planned bicycle facilities, or create conflicts or inconsistencies with adopted bicycle system plans, guidelines, policies, or standards. Therefore, no impact related to the bicycle circulation system would occur.

The proposed project places a major emphasis on walking in Los Angeles, acknowledging that every trip, regardless of mode, includes walking and that pedestrians are the most vulnerable roadway users. The Project supports walking through numerous specific policies for streets, land uses, and urban design that all support an active and high quality pedestrian environment. The proposed project would not disrupt existing pedestrian facilities or interfere with planned pedestrian facilities, or create conflicts or inconsistencies with adopted pedestrian system plans, guidelines, policies, or standards. Therefore, no impact related to the pedestrian circulation system would occur.

Parking

The proposed project would result in a loss of parking spaces that could increase VMT if people drive farther to find parking or seek an alternate destination with more convenient parking. However, this increased VMT would typically be off-set by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area. Therefore, the proposed project would result in less-than-significant impacts related to parking. In addition, the City's establishment of Modified Parking Requirement (MPR) Districts (Ordinance No. 182242) allows for the modification of parking requirements within the MPR District to maintain the required number of parking spaces for any permitted use in the District, to allow off-site parking within 1,500 feet of the site, to reduce parking requirements for individual projects, to establish less restrictive parking requirements by use within the District, to establish more restrictive parking requirements by use within the District, to create a commercial parking credit program, or to establish maximum parking requirements within the District. Potential land use impacts resulting from changes in parking are addressed by Mitigation Measure **LU1** in Section 4.2 Land Use & Planning.

Safety

None of the transportation system improvements proposed in the project would introduce new safety hazards at intersections or along roadway segments, as most would be designed to improve safety for all roadway users. Therefore, from a programmatic perspective, no impact related to safety would occur.

There are no roadway-specific plans at this time. It is anticipated that as Community Plans are revised and refined, the roadway network within each planning area will be refined in concert with land use changes. Without such detail, it is not possible, using available traffic analysis procedures, to estimate some types of impacts. In addition, ongoing individual development proposals must be reviewed on a case-by-case basis as they arise and as details such as driveway locations or intersection modifications become known. The City cannot address these project impacts in this Draft EIR as it would be too speculative to try to determine how any particular development would be constructed. In addition, Section 15145 of the CEQA Guidelines specifically states that if a particular impact or project is too speculative for evaluation, then analysis in the EIR is not required.

MITIGATION MEASURES

- Construction activities will be managed through the implementation of a traffic control plan to mitigate the impact of traffic disruption and to ensure the safety of all users of the affected roadway. The plan will address construction duration and activities and include measures such as operating a temporary traffic signal or using flagmen adjacent to construction activities, as appropriate.
- LADOT will adjust traffic signal timing after the implementation of the proposed project (both along project routes and parallel roadways if traffic diversions have occurred as a result of the proposed project). This adjustment would be necessary, especially at the intersections where roadway striping would be modified. Signal timing adjustment could reduce traffic impacts at impacted intersections. (LADOT routinely makes traffic signal timing changes and signal optimization on an as-needed basis to accommodate the changes in traffic volumes to reduce congestion and delay in the City.)
- The City shall implement appropriate Transportation Demand Management (TDM) measures in the City of Los Angeles including potential trip-reducing measures such as bike share strategies, bike parking, expansion of car share programs near high density areas, bus stop improvements (e.g. shelters and "next bus" technologies), crosswalk improvements, pedestrian wayfinding signage, etc. (Such improvements shall also be required of private projects as part of the review and approval process.)
- In areas where implementation of the proposed project could potentially result in diversion of traffic to adjacent residential streets, LADOT shall monitor traffic on identified residential streets, upon request submitted through the council Office, to determine if traffic diversion occurs. If traffic on residential streets is found to be significantly impacted, in accordance with LADOT's Traffic Study Policies and procedures, LADOT will work with neighborhood residents to identify and implement appropriate traffic calming measures.
- In areas where the implementation of the proposed project could potentially affect transportation systems managed by other agencies, such as Caltrans or Metro, or neighboring jurisdictions, the City of Los Angeles shall coordinate with these entities to identify transportation improvements in accordance with the goals and policies of MP 2035 and seek opportunities to jointly pursue funding. Mobility solutions shall be focused on safety, enhancing mobility options, improving access to active modes, and implementing TDM measures to achieve both local and regional transportation and sustainability goals.

SIGNIFICANCE OF IMPACTS AFTER MITIGATION

Impacts related to transportation were determined to be significant without mitigation. Implementation of Mitigation Measures **T1** through **T5** would ensure that mitigation measures would be completed to reduce the level of impacts and that detailed analyses would be completed for projects that could result in transportation impacts. However, since the implementation of Mitigation Measures **T1** through **T5** cannot be

certain to reduce the level of impacts to less than significant, the proposed project would result in a significant and unavoidable impact related to level of service of roadways within the City based on current thresholds.

Senate Bill 743 directs the Office of Planning and Research to develop revisions to the CEQA Guidelines by July 1, 2014 to establish new criteria for determining the significance of transportation impacts and define alternative metrics for traffic level of service. Since this guidance is not yet defined, the transportation analysis in this document relies on the legal context and policy framework in place at the time of project initiation. It is possible that some or all of the impacts related to vehicular LOS that are considered significant under the current legal and policy framework would no longer be considered significant if analyzed using the new criteria.