# Master Drainage Study For Motion Picture And Television Fund

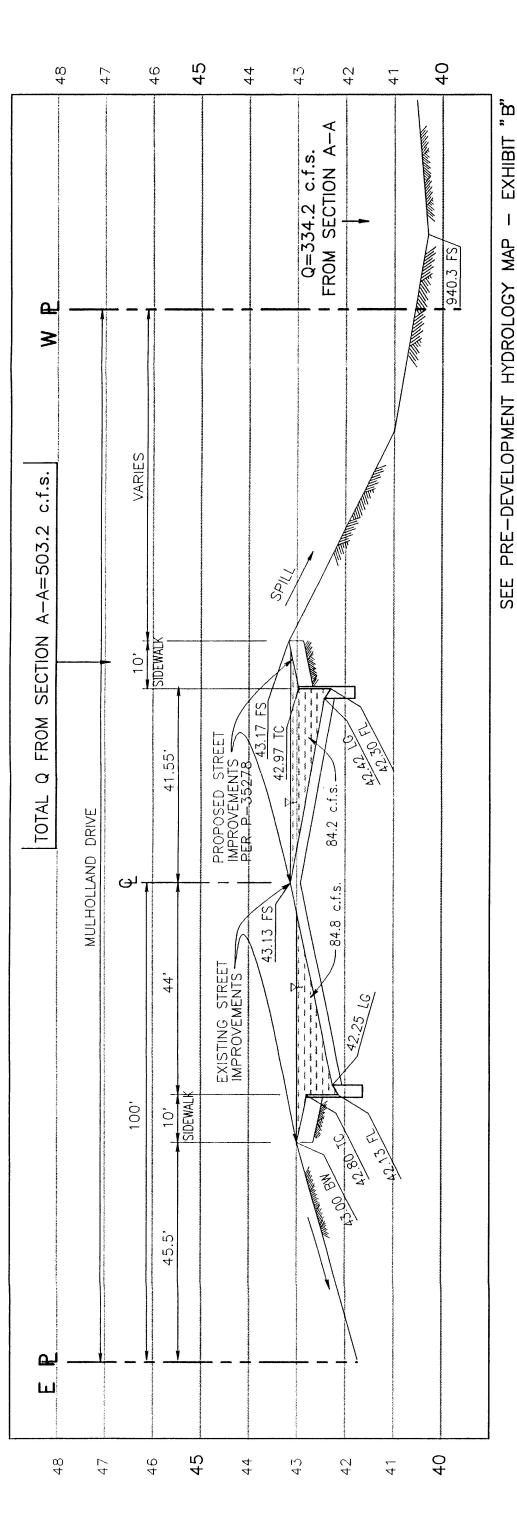
#### **Woodland Hills Campus**

In the City of

Los Angeles

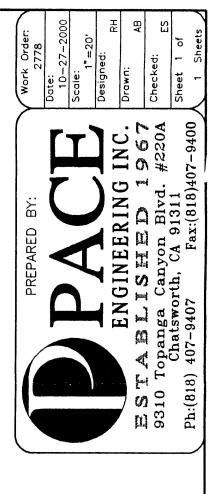
Prepared for:

Motion Picture And Television Fund 23388 Mulholland Drive Woodland Hills, CA, 91364


Prepared By:

Pace Engineering, Inc. 9310 Topanga Canyon Blvd., Suite 220A Chatsworth, CA, 91311

Eldon C. Schierman R.C.E. 26383 Exp. 3/31/04


October 27, 2000

Pace W.O. #2778



DRY CANYON CREEK SECTION B-B SCALES: HORIZ:1" = 20'VERT:1" = 2' 790' NORTH OF

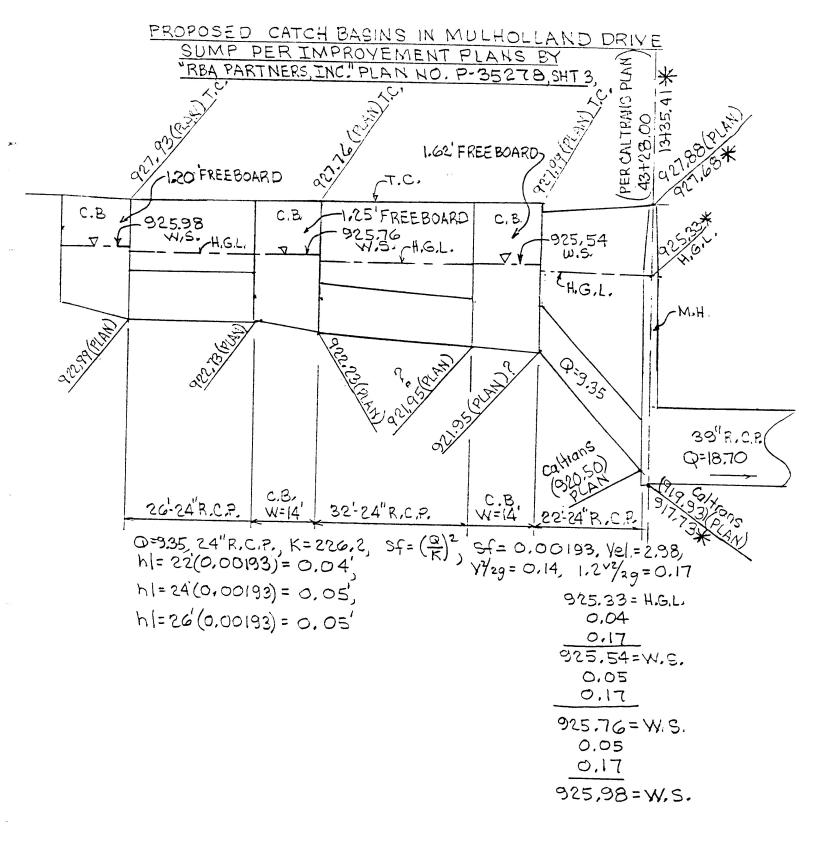
IMPROVEMENTS P-35278 MULHOLLAND DRIVE PER PLAN STREET POST



## TABLE | PRE-DEVELOPMENT- SUMMARY

|                                  | LINE "A" - EXIST. 3                                  | 6" R.C.I     | P. UNDER MU               | JLHOLLAND DRIVE                                                                          |
|----------------------------------|------------------------------------------------------|--------------|---------------------------|------------------------------------------------------------------------------------------|
| SUB-<br>AREA                     | LOCATION                                             | PIPE<br>DIA. | ΣQ <sub>50</sub> (c.f.s.) | REMARKS                                                                                  |
| 1-A &<br>4-B                     | ON-SITE UNDEVELOPED                                  | 15"          | 6.5                       | UNDEVELOPED AREA TO STARK<br>VILLA DRAIN                                                 |
| (PART OF 1-A<br>& 4-B)<br>3A, 4A | DRIVE TO STARK VILLA                                 | 18"          | 15.5                      | STARK VILLA DRAIN IN DRIVE                                                               |
| 1-A TO<br>7-A                    | EX. 24" R.C.P. OUTLET                                | 24"          | 16.3                      | OUTLET OF EXIST. STARK VILLA<br>DRAIN TO DITCH                                           |
| 1-A, 2-A, 3-A, 8<br>4-A          | DITCH W/O<br>MULHOLLAND DRIVE S/O<br>SPEILBERG DRIVE | 36"          | 56.6                      | INLET TO EX. 36" R.C.P. TO<br>SPEILBERG DRIVE                                            |
| 5-A                              | EX. 36" R.C.P. AT<br>SPEILBERG DRIVE                 | 36"          | 73.2                      | JUNCTION WITH EX. 18" C.M.P. FROM CAMPUS                                                 |
| 6-A & 7-A                        | EX. 36" R.C.P. AT<br>SPEILBERG DRIVE                 | 36"          | 80.3                      | JUNCTION WITH DRIVE DRAIN & C.B. IN MULHOLLAND DRIVE - AND OUTLETS TO DRY CANYON CHANNEL |
| 72                               | LINE "B" -                                           | EXIST.       | CALTRANS 3                |                                                                                          |
| SUB-<br>AREA                     | LOCATION                                             | PIPE<br>DIA. | ΣQ <sub>50</sub> (c.f.s.) | REMARKS                                                                                  |
| 3-B &<br>4-B                     | IN MULHOLLAND DRIVE                                  | EX.<br>39"   | 18.7                      | EX. CATCH BASINS IN MULHO9LLAND<br>DRIVE 400' S/0 CALABHASAS ROAD                        |
| 1-B & 2-B                        | IN MULHOLLAND DRIVE<br>120' S/O CALABASAS<br>ROAD    | EX.<br>39"   | 59.0                      | JUNCTION WITH SITE DRAINS FROM<br>NORTHEAST CORNER OF CAMPUS                             |
| 5-B & 6-B                        | IN AVENUE SAN LUIS 260'<br>E/O MULHOLLAND DRIVE      | EX.<br>39"   | 60.3                      | JUNCTION WITH CALTRANS DRAIN                                                             |
| 7-B                              | IN AVENUE SAN LUIS<br>630' E/O MULHOLLAND<br>DRIVE   | EX.<br>39"   | 63.6                      | JUNCTION WITH CALTRANS DRAIN -<br>AND OUTLETS TO DRY CANYON<br>CHANNEL                   |

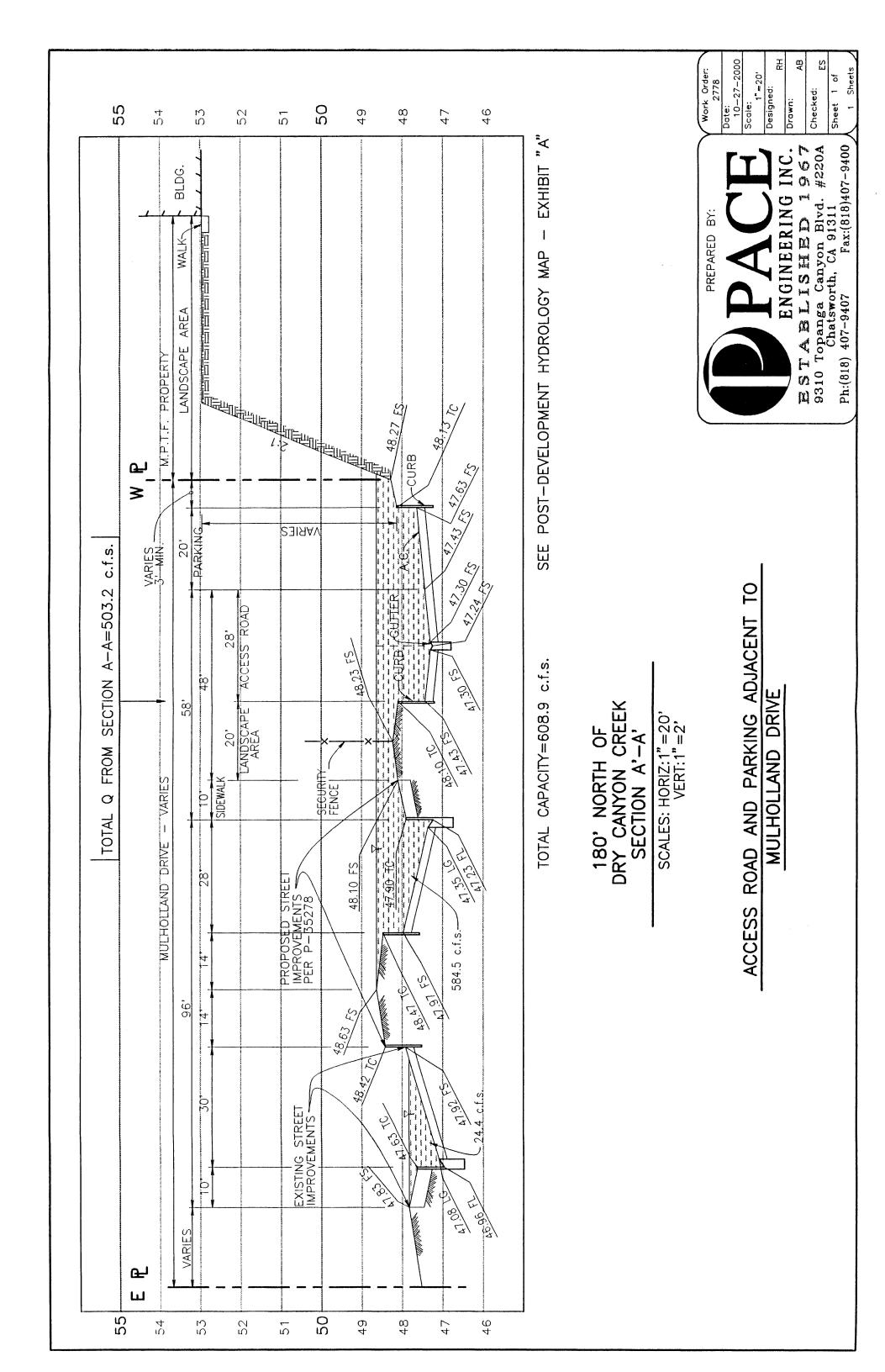
# TABLE II POST DEVELOPMENT - SUMMARY

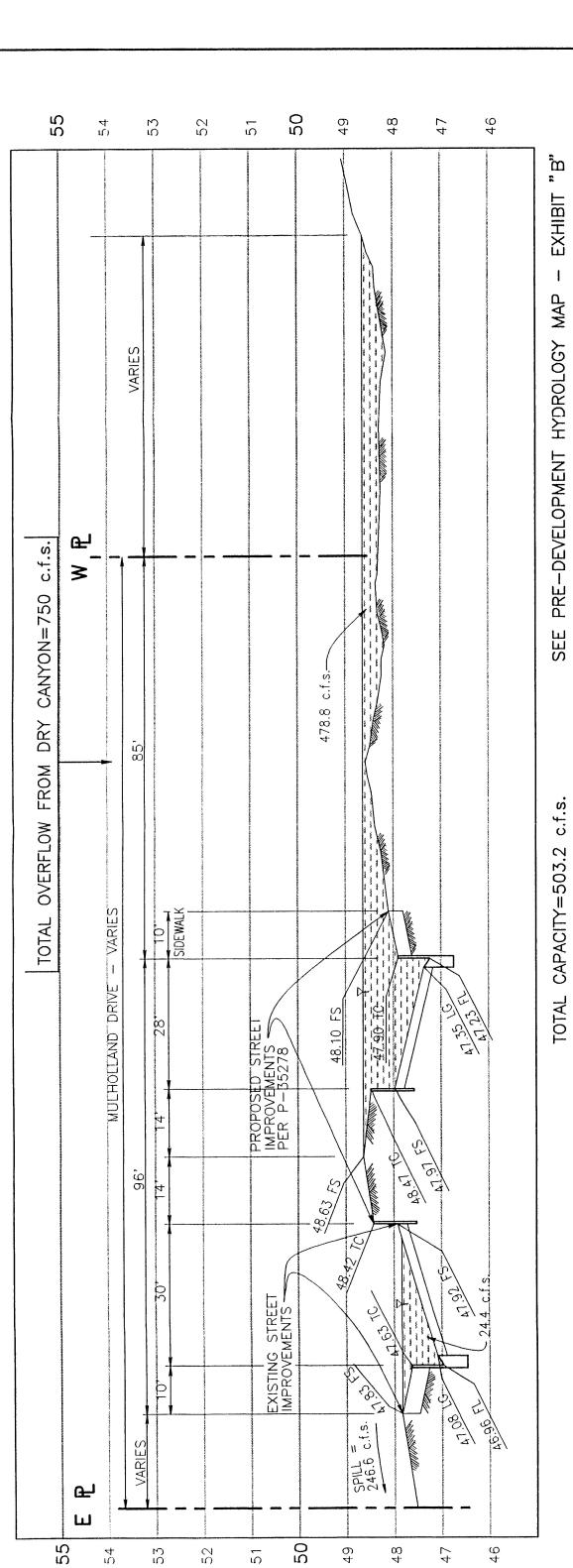

| SUB-<br>AREA                  | LOCATION                                     | PIPE<br>DIA.         | ΣQ <sub>50</sub> (c.f.s.)    | REMARKS                                                                                                   |
|-------------------------------|----------------------------------------------|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1-A                           | ON-SITE FUTURE DRIVE                         | 15"                  | 7.7                          | FUTURE ON-SITE DRAIN                                                                                      |
| 1-A1                          | IN DRIVE @ STARK VILLA                       | 18"                  | 11.1                         | FUTURE ON-SITE DRAIN                                                                                      |
| 2-A                           | ON-SITE DRAIN JUNCTION                       | 30"                  | 30.8                         | FUTURE ON-SITE DRAIN                                                                                      |
| 3-A1<br>4-A                   | ON-SITE DRAIN JUNCTION                       | 30"                  | 35.0                         | FUTURE ON-SITE DRAIN                                                                                      |
| 3-A1<br>4-A                   | ON-SITE AT JUNCTION DRIVE                    | 30"                  | 42.5                         | FUTURE ON-SITE DRAIN                                                                                      |
| 5-A &<br>(X-A STARK<br>VILLA) | JUNCTION WITH<br>STARK VILLA DRAIN           | 36"                  | 63.5                         | FUTURE ON-SITE DRAIN<br>JUNCTION WITH EX. STARK<br>VILLA DRAIN                                            |
| 6-A/2 &<br>7-A                | JUNCTION WITH EX.<br>C.M.P. & DRIVE          | EX.<br>36"           | 74.4                         | SPLITTER STRUCTURE<br>AT EX. C.M.P. TO DIRECT<br>11.8 C.F.S. TO LINE "B"                                  |
| 8-A                           | LATERAL FROM EX, C.B.                        | EX.<br>36"           | 80.3                         | TOTAL Q <sub>50</sub> IN EX. 36" R.C.P.<br>ACROSS MULHOLLAND DRIV<br>AND OUTLETS TO<br>DRY CANYON CHANNEL |
|                               | LINE "B" EXISTING                            | CALTRA               | ANS 39" R                    | .C.P.                                                                                                     |
| SUB-<br>AREA                  | LOCATION                                     | PIPE<br>DIA.         | ΣQ <sub>50</sub><br>(c.f.s.) | REMARKS                                                                                                   |
| 3-B &<br>4-B                  | IN MULHOLLAND DRIVE                          | EX.<br>39"<br>R.C.P. | 18.7                         | EX. CATCH BASINS<br>IN MULHOLLAND DRIVE<br>400' S/O CALABASAS ROAD                                        |
| 6-A/2                         | IN MULHOLLAND DRIVE                          | EX.<br>39"<br>R.C.P. | 29.3                         | 24" R.C.P. FROM SPLITTER<br>STRUCTURE AT SPEILBERG<br>DRIVE                                               |
| 1-B &<br>2-B                  | MULHOLLAND DRIVE 120'<br>S/O CALABASAS ROAD  | EX.<br>39"<br>R.C.P. | 69.7                         | JUNCTION WITH SITE DRAINS<br>FROM NORTHEAST CORNER<br>OF CAMPUS                                           |
| 5-B &<br>6-B                  | AVENUE SAN LUIS 260'<br>E/O MULHOLLAND DRIVE | EX.<br>39"<br>R.C.P. | 70.9                         | JUNCTION WITH<br>CALTRANS DRAIN                                                                           |
| 7-B                           | AVENUE SAN LUIS 630'<br>E/O MULHOLLAND DRIVE | EX.<br>39"<br>R.C.P. | 74.0                         | JUNCTION WITH CALTRANS DRAIN AND OUTLETS TO DRY CANYON CHANNEL                                            |

#### TABLE III

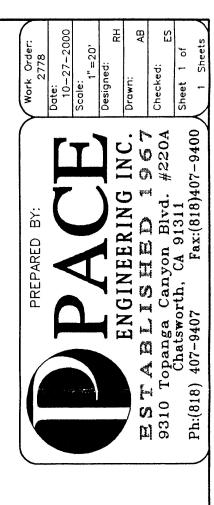
|              | ANALYSIS TO DE<br>CAPACITY OI                   | TERMI<br>EXIST       | NE THE<br>ING 39"         | MAXIMUM<br>R.C.P.                                                                        |
|--------------|-------------------------------------------------|----------------------|---------------------------|------------------------------------------------------------------------------------------|
| SUB-<br>AREA | LOCATION                                        | PIPE<br>DIA.         | ΣQ <sub>50</sub> (c.f.s.) | REMARKS                                                                                  |
| 3-B &<br>4-B | IN MULHOLLAND DRIVE                             | EX.<br>39"<br>R.C.P. | 18.7                      | EX. CATCH BASINS IN<br>MULHOLLAND DRIVE<br>400' S/O CALABASAS ROAD                       |
| 6-A/2        | IN MULHOLLAND DRIVE                             | EX.<br>39"<br>R.C.P. | 46.7                      | INCREASED Q FROM<br>SPLITTER STRUCTURE TO<br>DETERMINE MAXIMUM<br>CAPACITY OF 39" R.C.P. |
| 1-B &<br>2-B | MULHOLLAND DRIVE<br>120'<br>S/O CALABASAS ROAD  | EX.<br>39"<br>R.C.P. | 87.1                      | JUNCTION WITH SITE DRAINS FROM NORTHEAST CORNER OF CAMPUS                                |
| 5-B &<br>6-B | AVENUE SAN LUIS 260'<br>E/O MULHOLLAND<br>DRIVE | EX.<br>39"<br>R.C.P. | 88.3                      | JUNCTION WITH<br>CALTRANS DRAIN                                                          |
| 7-B          | AVENUE SAN LUIS 630'<br>E/O MULHOLLAND<br>DRIVE | EX.<br>39"<br>R.C.P. | 91.4                      | JUNCTION WITH CALTRANS<br>DRAIN AND OUTLETS TO<br>DRY CANYON CHANNEL                     |

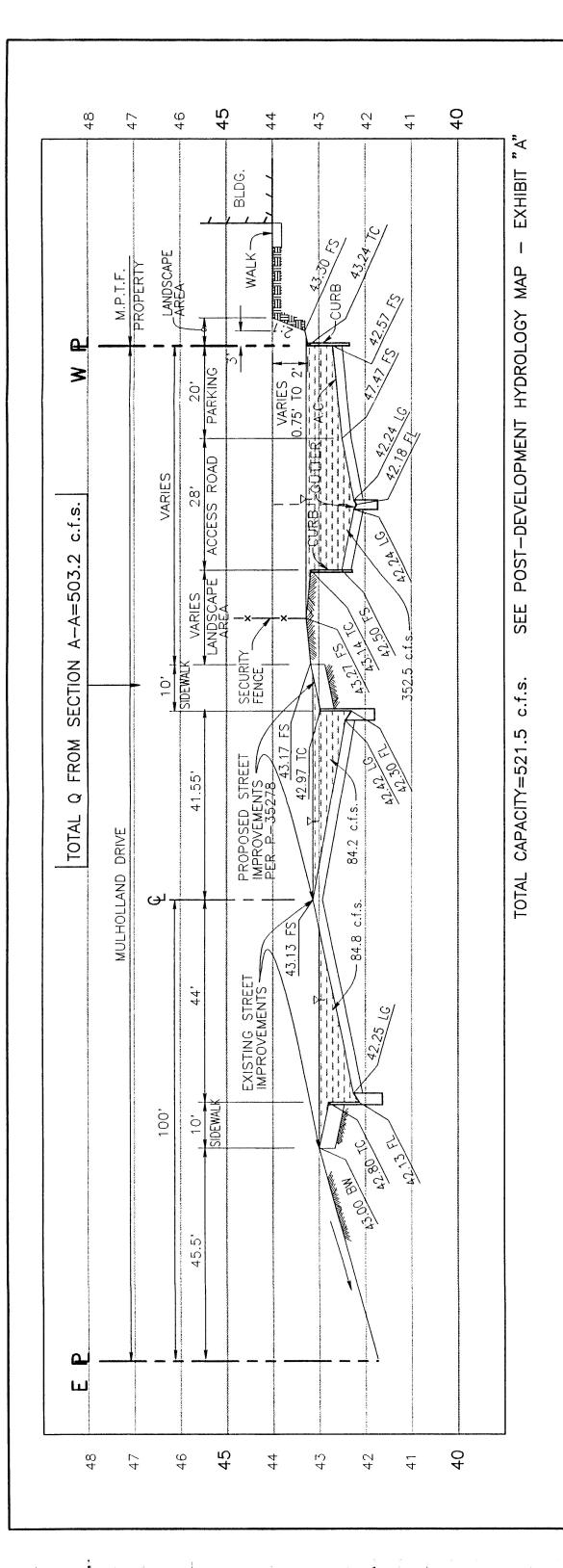
#### **APPENDIX A**


# Proposed Catch Basins in Mulholland Drive Sump



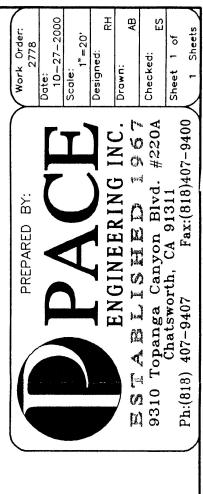

<sup>\*</sup> STATION, FLOW LINE ELEVATION AND HYDRAULIC GRADELINE PER PACE SURVEY AND "W.S.P.G.W." PROGRAM RUN.


## APPENDIX B


## Mulholland Cross Sections






180' NORTH OF DRY CANYON CREEK SECTION A-A SCALES: HORIZ:1"=20'VERT:1"=2' MULHOLLAND DRIVE POST STREET IMPROVEMENTS PER PLAN P-35278





790' NORTH OF DRY CANYON CREEK SECTION B'-B'

SCALES: HORIZ:1"=20' VERT:1"=2' ACCESS ROAD AND PARKING ADJACENT TO MULHOLLAND DRIVE



## APPENDIX C

# Hydraulic Capacity of Mulholland Drive

HYDRAULIC CAPACITY OF MULHOLLAND DRIVE
AFTER STREET WIDENING IMPROVEMENTS
PLANS"ZA 86-0653, MULHOLLAND DRIVE
(NLY/S) CALABASAS ROAD TO VALMAR ROAD!"
PLAN NO. P-35278.

# SECTION A-A 180' NORTH OF DRY CANYON CREEK

Northbound Roadway To Elex, 47.83, st. 5=0,00789,  $5^{1/2}=0.0888$ , A=7.39°, W.P.=35.78,  $\Gamma=0.207$ ,  $\Gamma^{2/3}=0.350$ ,  $Q=\frac{1.486}{.014}$  (0.0388)(0.350)(7.39)=24.4c.fis. To Elex, 47.83.

Southbound Roadway & overflow Area To Elev. 48.63, St. S=0.00745, S1/2=0.0863, A=1535, W.P.=194, T=0.789,  $1^{2/3}$ =0.854,  $Q=\frac{1.486}{.035}$  (0.854)(0.0863)(153) = 478,8cf.s.

SECTION B-B TOTAL CAPACITY = 503, 2 c.f.s.

# HYDRAULIC CAPACITY OF MULHOLLAND DRIVE

# ACCESS ROAD AND PARKING ADJACENT TO MULHOLLAND DRIVE

Horthbound Roadway To Elev. 43.00, St. 9=0.0108, 5/2-0.1039, A=16.05°, Wir.= 48.50, r=0.331, r=0.479,

Q=\frac{1.436}{.014'}(0.1039)(0.479)(16.05)=\frac{84.8c.f.s}{.5}. To Elev.43.00.

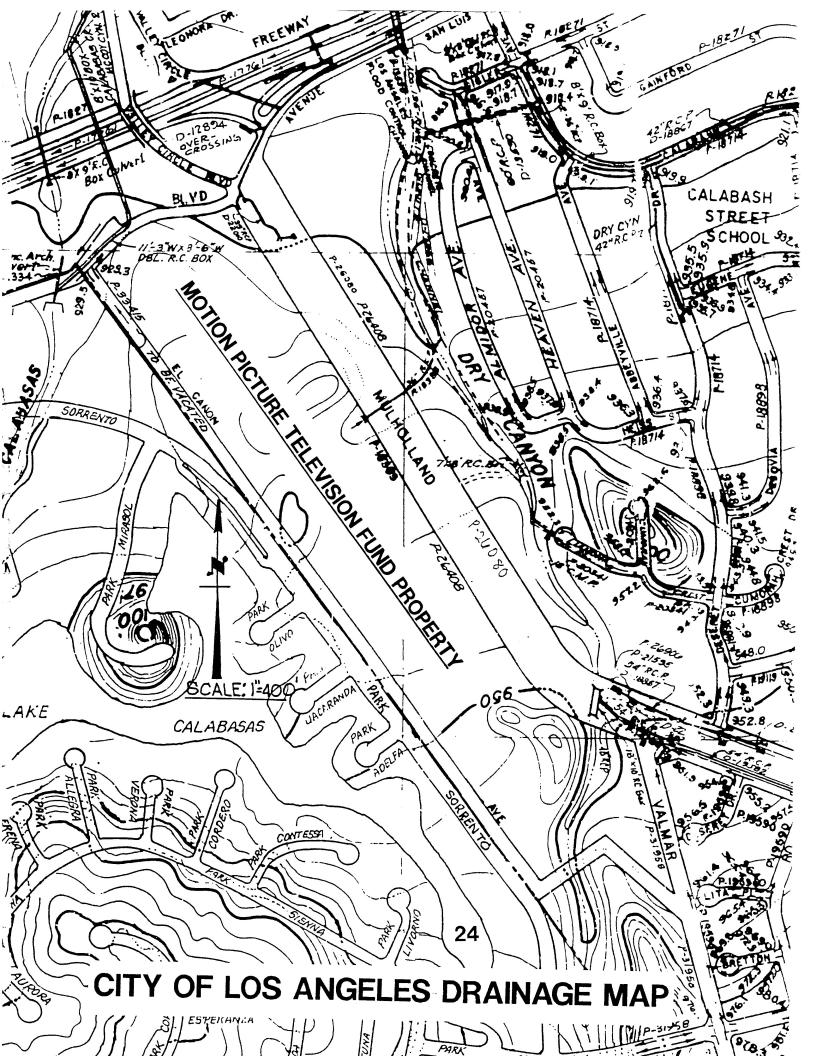
South bound Roadway, To Elev. 43.13, S+S=0.0108,  $S^{1/2}=0.1039$ , A=16.217, W.P.=50.21, r=0.323,  $t^{1/3}=0.471$ ,  $Q=\frac{1.486}{.014}(0.1039)(0.471)(16.21)=84.2 c.f.s$ . To Elev. 43.13,

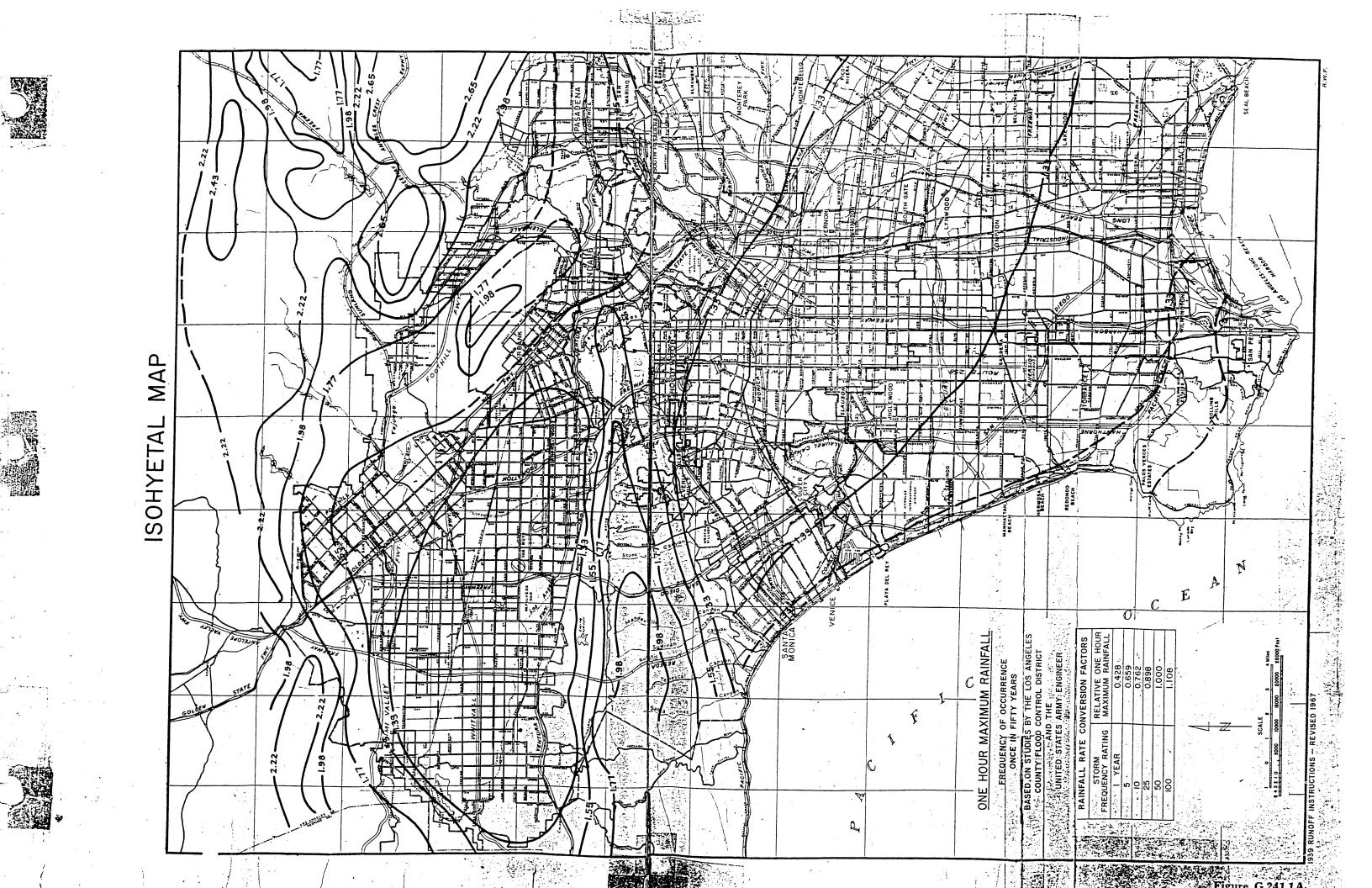
28' Access Road & Parking. To Elev. 43.27, St. 9=0.0108, 8/2=0.1039, A=41.40", W.P.=61', r=0.679, r=0.772,

P=\frac{1486}{.014} (0.1039)(0.772)(41.4) = \frac{352.5c.f.s.}{.015} To Elev. 43.27,

SECTION A-A TOTAL = 521.5c.f.s.

#### SECTION A'A'


Northbound Roadway To Eley, 47.83, st. s=0.00788,  $s^{1/2}$ =0.0888,  $A=7.39^{\circ}$ , WIP,=35.78, r=0.207,  $r^{2/3}=0.350$ ,  $Q=\frac{1.486}{.014}(0.0888)(0.350)(7.39)=24.4 cif.s. To Eley, 47.83$ 


southbound Roadway, 28' Access Road & Parking, To Elev. 48.63 St, S.= 0.00745, S/2=0.0863, A=103.83, XV.P.=126.35', r=0,822, r=3=0.878,

9=1,486 (0.0863 (0.878) (103.83) = 584.5 c.f.s. To Elev. 48.63 SECTION B-B TOTAL = 608.9 c.f.s.

## APPENDIX D

## City of Los Angeles Drainage Map





## **APPENDIX F**

Runoff Table

#### DEVELOPMENT CLASSIFICATIONS

| ZONING<br>CLASSIFICATION                                        | TYPE OF DEVELOPMENT                                                                          | I <sub>d</sub> |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
|                                                                 | Park (lawn areas only)                                                                       | 15             |
|                                                                 | *Undeveloped Hillside or Mountainous Areas                                                   | 35             |
| A1, A2, RA                                                      | Agricultural and One-Family Dwelling                                                         | 35.            |
| REII, REI5, RE20, RE 40                                         | One-Family Dwelling — Level AreaHillside Area                                                | 35<br>50       |
| R1 RDI.5, RD2                                                   | One-Family Dwelling — Large Hillside Lot                                                     | 50 ··          |
| RS, RI,RE9                                                      | One-Family Dwelling — Level Area<br>Hillside Area                                            | 40<br>70,      |
| R2, RW1, RW2<br>RD3, RD4, RD5, RD6                              | Multiple Dwelling                                                                            |                |
| R3                                                              | Multiple Dwelling                                                                            |                |
| R4, R5, P, PB, CR<br>CI, C2, C4, C5, CM<br>MRI, MR2, MI, M2, M3 | Multiple Dwelling — Parking, All Commercial, and Manufacturing                               | 100            |
|                                                                 | Playgrounds, Schools                                                                         | 100            |
| ^RPD                                                            | $3/4$ of land area with $l_d$ per development above; $1/4$ of land area with $l_d$ for park. |                |

 $I_{\text{d}}$  is the percentage of imperviousness of a sub-area.

<sup>\*</sup>To be used in computing runoff prior to development regardless of zoning classification.

 $<sup>^\</sup>Delta$ Residential Planned Development — Investigate development (in field or from plans) before allocating value of  $I_d$ 

#### BASE PEAK RUNOFF RATE TABLE

(cfs per acre) tc .0 .1 .2 .3 .4 .5 .6 .7 8. .9 1 2 BPRR = 3.40, to be used for 6.87 BPRR = 3 all values up to 5.0 min.  $(t_c)^{.437}$ 4 3.40 3.37 3.35 3.32 3.29 3.26 3.24 3.21 3.18 3.16 6 3.13 3.07 3.11 3.09 -3.05° 2.86 3.03、 3.01 2.99 2.97 7 2.95 2.93 2.91 2.90 2.88 -2.85 2.83 2.81. 2.79 2.78 -8 2.76 2.75. 2.73. 2.72. 2.69 2.57 2.70 2.68 2.67 2.66 9 2.63 2.64 2.62 -2.59 2.60 2.58 2.55. 2.54 2:53 2.512 10 2.50 2.49, 2.48 2.47 . 2.46. 2.45 . 2.45 2.44 2.43 2.42 11 2.41 2.40 -2.39 2.38 2.37 2.36 2.36 2.35 2.34 12 2.32 2.30 2.23 2.33 2.31 2.30 2.22 2.29 2.28 2.27 2.26-2.26 2,25 -13 2.23 <sup>-</sup> 2.16 2.24 2.21 2.21 2.20 14 2.19 2.18 2.18 2.17 2.16 2.15 2.14 2.14 2.13 2.12. 15 2.10 2.10 2.11 2.11 2.09 2.08 2.09 2.08 2.07 2.07 2.06 2.06 16 2.05 2.04 2.04 2.03 2.03 2.02 2.01 2.01 2.00. 17 1.99 1.99 2.00 1.98 1.98 1.97 1.97 1.96 1.96 18 1.95 1.95 1.94 1.94 1.93 1.93 1.93 1.92 1.92 1.92 1.91 19 1.90 1.91 1.90 1.89 1.89 1.88 1.88 1.87 1.87 1.86 20 1.85 1.85 1.86 1.84 1.84 1.84 1.83 1.83 1.83 1.82 1.82 21 1.82 1.81 1.81 1.80 1.80 1.80 1.79 1.79 1.79 22 1.78 1.78 1.77 1.78 1.77 1.77 1.76 1.76 1.76 23 1.75 1.75 1.75 1.74 1.74 1.73 1.73 1.72 1.72 24 1.72 1.71 1.71 1.71 1.70 1.70 1.70 1.70 1.69 1.69 1.69 25 1.68 1.68 1.68 1.67 1.67 1.67 1.67 1.66 1.66 1.66 1.65 26 1:65 1.65 1.65 1.64 1.64 1.64 27 1.64 1.63 1.63 1.63 1.63 1.62 1.62 1.62 1.62 1.61 1.61 28 1.61 1.61 1.60 1.60 1.60 1.60 1.59 1.59 1.59 1.59 1.58 1.58 29 1.58 1.58 1.57 1.57 1.57 1.57 1.56 1.56 1.56 1.56 1.55 1.53 30 1.55 1.55 1.55 1.54 1.54 1.54 1.54 1.54 1.53 31 1.53 1.53 1.53 1.52 1.52 1.52 1.52 1.52 32 1.51 1.51 1.51 1.51 1.51 1.50 1.50 1.50 1.50 1.50 1.49 33 1.49 1.49 1.49 1.49 1.48 1.48 1.48 1.48 1.48 1.47 34 1.47 1.47 1.47 1.47 1.46 1.46 1.46 1.46 1.46 1.45 35 1.45 1.45 1.45 1.45 1.44 1.44 1.44 1.44 1.44 1.44 1.43 36 1.43 1.43 1.43 1.43 1.42 1.42 1.42 1.42 1.42 37 1.42 1.42 1.41 1.41 1.41 1.41 1.41 1.41 1.40 1.40 38 1.40 1.40 1.40 1.40 1.40 1.39 1.39 1.39 1.39 1.39 39 1.39 1.39 1.38 1.38 1.38 1.38 1.38 1.38 1.37 1.37 40 1.37 1.37 1.37 1.37 1.37 1.36 1.36 1.36 1.36 1.36 1.36 41 1.36 1.35 1.35 1.35 1.35 1.35 1.35 1.34 1.33 42 1.34 1.34 1.34 1.34 1.34 \* 1.34 1.32 1.33 1.33 1.33 43 1.33 1.33 1.33 1.32 1.32 1.32 1.32 1.32 1.31 1.31 44 1.31 1.31 1.31 1.31 1.31 1.30 1.30 1.30 45 1.30 1.30 1.30 1.30 1.30 1.30 1.29 1.29 1.29 1.29 1.29 46 1.29 1.29 1.29 1.29 1.29 1.28 1.28 1.28 47 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.27 1.27 1.27 1.27 48 1.27 1.27 1.27 1.27 1.27 1.26 1.26 1.26 1.26 1.26 49 1.26 1.26 1.25 1.25 1.25 1.25 1.25 1.25 1.24 1.24 1.23 50 1.24 1.24 1.24 1.24 1.24 1.24 1.23 1.23 1.23 1.23 51 1.23 1.23 1.23 1.22 1.23 1.23 1.22 1.21 1.22 1.22 1.22 52 1.22 1.22 1.22 1.22 1.22 1.21 1.21 53 1.21 1.21 1.21 1.21 1.21 1.21 1.21. 1.20 1.20 1.20 54 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.19 1.19 1.19 55 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.18 1.18 1.18 1.18 1.18 56 1.18 1.18 1.18 1.18 1.18 1.18 1.18 57 1.18 1.18 1.18 1.18 1.17 1.17 1.17 1.17 1.17 1.17 1.17 58 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.16 1.16 1.16 59 1.16 1.16 1.16 1.16 1.16 1.16: 1.16 1.15 1.15 1.15 1.15 1.15

S 33 V

tari. Na

-

. . .

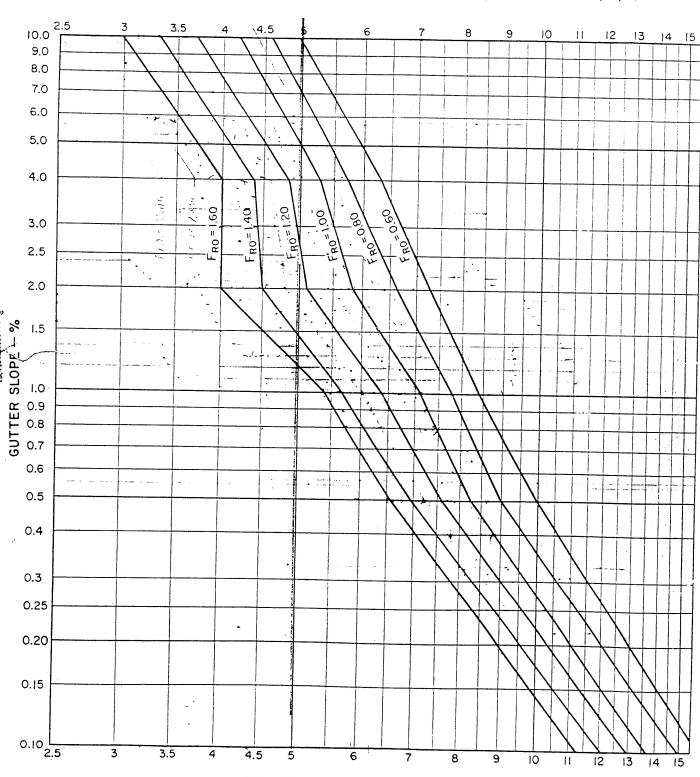
# TABLE OF RUNOFF FACTORS - FRO

1

The second secon

J. Samuel

| STO     | Zoning 🗡                        |         | 1.33               | I                  | Isohye            | etal     |          | 1.5     | 5 T         | soh       | sohveta  |         | 177           | 7            | sohv     | Veta      | <u></u>   | 6               | ا<br>«    | cohveta  | 1       |      |
|---------|---------------------------------|---------|--------------------|--------------------|-------------------|----------|----------|---------|-------------|-----------|----------|---------|---------------|--------------|----------|-----------|-----------|-----------------|-----------|----------|---------|------|
| R M     | Classification                  |         | Year               | -                  | frequen           | ency     |          | Year    | 1           | frequency | ncy      |         | Year          | .            | frequenc | ency      |           | Yea             | r         | eau      | quenc   | - >  |
| DRA     |                                 | Cius s. | _                  | 2                  | 0                 | 25       | 50       | _       | 5           | 0         | 25       | 50      | _             | 2            | 0        | 25        | 50        |                 | 5         | 0        | 5.      | 50   |
| IN DE   | R4, R5, P, PB,<br>CR, C, CM, M, | 001     | 0.56               |                    | 0.8610011         | ^        | , C      | , c     |             |           | 1        | C       |               |              |          |           |           |                 |           | 1        | ,       | ′ (  |
| SIGN    | Schools, Playgnds.              |         |                    |                    | )<br>)            | •        | · .      |         | -<br>-<br>- |           | 0 .      | ), O.   | <u>-</u><br>• | <del>-</del> | 1.32     | <br>      | <br>      | 0.83            | 1.28 1.   | <br>     | 1.74    | 46   |
| DIV     | R3 (Level)                      | 1-02    | 0.50 0.77          |                    | 0.89              | 1.04     | 1.16     | 0.59    | 0.90        | 1.04      | 1.2,3    | 1.37    | 0.68          | 1.04         | 1.20     | 1.42      | 1.58 0.   | 7.7             | 1.18      | 36       | 1.60    | 1.78 |
| 1510    | RS,RI,RE9                       | 70-2    | 0.48               | 0.48 0.75 0.87 1.0 | 0.87              | 10       | 1.15,0   | 0.56    | 0.88        | 1.02      | 1.2.1    | 1.350   | 0.65          | 1.02         | 8 :      | 1.40      | 1.56 0.   | 0.73            | 1.15      | n        | - 60    | .76  |
| ON -    | (Hillside)                      | 70-3    | 0.42               | 0.65               | 0.76 0.9          | 2        | 1.030    | 0.490   | 0.77        | 0.91      | 1.09     |         | 0.56          | 0.00         | 1.06     | 1.27      | 1.430     |                 |           | _        | , K     | 62   |
| - 19    | R2,                             | 1-09    | 0.46               | 0.46 0.73 0.85 1.0 | 3.85              | 0        | = :      | 0.55 0  | 0.87        | 10.1      | 1.18     |         | 10            |              | +        | .   ~     |           | ) <del>-+</del> |           | - 0      | 2 10    | 72   |
| 73      | RD3 to 6,                       | 60-2    | 0.41               | 0.68 0.79 0.9      | ).79 <sub>c</sub> | <u>ي</u> | 1.07     | 0.49 0  | 0.81        | 0.96      | 4 :-     | 1.28 0  | 0.580         | 0.96         |          | ro.       |           | ď               |           | ) (:     |         | 0 9  |
| J.      | RWI, RW2                        | 6.0-3   | 0.37               | 0.57 0.67 0.8      | ).67 <sub>C</sub> | . 2      | 0.93     | 0.42 0  | 0.680       | 0.82 0    |          |         | 0.49          | 0.81         |          |           |           |                 |           | 5        | J K     | ) L  |
| L.B     | RI, RDI.5, RD2,                 | 0       | 0.40               | 0.67               | 0.79 0.9          | 2        | 1.06 0   | 0.490   | 0.820       |           |          | +       | 0             | 1            | 1.13     | -         | .   0     | 9               | 5         | 4=       | ) k     | 2 6  |
|         | REII to 40                      | 50-2    | 0                  | 0.51               | 0.61 0.7          | 8        | 0.90     | 0.380   | 0.620       | 0.780     | 0.98     | 1.13    | 0.430         | 0.77         |          |           |           | 0.490           | _         | <u>-</u> | , a     | . L  |
|         | (Hillside)                      | 0       | 0.28               | 0.44               | 0.51 0            | 0.60     | 0.66     | .33 0   | 0.51        | 59        | 0.700    | 0.80    |               | 58           |          | 2         |           | \ \ \ \         |           | -        | 8       | 9    |
|         | RS.RI.RF9                       | 40-1    | 0.41 0.66          | 3.66               | 0.76 0.91         |          | 1.02 0   | 0.500   | 0.79        | 0.92      | 1.09     | 1.22 0  | 0.59 0        | 0.93         | 1.09     | 1.28 1.   | 1.43 0.   | 0.68            | 0.8       | 1 25 1 4 |         | 69   |
|         | (Level)                         | 40-2    | 0.29               |                    | 0.65 0.8          | .80 0.   | 6.       | 0.35 0  | 0.680       | 0.81      | 0.98 1.  | 1.120   | 0.470         | 0.82         | 0.97     |           | 100       | 0.56 0.         | 96        |          |         | 52   |
| ——<br>F |                                 | 40-3    | 0.24               | 0.37 0             | 0.430             | 0.55 0   | 0.64 0.  | 0.28 0  | .44 0.      | 54        | 0,70     | 0.82    | 0.32 0.       | 0.54 0       | 0.68 0   | 0.86      | 1.00 0.   | 0.36 0          |           |          | N       | 1.18 |
| IGU     | AI, AZ, RA,                     | 35-1    | 0.34 0.60 0.72 0.8 | ).60 C             | .72 0.            | 7        | 0.98 0.  | 0.43 0. | 0.74 0      | 0.88 1.   | 1.06 1.  | 0 61.1  | 0.54 0        | 0.89         | 1.05 1.2 | 9         | 1.41      | 0.63            | 1.04      | 121      | K       | 62   |
|         | RElito40(Level),                | 5-2     | 0.20 0.33          | 33 0               | 0.47 0.6          | 9        | 0.79 0.2 | 3       | 0.49 0.     | 0.660     | 0.87     | 1.0.1   | 0.27 0.       | 0.660        | 0.85 1.  | 8         |           |                 |           |          | 9       | 1.43 |
| G       | Undevel. Hillside               | 5.      | 0.19               | 0.30 0.35 0.4      | .350              | -        | 0.46 0.2 | Q.      | 0.35 0.     | 0.40 0.4  | 7        | 0.57 0. | 0.26 0.       | 0.400        | 0.460    | 0.60 0.   | 0.74 0.2  | 6               | 0.45 0.   | 0.54 0.  | 0.76 0. | 0.92 |
| 24      | Park(lawn only)                 |         | 0.29               | 0.530              | 0.64 0.77         |          | 0.87 0.  | 0.37 0. | 0.67 0.     | 0.79 0.   | 0.96 1.0 | 1.08 0. | 0.47 0.       | 0.81         | 0.96     | 1.16      | 1.30 0.   | 0.57 0.         | 0.96      | 3 1.3    | 9       | 1.52 |
| 2.2     | RPD                             | 12      | 0.11 0.21 0.32     | 0 12.0             | .32 0.            | 0.48 0.  | 0.60 0.  | 0.12 0. | 0.34 0.     | 0.48 0.   | 0.67 0.  | 0.81 0. | 0.14 0.       | 0.49 0.      | 0.66 0.  | 0.88 1.03 | 3 0.19    |                 | 0.64 0.83 | 3 1.08   | 8 1.2   | 2    |
| ) (     | •                               | 12-3    | 0.10 0.16          | .160               | 0.18 0.2          | 2        | 0.24 0.  | 0.11 0. | 0.18 0.     | 0.21 0.   | 0.25 0.  | 0.30 0. | 0.13 0.       | 0.21 0       | 0.240.   | 0.32 0.   | 0.43 0.15 |                 | 0.24 0.3  | 0.29     | 0.440   | 92.0 |
|         |                                 |         |                    |                    |                   |          |          |         |             | 1         | 1        | 1       | 1             | -            | 1        | -         | +         |                 |           | •        | ;       | 3    |

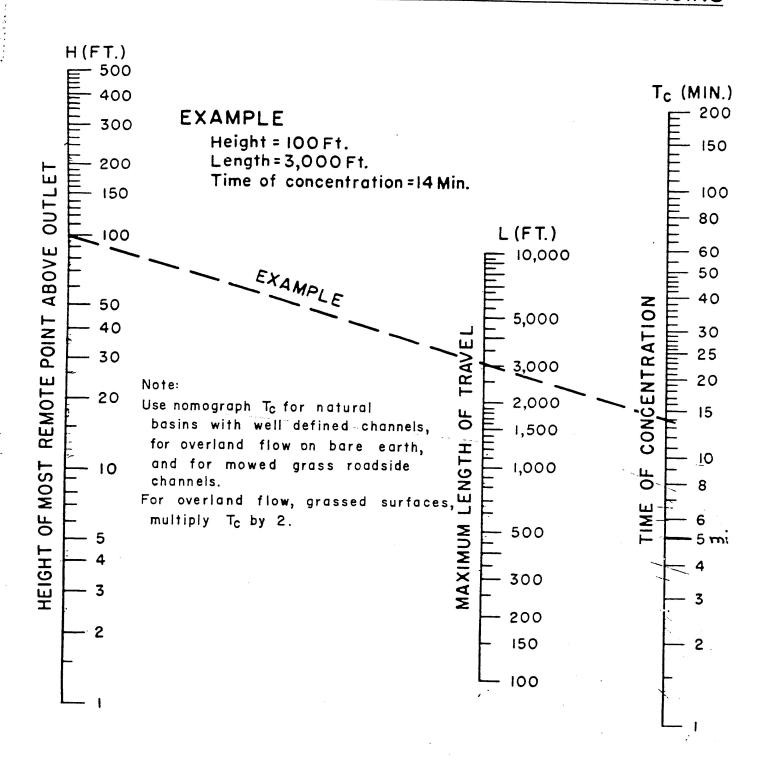

Soil Classifications — Figure G241.2 Isohyetal Map — Figure G241.1A

\*Refer to Figure 6241.3 prior to application F<sub>RO</sub> Valves - Figure G242.2 F to K



#### INITIAL OR INLET TIME CHART

FOR SOIL TYPE AND CLASSIFICATION 100; 70-1, 2, 3; 60-1, 2, 3






TIME OF CONCENTRATION - MINUTES FOR GUTTER LENGTH = 700'

Figure G 242.2A

## TIME OF CONCENTRATION FOR SMALL DRAINAGE BASINS



Based on study by P.Z. Kirpich, Civil Engineering, Vol. 10, No. 6, June 1940, p. 332

Rev. 1973

Figure G 261

#### APPENDIX G

Summary of Hydrological Sub-Areas and Acreages

Conversion Table
Pre-Development - Line "A"
and Tabling Sheets

# SUMMARY OF HYDROLOGICAL SUB-AREAS ACREAGES CONVERSION TABLE PRE-DEVELOPMENT

#### LINE "A"

#### EXIST. 36" R.C.P. UNDER MULHOLLAND DRIVE AT SPEILBERG DRIVE

| Area<br>No. | Dev  | ACRES    | ΣΑ    | F CLASS<br>F 100% | Ae   | ISO. | ΣAe @ |
|-------------|------|----------|-------|-------------------|------|------|-------|
| 1-A         | 35-1 | 4.8      | 4.80  | 0.754             | 2.00 | 100  | Point |
|             | 100  | 1.29     | 6.09  |                   | 3.62 | 1.33 | 3.62  |
| *2-A        | 70-1 | 2.41     | 8.50  | 1.000             | 1.29 | 1.33 | 7.06  |
| 3-A         | 35-1 | 9.40     | 17.90 | 0.892             | 2.15 | 1.5  |       |
| 4-A         | 70-1 | 2.7      |       | 0.754             | 7.09 | 1.33 | 14.15 |
| 5-A         | 70-1 | 6.0      | 20.60 | 0.892             | 2.41 | 1.33 | 16.56 |
| 6-A         | 100  |          | 26.60 | 0.892             | 5.35 | 1.33 | 21.91 |
| 7-A         |      | 0.5      | 27.10 | 1.000             | 0.50 | 1.33 | 22.41 |
| /-A         | 100  | 1.8      | 28.90 | 1.000             | 1.80 | 1.33 | 24.21 |
| *2-A        |      | OM STARK | VILLA |                   |      |      |       |
| 1A          | 100  | 0.93     | 0.93  | 1.000             | 0.93 | 1.33 | 0.00  |
| 2A          | 70-1 | 0.80     | 1.73  | 0.892             | 0.71 | 1.33 | 0.93  |
| 3A          | 70-1 | 0.10     | 1.83  | 0.892             | 0.09 | 1.33 | 1.64  |
| 4A          | 70-1 | 0.66     | 2.49  | 0.892             | 0.59 |      | 1.73  |
| 4B          | 70-1 | 0.85     | 3.34  | 0.892             | 0.76 | 1.33 | 2.32  |
| 6A          | 100  | 0.12     | 3.46  |                   |      | 1.33 | 3.08  |
| 7A          | 100  | 0.12     |       | 1.000             | 0.12 | 1.33 | 3.20  |
|             | 100  | 0.24     | 3.70  | 1.000             | 0.24 | 1.33 | 3.44  |
|             |      |          |       |                   |      | i    |       |
|             |      |          |       | i                 |      |      |       |

#### Classifications

100, 50 yr., Fro = 1.30, 70-1, 50 yr Fro = 1.16, 35-1, 50 yr.Fro = 0.98,

#### **Area Conversion Factors**

1.30/1.30 = 1.00, 1.16/1.30 = 0.892,0.98/1.30 = 0.754,

|                            | SUX                  | - ISE          | £                                      |           |      | Engineering                                  |         | -    | ,,        | Friction | _              | שליהור  | ¥ ~          | ۲-                                      |         | Location —                            |                   |
|----------------------------|----------------------|----------------|----------------------------------------|-----------|------|----------------------------------------------|---------|------|-----------|----------|----------------|---------|--------------|-----------------------------------------|---------|---------------------------------------|-------------------|
|                            | Drainage             | Map Runori     |                                        | Surface F | Flow |                                              |         | Andr | F BPRR    | Stope    | 961/2   Size   | Area    | eng<br>(f1.) | <u>5</u> 8                              | orgin   | FOR 120                               | . vemorxs         |
|                            | N 0 0                | 25.24          | z                                      | SE        | ¥    | Drain ISA                                    | RFR.    | RFR. |           | (S)      | 1-             | (F. F.) | (H/sec)      | (3)<br>(2)                              | Station |                                       |                   |
| OFFIC                      | 4                    | ) A A          | ++                                     | D         | TI   | 18 (                                         | ARK VIC | 7    | STORM     | DRAIN    |                |         |              |                                         |         |                                       | Per Fig. 6642.2 A |
|                            |                      | 1_             | 64                                     |           |      |                                              |         |      |           |          |                |         |              |                                         | Ac      | ACCESS ROAD                           | 1=400, st, s=.009 |
| 100                        | A2<br>A2             | الم            | 1,64                                   |           |      | 7.2 1:33                                     | 1,00    |      | 1,30 3,40 | ,0048    | ○ 교<br>——      | 1,23    | 5,9 330      | 0 47                                    |         | <u>}</u>                              | tc=4.7,           |
| ETI                        |                      | PO             | 1,2                                    |           |      |                                              |         |      |           |          |                | z.      |              | 0,9                                     | 14      | -                                     |                   |
| SH<br>E MI<br>INSTR        | (3A)<br>(4B)<br>(4A) | DAM<br>AAC     | 64.0<br>600<br>600<br>600              |           |      | 13,0 11                                      | )1      | •    | 1 3,24    | .0063    | ) <del>1</del> | ) 2:46  | 5,3 232      |                                         |         | Tuct                                  |                   |
| <b>T</b>                   |                      | 0.36 A 0       | 36                                     |           |      |                                              |         | ·    | ·         |          | 3              | ê       |              | C,                                      |         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                   |
| RA                         |                      | Mac            | 44.4                                   |           |      | 13/7                                         | _       |      | 1 3,07    | ,0065    | Φŧ             | 7 1.75  | 7,8 20       | 101                                     | M.C.    | Mulholland Dr.                        |                   |
| ٩K                         |                      | <b>&gt;</b> (  | 3,1                                    |           |      | <u>/                                    </u> |         |      |           |          |                |         |              | 0,4                                     |         | Junction With                         | See Shop          |
| PE                         | IA TO TAI            | 3,70 IA        | 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | <u></u>   |      | (13,7)                                       |         |      | у 2,99    | >        | 1              | 1       | }            | 6,1                                     | 7       | Moin Line                             | Line 14           |
| 10N<br>9 <i>&amp;&amp;</i> |                      | I A            |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
|                            |                      | ο.             |                                        |           | ,    | -                                            |         |      |           |          |                |         |              |                                         |         |                                       |                   |
| 8                          | 1667                 | A A            |                                        | :         |      |                                              |         |      |           |          |                |         |              |                                         |         | -                                     |                   |
| 6                          | , AG                 | ۵              |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
| N DI                       | JON E                | E A            |                                        |           |      |                                              |         |      |           |          |                |         |              | *************************************** |         | ,                                     |                   |
| $\mathcal{I}$              |                      | - 04           |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
|                            |                      | ΣA             |                                        |           |      |                                              |         |      |           | •        | ,              |         |              | × × × × × × × × × × × × × × × × × × ×   |         |                                       |                   |
|                            |                      | 0.0            |                                        |           |      | <b></b>                                      |         |      |           |          |                |         |              |                                         |         |                                       |                   |
| C A                        |                      | ΣA A           |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         | ٠                                     |                   |
| lgned<br>H, IR<br>awn l    |                      | 0.4            |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
| RS                         |                      | ΣA             |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
| 969                        |                      | ۵۵             |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
| <del></del>                |                      | ΣA             |                                        |           |      |                                              |         |      |           |          |                |         |              |                                         |         |                                       |                   |
|                            |                      | αQ             |                                        |           |      |                                              |         |      | <u> </u>  |          |                |         |              |                                         |         |                                       |                   |
| Rer                        |                      | I <sub>A</sub> |                                        |           |      |                                              |         |      | •         |          |                | •       |              |                                         |         |                                       |                   |
|                            |                      | ۵۵             |                                        |           |      |                                              |         | 5    | -         | n .      | ภ              | 17      | 9            | 20 21                                   | 22      | 23                                    | 24                |

## **Appendix H**

**Summary of Hydrological Sub-Areas and Acreages** 

Conversion Table
Pre-Development - Line "B"
Existing Caltrans Storm Drain System
In Calabasas and
Tabling Sheets

# SUMMARY OF HYDROLOGICAL SUB-AREAS ACREAGES CONVERSION TABLE FOR POST DEVELOPMENT

LINE "B" - EXIST CALTRANS 39" R.C.P.

| Area<br>No. | Dev  | ACRES | ΣΑ   | F CLASS<br>F 100% | Ae    | ISO. | ΣAe @<br>Point |
|-------------|------|-------|------|-------------------|-------|------|----------------|
| 1-B         | 100  | 1.7   | 1.7  | 1.00              | 1.7   | 1.33 | 1.7            |
| 2-B         | 70-1 | 11.4  | 13.1 | 0.892             | 10.17 | 1.33 | 11.87          |
| 3-B         | 100  | 3.6   | 16.7 | 1.00              | 3.6   | 1.33 | 3.60           |
| 4-B         | 100  | 2.3   | 19.0 | 1.00              | 2.3   | 1.33 | 5.90           |
| (6-A)/2     | 70-1 | 3.0   | 22.0 | 0.892             | 2.68  | 1.33 | 8.58           |
| 5-B         | 100  | 0.4   | 22.4 | 1.00              | 0.4   | 1.33 | 20.85          |
| 6-B         | 35-1 | 0.5   | 22.9 | 0.754             | 0.38  | 1.33 | 21.23          |
| 7-B         | 100  | 2.1   | 25.0 | 1.00              | 2.1   | 1.33 | 23.33          |
|             |      |       |      |                   |       |      |                |

EXISTING CALTRANS STORM DRAIN SYSTEM IN CALABASAS ROAD

| Area | Dev | ACRES | ΣΑ  | F CLASS | A - |      | Σ <b>A</b> e @ |
|------|-----|-------|-----|---------|-----|------|----------------|
| No.  |     | AOREO | 2A  | F 100%  | Ae  | ISO. | Point          |
| 1-C  | 100 | 0.7   | 0.7 | 1.00    | 0.7 | 1.33 | 0.7            |

#### Classifications

100, 50 yr., Fro = 130,

70-1, 50 yr., Fro = 1.16

35-1, 50 yr., Fro = 0.98,

#### Area Conversion Factors

1.30/1.30 = 1.00

1.16/1.30 = 0.892

.098/1.30 = 0.754

|         | . D. F     | d by     |                                        |                 | al <b>•</b><br>769 |                     | RSH<br>Dro | ned by<br>, IRC<br>wn by<br>, RK        | A                       |      | rove             | d              | De<br>T.                               | <u>ç</u><br>> ( | SIGN                                             | <u></u> | VISIC<br>194<br>                                               |          | PE<br>19                     | Ał                                      | BLII<br>K RA<br>RUNG                 | AT<br>OFF      | EN                                | 1E       | THO            | D                | }                                       |               | ). '                                                               | 9           |                                 |
|---------|------------|----------|----------------------------------------|-----------------|--------------------|---------------------|------------|-----------------------------------------|-------------------------|------|------------------|----------------|----------------------------------------|-----------------|--------------------------------------------------|---------|----------------------------------------------------------------|----------|------------------------------|-----------------------------------------|--------------------------------------|----------------|-----------------------------------|----------|----------------|------------------|-----------------------------------------|---------------|--------------------------------------------------------------------|-------------|---------------------------------|
|         |            |          | 0<br>12-4                              | 70              | Y                  |                     |            | 400                                     | 22-                     |      | က်               | 2<br>6<br>6    |                                        |                 | 7                                                | 1-8     | Ü                                                              | 5        | 22 C2<br>6 1/1               |                                         | <u>ئ</u>                             | 3-82           |                                   |          | 2-6            | )                | 1-<br>B                                 | No.           |                                                                    |             | SUPS                            |
| 2       | м          |          | 0,9                                    |                 |                    | 3                   |            | 5,9                                     |                         |      |                  | 5.9            |                                        |                 | 22.0                                             |         | Ö                                                              | 2.1      | 19- I                        | 0.9                                     |                                      | 5,9            | :<br>- M                          |          | 12,9           | 11.2.            | 1                                       | Secret        | ; }                                                                | <b>X</b> 00 | ERVISED                         |
| Х<br>3  | AAO<br>AAO |          | 24000                                  |                 | 20                 | IA                  |            | 10,00<br>0 0 0 0<br>10 0 0              |                         | _    | EA 5.9           |                | A A                                    | A               | 00,00                                            | A   300 | 1 20.4<br>0.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00 | A 2,1    | IA 18.27<br>9 3.25<br>0 59.7 | A 0.78                                  | 14   17,59<br>0   33,49<br>0   53,49 |                | DA <sup>M</sup>                   | <b>P</b> | 1,04<br>0 40,1 | A 9,99           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |               | 8000                                                               | Runoff      | ВҮ                              |
| *       |            |          |                                        |                 |                    |                     |            | - 0-                                    |                         | -    | 7                |                |                                        |                 | 0.6.5                                            | 1       |                                                                |          | 7017                         | 3                                       | 710-4                                |                | anaghanadhy at agus d'ao dd'ar th |          |                | -                |                                         | z             | 0                                                                  |             |                                 |
| ()A     |            |          | •                                      |                 | レン                 | -<br> -<br> -       |            | *************************************** | <del>- </del>           |      |                  |                |                                        |                 |                                                  |         |                                                                |          |                              | -                                       | +                                    |                |                                   |          |                |                  |                                         | S             | Surface                                                            | F           | <u> </u>                        |
| 6       |            |          |                                        |                 | C.                 | 7                   |            | <del></del>                             |                         |      |                  | 1              |                                        | 7               |                                                  |         | ***************************************                        |          | •                            |                                         |                                      |                |                                   |          |                |                  |                                         | m             | 1 1                                                                | low Ro      | Bur                             |
| 7       |            |          |                                        |                 | 174                | 5                   |            |                                         |                         |      |                  |                |                                        |                 |                                                  |         |                                                                | . ,      |                              |                                         |                                      |                |                                   |          |                |                  | ٠, ٠                                    | ŧ             |                                                                    | Routing     | egu or                          |
| 8       |            |          | 40                                     |                 | 127                | <del>} -</del><br>- |            | 181                                     | 127                     | 1/8/ | ;<br>i           |                |                                        | -               | 162.6                                            |         | 62.8                                                           |          | 59.7                         |                                         | 58 <i>A</i>                          |                |                                   |          | 40,1           |                  |                                         | Dra's         | Som                                                                |             | 1505                            |
| 9       |            |          | 7.                                     |                 | - 7 <u>1</u>       | >                   |            |                                         |                         |      | £                |                |                                        |                 | =                                                |         |                                                                |          | =                            |                                         | 1)                                   |                |                                   |          | -<             |                  | 33                                      |               | So                                                                 |             | neering.                        |
| ō       |            |          |                                        |                 | U                  |                     |            |                                         |                         |      |                  |                | ************                           |                 |                                                  |         |                                                                |          |                              |                                         |                                      |                |                                   | _        |                |                  |                                         | RFR           |                                                                    |             | _                               |
| =       |            |          |                                        |                 | 0                  | 7                   |            | l h                                     |                         |      | <u>-</u>         |                | •                                      |                 |                                                  |         |                                                                | -        | V P                          |                                         | 1                                    |                | •                                 | -        | -              |                  | 00'                                     | <del>-</del>  |                                                                    |             |                                 |
| 12      |            |          | 1.30                                   | -               | 17/17              | ナ<br>ニ<br>こ         | -          | 3,1                                     | _                       |      | _                |                | ······································ | -               | =                                                |         | -5                                                             |          | 4                            |                                         | =                                    |                |                                   | -        | <              | -                | 1,30                                    | RFR           | - 독<br>- 독<br>- 독<br>- 독<br>- 독<br>- 독<br>- 독<br>- 독<br>- 독<br>- 독 |             | rrequency                       |
| 13 14   | •          |          | 3,40                                   | -               | 1                  | <b>)</b> _          |            | 2.35                                    |                         | +-   | 2,44             |                |                                        | -               | 2,35                                             |         | 2,36                                                           |          | 2.50                         |                                         | 255                                  | ·              |                                   |          | 2.6            | -                | 10/20                                   |               | BPRR                                                               |             | ,,                              |
| 15      |            |          | 0                                      | -               |                    | 4 V V X X           |            | >                                       |                         | _    | 0176             |                |                                        | -               | )                                                | +       | 6,0030                                                         |          | 0,0037                       |                                         | 9110,                                | ****           |                                   |          | 1              |                  | 0176                                    | (S)           | R Slope                                                            | Enimi       |                                 |
| 16      |            |          |                                        |                 | +                  | 200                 |            | $\left  \cdot \right $                  |                         | 1-   | (825             |                |                                        | -               | 1                                                |         | 1165                                                           | 70.37    | 1886<br>(979)                | / / / / / / / / / / / / / / / / / / / / | 440                                  |                |                                   | 1        |                |                  | 2 (5.26)                                | _             | 2,5%                                                               |             |                                 |
| 17      |            |          |                                        |                 | 17                 | マロ                  | -          | }                                       |                         | EXIS | )<br>  39<br>  1 |                |                                        | +               | <del>                                     </del> |         | =                                                              | 1        | 0 5                          | 1                                       | (1) St. 35                           | -              |                                   |          |                |                  | D T                                     |               | Size                                                               |             | _                               |
| 18      |            |          | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | -               | -                  | -                   | -          | 1                                       |                         | - -  | (8.8)            |                |                                        | -               | $\left  \cdot \right $                           |         | ø                                                              |          | 8,30                         |                                         | 435                                  |                |                                   | -        |                |                  | 0,87                                    |               |                                                                    |             | レズ                              |
| _       |            |          | +                                      | -               |                    | -                   |            | }                                       |                         |      | 5 8<br>          | ,              |                                        | -               | +                                                |         | 97.6                                                           |          | 30 7.2                       | -                                       | 55 13,                               |                | ,                                 |          |                | -                | 7 7.7                                   | 1             |                                                                    |             | い 大 て で に エ の に 下 か れ し て       |
| 19   20 |            | +-       | -                                      | -               |                    |                     |            | }                                       | _                       |      | 295              |                |                                        | -               | +                                                |         | 22                                                             | -        | 628                          | -                                       | 4 326                                | -              |                                   | -        |                | -                | 7 1080                                  | +~            | engt<br>(ft.)                                                      | h           | 人でによりにしている。                     |
| 0 21    |            |          | 5,0                                    | -               | _                  |                     |            |                                         | 2 3                     | 9    | 5 10.7           |                |                                        |                 |                                                  | 2,0     | <u> </u>                                                       | 15       | _                            | 0.4                                     |                                      | -              |                                   |          | 8,8            | 1.7              |                                         | _             | <u>(ग्र.)</u><br>इ. २                                              |             | X C                             |
| 22      |            | -        |                                        | =               | ==                 | -                   |            | 1010011                                 |                         | - 1  | 13436.88         | 300            | O-000                                  | -               | 00,001                                           |         | ct82:22                                                        | Ť        | 00,01+1                      | -                                       | 10135.99                             | -              |                                   | -        | 10/35,99       |                  |                                         | Station       |                                                                    | ===         | U.T.Z.11                        |
| <br> -  |            | <u>m</u> | me (                                   | रुट्ट           | 3                  |                     |            |                                         | 000                     |      | 5.70             | 3              |                                        | _               | 00 Dry                                           | 1       |                                                                |          | -}                           | AVE                                     |                                      | 3              | •                                 |          |                | 12               | 26                                      |               |                                                                    | <u>}</u>    |                                 |
| 23      |            | On Ramp  | かない                                    | CKI STONE COTTO | 104 CAS 0477       | 1                   |            | (See Line 8)                            | •                       |      | Samo<br>At       | MULHOLLAND DR. |                                        |                 | Ē                                                | 각 :     |                                                                | 00%) E/V | hollana                      | SAN                                     | abos                                 | MULHOLLAND DR, |                                   |          | Mulholland Dr. | PVT, STORM VX+IN | Calabasas Dr.                           | DRIVE WAY     | Location                                                           |             | 00.00                           |
| 24      |            |          | to of 5                                | S ICO A MIN     |                    | record accombined   |            | _/                                      | TCX:(11.2)(10)) (68)(40 | 7.01 | tc=6.0(2722)"2   | 57, S=,00% L=  |                                        |                 |                                                  |         |                                                                |          |                              |                                         | Cline 20                             |                |                                   |          | See Line 20    |                  |                                         | 1-9.35' St.St | Remorks                                                            |             | Care 3 6 7 - 00   Rev, 10-20-00 |

## **Appendix I**

**Summary of Hydrological Sub-Areas and Acreages** 

Conversion Table
Post-Development - Line "A"
and Tabling Sheets

# SUMMARY OF HYDROLOGICAL SUB-AREA ACREAGES CONVERSION TABLE POST DEVELOPMENT

#### LINE "A"

#### EXIST. 36" R.C.P. UNDER MULHOLLAND DRIVE AT SPEILBERG DRIVE

| Area<br>No.      | Dev      | ACRES    | ΣΑ     | F CLASS | Ae   | ISO. | ΣAe @         |
|------------------|----------|----------|--------|---------|------|------|---------------|
| 1-A              | 70-1     | 2.2      | 2.0    | F 100%  |      |      | Point         |
| 1-A <sub>1</sub> | 70-1     | 1.1      | 2.2    | 0.892   | 1.96 | 1.33 | 1.96          |
| 1-1-1            |          |          | 3.3    | 0.892   | 0.98 | 1.33 | 2.94          |
| 2-A              | 70-1     | 5.0      | 8.3    | 0.892   | 4.46 | 1.33 | 8.53          |
|                  | 35-1     | 1.5      | 9.8    | 0.754   | 1.13 | 1.00 | 0.55          |
| 3-A              | 70-1     | 1.5      | 11.3   | 0.892   | 1.34 | 1.33 | 9.87          |
| 3-A <sub>1</sub> | 70-1     | 1.1      | 12.4   | 0.892   | 0.98 | 1.33 | 10.85         |
| 4-A              | 100      | 1.4      | 13.8   | 1.00    | 1.4  | 1.33 | 12.25         |
| X-A              | 100      | 1.29     | 15.09  | 1.00    | 1.29 |      |               |
|                  | 70-1     | 2.41     | 17.5   | 0.892   | 2.15 | 1.33 | 15.69         |
| 5-A              | 70-1     | 2.7      | 20.2   | 0.892   | 2.41 | 1.33 | 18.10         |
| (6-A)/2          | 70-1     | 3.0      | 28.2   | 0.892   | 2.68 | 1.33 | 20.78         |
| 7-A              | 100      | 0.9      | 24.1   | 1.00    | 0.9  | 1.33 | 21.68         |
| 8-A              | 100      | 1.8      | 25.9   | 1.00    | 1.8  | 1.33 | 23.48         |
|                  |          |          |        | :       |      |      |               |
| X-A              | DRAIN FR | OM STARK | (VILLA | :       |      | i    |               |
| 1A               | 100      | 0.93     | 0.93   | 1.00    | 0.93 | 1.33 | 0.93          |
| 2A               | 70-1     | 0.80     | 1.73   | 0.892   | 0.71 | 1.33 | 1.64          |
| 3A               | 70-1     | 0.10     | 1.83   | 0.892   | 0.09 | 1.33 | 1.73          |
| 4A               | 70-1     | 0.66     | 2.49   | 0.892   | 0.59 | 1.33 | 2.32          |
| 4B               | 70-1     | 0.85     | 3.34   | 0.892   | 0.76 | 1.33 | 3.08          |
| 6A               | 100      | 0.12     | 3.46   | 1.00    | 0.12 | 1.33 | 3.20          |
| 7A               | 100      | 0.24     | 3.70   | 1.00    | 0.24 | 1.33 | 3.44          |
|                  |          | !        |        |         |      |      | <b>0</b> . 11 |

#### Classifications

100, 50 yr., Fro = 1.30 70-1, 50 yr Fro = 1.16 35-1, 50 yr.Fro = 0.98,

#### **Area Conversion Factors**

1.30/1.30 = 1.00 1.16/1.30 = 0.892, 0.98/1.30 = 0.754

| in i     | Rev                                                                                                             |             | <u></u> | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ; <b>-</b>   | Dal        | Stores<br>2011 | ľ.  | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Linio  | menter process                         | ************************************** | e a succession de la constantina del constantina de la constantina del constantina de la constantina d | 'J       | Providence of the second                                        | ( )<br>( )<br>( )   | energia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                         |     | Caralacatalada                          |     |             | M-S ASSA | Account           |      |            |              | Burnet south                              | 7 1                  |            |
|----------|-----------------------------------------------------------------------------------------------------------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|-----|-----------------------------------------|-----|-------------|----------|-------------------|------|------------|--------------|-------------------------------------------|----------------------|------------|
|          | J. C                                                                                                            | <del></del> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> | 965        | 9              | RS. | lgned b<br>H, IRC<br>awn by<br>F, RK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1      | TORI<br>Approv                         | M C<br>ved                             | PRAIN<br>De<br>JUSTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>'</u> | 0                                                               | )<br>/ <sub>Q</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON<br>& ¢ | PI                                      | ΞA  | ABL<br>K R                              | A   | re I        | ME       | EETH(             | OC   | . 1        |              | <b>)</b> .                                |                      |            |
|          |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | )                                      | 7-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 1                                                               | 学                   | ↑.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I-A       | # 4-D                                   | ト   | )                                       | ·   | į           | )<br>}   |                   |      | -A         | 70.          | Area                                      | Ominoo               | v          |
| 2        |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 25,9                                   | <u>-</u> 20                            | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.9      | 20,2                                                            | 6.4                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | 13,8                                    | 2,5 | 1 3                                     | 1-  | 9,8         | 6,5      | (i)               | Ţ:   | - 2.2      |              |                                           | X CO                 | SUPERVISED |
| X<br>3   | ΩA                                                                                                              | A           | • 6     | AAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A            | 0.4        | EA             | >   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A      | 0 342<br>0 003                         | 4                                      | IA 21<br>0 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 0.5.5<br>0.5.5                                                  | A<br>S              | 9 3,42<br>9 41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 430                                     |     |                                         |     | امم<br>اهرس | ~        | 1                 | -    |            |              |                                           | Runoff               | שבט שו     |
| 4        | neditations according                                                                                           | _           | -       | The same and the s | _            |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | \$ 40                                  | 00                                     | 21,68<br>3,43<br>74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G.       | 1000                                                            | 189                 | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 42,47                                   | 3 8 | 3.55                                    | 34  | 30.8        | 2 2 4    | 3,77              | 0.78 | 4.5.6      | 96           | 00%                                       | 3                    |            |
| CA.      |                                                                                                                 | -           | +       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                 | _                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         | ļ.  | *************************************** |     |             | -        |                   | -    |            | Z            | Si                                        |                      |            |
| 6        |                                                                                                                 | -           | -       | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |                |     | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | ·***                                   |                                        | , - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | *************************************** |     |                                         |     |             | -        |                   | -    |            | S            |                                           | חופע                 | ~          |
|          | ***************************************                                                                         | -           | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     | Market of the second of the se |        | · ==================================== |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | ,                                       |     |                                         |     |             |          |                   | -    |            | E            | Flow                                      |                      | Bureau     |
| 8        | ***************************************                                                                         | -           |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 80.3                                   |                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 6                                                               |                     | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 47                                      |     | <u> </u>                                |     | 85          | -        |                   |      | 1          | ¥            |                                           |                      | 9          |
| 9        |                                                                                                                 | -           | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -community |                | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -conc. | ).<br>                                 | -000E)                                 | 74.4 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I Paras  | 63.5                                                            |                     | (42.5)<br>41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 42,5 4                                  |     | 35,0 1/                                 |     | 30.8        | -        | 1                 | -    | 7.7 1.3    | ł            | Son .                                     |                      |            |
| ō        |                                                                                                                 |             | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     | Haratorius a description in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | anna tha tha dha ann agus ann a dh                              |                     | ) <del>The the section of the section of</del> |           | *************************************** |     |                                         |     |             | -        |                   | -    | 333        | -            | Iso Freq                                  | - -                  | 8          |
| =        |                                                                                                                 |             | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                        |                                        | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | -                                                               |                     | 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 11                                      |     | 7                                       |     |             |          | _=                | _    | 1.00       | -            |                                           | +                    |            |
| 12       | 74474447744444444                                                                                               |             |         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ·                                                               |                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                         |     |                                         | -   | •           |          |                   |      | 0          | RFR          | ·                                         | 1.                   | Frequen    |
| 딦        |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                                      |                                        | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | =                                                               |                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | -/                                      |     | 1/                                      |     | 1           |          | =                 |      | 1,30       |              | <u>. 5</u><br>m                           | 1 2 4 5 6 1 7 7      |            |
| 4        |                                                                                                                 |             |         | оомгонос                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2.63                                   |                                        | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 270                                                             |                     | 2,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 2.67                                    |     | 2,73                                    | •   | 2.78        |          | 290               |      | 3,03       |              | B<br>0<br>0<br>0                          |                      | Ŋ          |
| 5        |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |                                        | ,007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | ,007                                                            |                     | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | .007                                    |     | ,007                                    |     | ,007        |          | .007              |      | 010,       | - Tamor      | Friction                                  |                      | )<br>₹     |
| <u>-</u> | v 4000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 |             |         | er en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |                                        | 1 889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 7 759                                                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 805                                     |     | 1 418                                   | - 1 | 36          |          | 133               |      | 77         | <del> </del> | <u>الم</u><br>الم                         |                      | 3          |
| 17       |                                                                                                                 |             | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     | THE STATE OF THE S |        |                                        |                                        | 0.5°<br>0.5°<br>0.5°<br>0.5°<br>0.5°<br>0.5°<br>0.5°<br>0.5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | O. 20 %                                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | O.S. &                                  |     | )<br>                                   |     | 8   N.C.    | -        | )<br>2///2<br>281 |      | 0°5        | <del> </del> | Λ                                         |                      | S          |
| 18       |                                                                                                                 | _           | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <u> </u>   |                |     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ      |                                        |                                        | 15,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | υĭ                                                              |                     | )_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 4                                       |     | C. 3.48                                 |     | 3           |          |                   | -    | 400        | 1 A. A.      | A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | S PEILBERG           | YSIEM:     |
| 61       |                                                                                                                 | _           | -       | was marked and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |                |     | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | -                                      |                                        | 17 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ,97 10.6                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 11 10,3                                 |     | 10.1                                    |     | 14 9.8      |          | V51 7             |      | 0.99       |              |                                           | SPEILB               | חאום       |
| 20       |                                                                                                                 | -           | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     |            |                |     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 5                                      |                                        | 5 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6 300                                                           |                     | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | ,3 210                                  |     | 3                                       | -   | 081   180   |          | 7.35 320          | -    | 7.78 320   | (fl/sec)     |                                           | ERG V                | 10.00      |
| 2        | - <del>III e e e e e e</del> e e e e e e e e e e e e                                                            | -           | -       | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.6                                    | 0,                                     | 6,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5      | <del> </del>                                                    |                     | 0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,3       | 0 8.7                                   | 0,5 | 15 8.2                                  | 0,3 | 0 7.9       | 0.7      | 0 7.2             | 0.7  | 6,5        |              | ngth<br>(t.)<br>'옥주                       | ス、エー                 | 1(         |
| 22       |                                                                                                                 | -           | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        | c                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OHECK:   | - T                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         | 7                                       | 01  | 10                                      | - 1 |             | 7-7      |                   | 7    | DI         | *            |                                           | RG シス・ボー NorthOLLボシワ | A          |
|          |                                                                                                                 | _           | -       | de francisco de Albando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 328                                    |                                        | :03<br> <br>  14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | MAC                                                             |                     | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -         |                                         |     |                                         |     | •           |          | (Q TI             |      |            | 1            | Storm                                     | まなり                  | ·          |
| 23       |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Lateral From Catch Basin               |                                        | Lateral From Ex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Start Villa 5/b.                                                |                     | Stark Villa S.D<br>Stark Villa S.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                         |     |                                         |     |             | 11 11    | Future Drivewo    |      | Future Di  | ON SITE      | Location                                  | ワス・                  |            |
|          |                                                                                                                 | -           | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            | /              |     | nga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _      | 7 7 7                                  |                                        | D' X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | तं त                                                            | 7                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         |     |                                         |     | ~~~         |          | Driveway<br>Villa | 1.4  | ```        | 11           | 8                                         | 00-414-300           | つ アマ・・ マン・ |
| 2        |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | $t_{CX} = \frac{9.0(42.5) + 6.71}{42.5 + 13.7}$ $t_{CX} = 8, 4$ | Line                | see sheet 2of2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | <b>)</b>                                |     |                                         |     |             |          |                   |      | tc= 6,5    | Per Fia, 2   | Rea                                       | 100                  | ハマノ        |
| 24       |                                                                                                                 |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 25)+62                                                          | 5                   | +205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                         |     |                                         |     |             |          |                   |      | ±.5,=0,010 | .42.2A       | Remorks                                   |                      | Linea.     |

|       | Revise<br>J. D. F  | Rer                                      |                                         |    | al•<br>69                                                                                         | RSH<br>Dra<br>RWH   | ned by<br>I, IRC<br>wn by<br>F,RK                                         | Αŗ     |                                        | ed_          | RAIN De.                                                                                    | Ç<br>> (    | 10          | S<br>EER     |                                              | 65    | PE<br>19                | Α      | BLI<br>K R.                                      | AT         | E M                                     | 1E         | EET<br>THC                         | D                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | ST                                     |                                          |
|-------|--------------------|------------------------------------------|-----------------------------------------|----|---------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------|--------|----------------------------------------|--------------|---------------------------------------------------------------------------------------------|-------------|-------------|--------------|----------------------------------------------|-------|-------------------------|--------|--------------------------------------------------|------------|-----------------------------------------|------------|------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|------------------------------------------|
| -     | 12 X               | 3-B, 4-0                                 | AND |    | 4                                                                                                 | の。                  |                                                                           |        | 21A                                    |              | )<br> <br> <br>                                                                             | ,           | A           |              | 12 12 42 42 42 42 42 42 42 42 42 42 42 42 42 | 10 to | ซี                      | р<br>1 | & to                                             | <i>ရ</i> ာ | 4/19                                    | 3-814-8,   | 2-33                               |                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.          | 18                                     |                                          |
| 2     | 1 6,8              |                                          | 5,9                                     |    | 5.9                                                                                               | 5,9                 | 3,0                                                                       |        | *******                                | 3,0          | 0,7                                                                                         | 1,0         |             |              | 25,0                                         |       | 75,0                    | 1.5    | -0                                               | 0.9        |                                         | 2,9        | 3.                                 | 11.4             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000         | 200                                    | ũ                                        |
|       | IA 8.58<br>9 3 4 1 |                                          |                                         |    | 1.8.1<br>1.8.1<br>6.13.10<br>7.10<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13<br>8.13 |                     | 1,01<br>2,01<br>8,01<br>8,01<br>8,01<br>8,01<br>8,01<br>8,01<br>8,01<br>8 |        | 24.4.7<br>0   4.4.7<br>0   1.68        |              | 14 0,7<br>9 4,42<br>0 3,1                                                                   | Å           | Ω.          | A            | 1000                                         | A     | 14 (0<br>14 (0<br>14 (0 |        | IA 21,23<br>9 3.34<br>0 70.9                     | A OJE      | IA 20.45<br>4 3.41<br>9 69.7            | A 8.5      | IA    1,8<br>9    3,4<br>0    41,1 |                  | 0 3 2 4<br>6 17,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | בט פו                                    |
| *     |                    |                                          |                                         |    | T Territory and the second and the second                                                         |                     |                                                                           |        | 1/200                                  |              | )                                                                                           |             |             |              | 1000                                         |       | 0 ~ 0                   |        | 2.53                                             |            | 01                                      | 3          | 6.7                                | 7                | , T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z            | 86 -                                   |                                          |
| O.    |                    |                                          |                                         |    |                                                                                                   |                     | ,                                                                         |        |                                        |              | )<br>)                                                                                      |             | 41X7        |              |                                              |       |                         |        |                                                  |            |                                         |            |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S            | Surfoce                                | <u> </u>                                 |
| 6     |                    |                                          |                                         |    |                                                                                                   |                     |                                                                           |        |                                        | ·            |                                                                                             |             |             | ١ ١          |                                              |       |                         |        |                                                  |            | -viengoja platika vietni vietni tra v   |            |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m            |                                        | U                                        |
| 7     |                    |                                          |                                         |    | ***************************************                                                           |                     |                                                                           |        | ************************************** |              | )                                                                                           |             | ING C       |              | )                                            |       |                         |        | ) - No A spiritual record and a spiritual record |            |                                         |            |                                    |                  | * , •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Æ            | Flow                                   | 000                                      |
| 08    | 29.3               |                                          | (18.1)                                  |    | 18,7                                                                                              |                     | (8'11)                                                                    |        | 8,11                                   |              | 3.1                                                                                         |             |             |              | 73.7                                         | ,     | 74.0                    |        | 70.9                                             |            | [kg]                                    |            | ==                                 |                  | 6,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>3</u> .   | Som                                    | C S                                      |
| 9     | =                  |                                          | # tu                                    |    | _                                                                                                 |                     | 2                                                                         |        |                                        |              | ) =                                                                                         | 2           | R<br>V<br>U |              | =                                            |       |                         |        |                                                  |            | general<br>na kora                      |            |                                    |                  | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            | o<br>P                                 | Par 196                                  |
| ō     |                    |                                          |                                         |    |                                                                                                   |                     | ***************************************                                   | ,      |                                        |              | )<br>}                                                                                      |             | CIONIN      | 3            |                                              |       |                         |        |                                                  |            | *************************************** |            |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RFR          | •                                      | -                                        |
| =     |                    |                                          | <b>7</b> 11.                            |    | =                                                                                                 |                     | 7)                                                                        |        |                                        |              | =                                                                                           |             | τ           | 1            | =                                            | _     | =                       |        | =                                                |            |                                         |            |                                    |                  | 0.6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | N Si                                   |                                          |
| 12    | Ŋ                  |                                          | 11                                      |    |                                                                                                   |                     |                                                                           |        | <i>-</i>                               |              | =                                                                                           |             | ı           | )<br>P<br>Z  |                                              | _     | =                       |        |                                                  |            | £.                                      |            |                                    |                  | =<br>~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RFR          | 1                                      | Frequency                                |
| 13 14 | 1 2,62             |                                          | 243                                     |    | 2.94                                                                                              |                     | 3.07                                                                      |        | 3.40                                   |              | 3,40                                                                                        |             |             |              | 2.43                                         | -     |                         | -      | 72                                               |            | 2,                                      |            | 4 2.1                              |                  | 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | F. BPRR                                |                                          |
|       | Ò                  |                                          | 1                                       | == | 0                                                                                                 | -                   | 1                                                                         |        | 0.0                                    |              | 1                                                                                           |             | 5           |              |                                              | -     | 2.44.0                  | -      | 7 , 6                                            | -13-40     | 62.0                                    |            | 1                                  | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1            | T. T. House, September 1               | 00                                       |
| 5     | 76                 |                                          |                                         |    | 19/1                                                                                              |                     |                                                                           |        | 20                                     |              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                       |             |             | <u> </u>     |                                              |       | 0030                    | _      | 037                                              |            | 0176                                    |            |                                    |                  | 0176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>     | Slope                                  | 1 601                                    |
| 6     |                    |                                          |                                         |    | 7 6                                                                                               |                     |                                                                           |        | 63                                     |              |                                                                                             |             |             | 2            |                                              |       | (825)                   |        | 1166                                             |            | (825)                                   |            |                                    |                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 12/5/2                                 |                                          |
| 17    | 12 D 35            |                                          |                                         |    | S. O.                                                                                             |                     |                                                                           |        | 04                                     |              |                                                                                             |             | 7 ( )       | Ø0 > 1       |                                              |       | = '                     |        | 記<br>(2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4  |            | Erst<br>36                              |            |                                    |                  | あ 法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Size                                   | DKIE                                     |
| 18    | ,                  |                                          |                                         |    | 1,90                                                                                              | 014                 |                                                                           |        | 1.25                                   |              |                                                                                             |             | '           | <del>)</del> |                                              |       | 830                     |        | 8.30                                             |            | (8.30)<br>4.98                          |            |                                    |                  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (F. 72)      | Area                                   | EXICA                                    |
| 61    |                    |                                          |                                         |    | 9.1                                                                                               |                     |                                                                           |        | 9,4                                    |              |                                                                                             |             |             |              |                                              |       | 6.2                     |        | β<br>'υ'                                         |            | 14,0                                    |            |                                    |                  | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (ft/sec)     | <u>*</u>                               | LTRANS                                   |
| 20    |                    |                                          |                                         |    | 29                                                                                                |                     |                                                                           |        | 725                                    |              | ] [                                                                                         |             |             |              | 1                                            |       | 72                      |        | 823                                              |            | 326                                     |            | }                                  |                  | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | ngth<br>(fl.)                          | DRAIN                                    |
| 2     | 9/1                | -                                        | 10,81                                   | 0. | <u> </u>                                                                                          |                     | 6.3                                                                       | -<br>- | 50                                     | 2000         | 5,0                                                                                         |             | -           | <u></u>      | (O)                                          | 0     |                         | 7.1    | 9.11                                             | 0,4        |                                         |            | <u>0</u> 0                         | 2.3              | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X.E          | <b>፞</b> ጿ.፳                           | ZCA                                      |
| 22    | ) इनेवर २०         |                                          | 134फ, क                                 |    | 13431.00                                                                                          |                     | 13+02.00                                                                  |        |                                        |              |                                                                                             |             |             |              | 0 410,00                                     |       | 0482,00                 |        | 7+10.00                                          |            | 10435/99                                |            | 10:35,99                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Station      | Storm<br>Drain                         | DRIE EXICALTRANS DRAIN IN CALABASAS XOAD |
|       | w.                 |                                          | <del></del>                             | -  | Sa                                                                                                | MDLHOLLAND          | 3911                                                                      | =      | Split                                  | Mulh         | 日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日 | 35.25       |             |              | <del>게</del>                                 | =     | . 1                     | =      |                                                  | AVE :      | Area                                    | MULH       | i                                  | PVT,             | Sector It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                        | 10 XO:                                   |
| 23    | t:                 |                                          | Traction will                           |    | 3. A                                                                                              | 1                   | R.C.P.                                                                    | 4      | Speilloug Pr.                          | Mulhollond 1 | OFF RAMPEELB On Rama                                                                        | ASAS K      |             |              | Dry Conver                                   | 1     | la Hal                  | -      | 10                                               | 7.18       | lateral from<br>7-A                     | MULHOLLAND | At 39"RSIP                         | PVT, STORM DRAIN | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRIVE WAY    | Location                               |                                          |
|       |                    |                                          | 2 0::                                   |    |                                                                                                   | DK                  |                                                                           |        | <b>}</b>                               | ÷            | DE END                                                                                      | 185         |             |              | 10h                                          |       |                         | =      | 7.                                               | SIU        | Som.                                    | Da.        | 次<br>Sus                           | Z                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ጸ                                      | Polic: 4-                                |
|       | F02-9, 1           | *                                        | 74 3.02<br>74 3.02                      |    | tc=6.0(700)。<br>tc=10.7                                                                           | 54.5,-              | (Seo L                                                                    |        | Area Area Area Area Area               |              | Sn                                                                                          |             | 1           |              |                                              |       | ישיפותו                 |        | tue h                                            |            | 900 LI                                  |            |                                    |                  | Per fig. 6742.272<br>tc=5.6 (255)72<br>tc=6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L=935'       | 20                                     | 0-00                                     |
| 24    | 11.8718            | 71-31-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 1/2 of 6-4                              | ŀ  | (700) (                                                                                           | 5+.5,=,0098. [=2222 | C. 46                                                                     |        | 5-A. SPIT<br>D. Ac=1.34,               |              | ic ú                                                                                        | 1           | UIII,       |              |                                              |       | 1 From                  | •      | Ventura From                                     |            | 11ac 2                                  |            |                                    |                  | TOWN TO THE PARTY OF THE PARTY | 5' St.S=0129 | Remarks                                | Rev. 10-20-00                            |
|       | اند                | (a.3)(n.8)                               | Live<br>Live                            |    |                                                                                                   | 2222, 21            | 8                                                                         |        | 34, I8                                 | 117          | )<br>                                                                                       | <i>}</i> 15 | <u>~</u>    | M            |                                              |       | 17                      |        | 150                                              |            | e                                       |            |                                    |                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0/29         | и                                      | 20-00                                    |

## Appendix J

**Summary of Hydrological Sub-Areas and Acreages** 

Conversion Table
Post-Development - Line "B"
and Tabling Sheets

#### APPENDIX K

Line "A"
Existing 36" R.C.P. Under
Mulholland Drive at
Speilberg Drive Pre-Development
and
"W.S.P.G.W." Hydraulic Printouts

| Tl | EXISTING 36" R.C.P. UNDE | R MILHOLLAND DETTE          |                |
|----|--------------------------|-----------------------------|----------------|
| T2 | AT SPEILBERG DRIVE-PRE-D | EVELOPMENT                  | 0              |
| T3 | LINE "A" -W.O. 2778      | D V D D O I PI D IV I       |                |
| SO | 742.000 921.250 1        |                             |                |
| R  | 1028.000 929.390 1       | 926.100                     |                |
| JX | 1032.000 929.420 1 2     | 012                         | .000 .000 0    |
| R  | 1072.000 929.500 1       | .013 7.100 930.140<br>.013  | -90.0 .000     |
| JX | 1074.000 929.600 1 2     | 010 26 600                  | .000 -90.000 1 |
| R  | 1222.000 930.750 1       | .013 16.600 931.200<br>.013 | 74.3 .000      |
| SH | 1222.000 930.750 1       |                             | .000 .000 0    |
| CD | 1 4 1 .000 3.000         | 930.750                     |                |
| CD | 2 4 1 .000 1.500         | .000 .000                   |                |
| CD | 2.500                    | .000 .000 .000              |                |
| Q  | 56.600 .0                | .000 .000 .000              |                |

**V** 

9 s

FILE: 2778EX.WSW

W S P G W - CIVILDESIGN Version 12.4
For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING 36" R.C.P. UNDER MULHOLLAND DRIVE
AT SPEILBERG DRIVE-PRE-DEVELOPMENT

Date: 4-19-2000 Time: 2:16:47

| ****             | ****           | *****           | LINE "A" -W.O                           | -W.O. 277                               | 78                 |                    |                               |                        |          |                                        |                                         |         |             |                         |
|------------------|----------------|-----------------|-----------------------------------------|-----------------------------------------|--------------------|--------------------|-------------------------------|------------------------|----------|----------------------------------------|-----------------------------------------|---------|-------------|-------------------------|
| Station          | Invert<br>Elev | Depth<br>  (FT) | Water<br>Elev                           | Q<br>(CFS)                              | Vel<br>(FPS)       | vel<br>Vel<br>Head | ********<br>Energy<br>Grd.El. | super<br>Elev          | critical | ************************************** | ********<br> Height/<br> Dia -FT        | Base Wt | * * *       | *******<br>No Wth       |
| L/Elem<br>****** | Ch Slope       | * * * * * *     | * * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * * | ! *<br>*<br>*<br>* | SF Ave             | HF ****                       | -<br>SE Dpth<br>****** | Froude N | <u> </u>                               | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | д.      |             | Frs/Pip<br>Type Ch      |
| 742.000          | 921.250        | 4.850           | 0 926.100                               | 80.30                                   | 11.36              | 2.00               | 928.10                        | 00.                    | 2.77     | 00.                                    | 3.000                                   | ****    | * 00<br>* . | * C<br>*<br>*<br>*<br>* |
| 62.242           | .0285          | _               |                                         |                                         | 1                  | .0145              | 06.                           | 4.85                   | - 00.    | - 1.87                                 |                                         |         | 200.        |                         |
| 804.242          | 923.022        | 3.981           | 927.002                                 | 80.30                                   | 11.36              | 2.00               | 929.01                        | - 00.                  | 2.77     | 00.                                    | 3.000                                   | 000.    | 00.         | 1 .0                    |
| HYDRAULIC JUMP   | JUMP           | -               |                                         |                                         | <u>-</u>           | 1                  | 1                             | 1                      | 1        | 1                                      | 1                                       | · ·     |             |                         |
| 804.242          | 923.022        | 1.919           | 924.941                                 | 80.30                                   | 16.81              | 4.39               | 929.33                        | - 00                   | 2.77     | , c                                    | - 000                                   | _ 0     |             | ,                       |
| 69.870           | .0285          | -               |                                         | 1                                       | 1                  |                    | 1.80                          | - 1 92                 | 1-020    |                                        | 000.5                                   | 000.    | 00.         | 0                       |
| 874.112          | 925.010        | 1.958           | 926.969                                 | 80.30                                   | 16.43              | 4.19               | 931.16                        | 00.                    | 2.77     | •                                      | . 013                                   | 00.     | 00.         | PIPE                    |
| 61.544           | .0285          |                 | -                                       |                                         | <del>-</del>       |                    | 1.46                          | 1.96                   | 1-1      | - 187                                  | - 210                                   |         | 00.         | ٠ .                     |
| 935.656          | 926.762        | 2.043           | 928.805                                 | 80.30                                   | 15.66              | 3.81               | 932.61                        | 00.                    | 2.77     | - CB. C                                | - 000                                   | 00.     | 00.         | PIPE.                   |
| 34.520           | .0285          | -               | 1                                       |                                         | · ·                | -   -   -          | - 6                           | 1                      |          | -                                      | 000.5                                   | - -     | 00.         | 1 .0                    |
| 970.176          | 927.744        | 2.133           | 929.878                                 | 90.30                                   | 14 94              | 1120.              | •                             | 2.04                   | 2.04     | 1.87                                   | .013                                    | 00.     | 00.         | PIPE                    |
| 22.451           |                | 1               | <del>-</del>                            | -                                       | •                  | -   -   -          | 933.34                        | 00.                    | 2.77     | 2.72                                   | 3.000                                   | 000.    | 00.         | 1.0                     |
| 992.628          | 182 826        | 1,500           |                                         | -                                       |                    | .0188              | . 42                          | 2.13                   | 1.87     | 1.87                                   | .013                                    | 00.     | - 00.       | PIPE                    |
| 15 412           |                | .   -           | 930.615                                 | 80.30                                   | 14.24              | 3.15               | 933.76                        | 00.                    | 2.77     | 2.62                                   | 3.000                                   | 000.    | 00.         | 1 .0                    |
|                  | - 0283         |                 |                                         |                                         |                    | .0169              | .26                           | 2.23                   | 1.71     | 1.87                                   | .013                                    | - 00.   | 00.         | -<br>PIPE               |
| 1008.040         | 928.822        | 2.339           | 931.161                                 | 80.30                                   | 13.58              | 2.86               | 934.02                        | - 00.                  | 2.77     | 2.49                                   | 3.000                                   | 000.    | - 00.       | 1 .0                    |
| 10.573           | .0285          |                 |                                         | -                                       | -                  | .0152              | .16                           | 2.34                   | 1.55     | 1.87                                   | -                                       | - 00.   | - <br>- 00. | -<br>PIPE               |
| 1018.613         | 929.123        | 2.460           | 931.583                                 | 80.30                                   | 12.95              | 2.60               | 934.18                        | 00.                    | 2.77     | 2.31                                   | 3.000                                   | 000.    | -<br>00·    | 1.0                     |
| 6.704            | .0285          |                 | -                                       | -                                       | _                  | .0139              | 60.                           | 2.46                   | 1.39     | 1.87                                   | .013                                    | -   -   | - <br>-00.  | PIPE                    |

FILE: 2778EX.WSW
For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING 36" R.C.P. UNDER MULHOLLAND DRIVE
AT SPEILBERG DRIVE-PRE-DEVELOPMENT
LINE "A" -W.O. 2778

2

PAGE

Date: 4-19-2000 Time: 2:16:47

| ********                               | Prs/Pip<br>Type Ch                      | * * * * * * | 1 .0  | PIPE     | 1 . 0   |           | P1 PE    | 1 .0    | -<br>PIPE |         |            | т<br>т<br>п | 1.0            | - I PE                                  | 1.0         |              |
|----------------------------------------|-----------------------------------------|-------------|-------|----------|---------|-----------|----------|---------|-----------|---------|------------|-------------|----------------|-----------------------------------------|-------------|--------------|
| * * * *                                | ZL<br><br>ZR -                          | * * * * *   | 00    | 00.      | - 00    |           | - 00.    | 00.     | 00.       | - 00    |            | ~ —<br>00.  | 00.            | 00.                                     | - 00.       | _            |
| * * * *<br>  Bas                       | or 1.D.<br>-<br>X-Fall                  | * (         | 000.  | 00.      | 000.    | - 00      |          | 000.    | 00.       | 000.    | -   - 00   |             | 000.           | - 00.                                   | 000.        | 1            |
| *******<br> Height/                    |                                         | * 0         | 000.5 | .013     | 3.000   |           |          | 3.000   | .013      | 3.000   |            |             | 3.000          | .013                                    | 3.000       | ·            |
| ************************************** | N Norm Dp                               | * 20        | 1     | 1.87     | 1.59    | ı         | 6        | 00      | 3.00      | 00.     | 1          |             | 00             | 2.36                                    | 00.         | 1            |
| *********<br> Critical<br>  Denth      | Froude                                  | 2.77        | 1     | 1.22     | 2.77    | 1.00      | 0,2,0    | - 07.3  | 00.       | 2.70    | - 00.      | - 64        |                | 00.                                     | 2.44        | 1            |
| *******<br>  Super<br>  Elev           | SE Dpth                                 | 00.         |       | 2.60     | 00.     | 2.77      | - 00     |         | 3.63      | 00.     | 4.61       | - 00        | -              | 5.68                                    | 00.         | <del>-</del> |
| Energy<br>Grd.El.                      | ######################################  | 934.28      | ı     | .03      | 934.31  | . 05      | 934.71   | 1       | .48       | 935.77  | .02        | 936.28      |                | 1.07                                    | 937.34      |              |
| Vel<br>Head                            | SF Ave                                  | 2.37        | - 0   | .0129    | 2.15    | .0123     | 1.67     | 1       | .0120     | 1.67    | 9600.      | 1.00        | <del>-</del>   | .0072                                   | 1.00        | -            |
| Vel<br>(FPS)                           | * * * * * * * * * * * * * * * * * * * * | 12.34       | ,     |          | 11.77   | -         | 10.36    | · ·     |           | 10.36   | _          | 8.01        | <del>'</del> , |                                         | 8.01        | -            |
| Q<br>(CFS)                             | ****                                    | 80.30       | 1     |          | 80.30   |           | 73.20    | 1       |           | 73.20   |            | 56.60       | •              | **                                      | 56.60       | -            |
| Water<br>Elev                          | ****                                    | 931.912     | 1     |          | 932.163 | _         | 933.047  | ,       |           | 934.107 |            | 935.280     | 1              | *************************************** | 936.346     | •            |
| Depth<br>(FT)                          |                                         | 2.599       | -     |          | 2.773   | _         | 3.627    | 1       |           | 4.607   | - <u>-</u> | 5.680       | 1              |                                         | 5.596 -   - |              |
| Invert<br>Elev                         | L/Elem Ch Slope                         | 929.314     | .0285 |          | 96      | .0075     | 929.420  | . 00050 | - 0       | - -     | .0500      | 929.600     | -   -          |                                         | 930.750     |              |
| Station                                | L/Elem                                  | 1025.317    | 2.683 | 000 9001 |         | JUNCT STR | 1032.000 | 40.000  | 1000 5501 |         | JUNCT STR  | 1074.000    | 148.000        | - 000                                   | -   -       |              |

#### APPENDIX L

Line "A"
Existing 36" R.C.P. Under
Mulholland Drive at
Speilberg Drive Post-Development
and
"W.S.P.G.W." Hydraulic Printouts

| T1<br>T2<br>T3 | EXISTING 36" R.C.P UNDER SPEILBERG DRIVE- REMODEL 90 DEG. ANGLE POINT-POST | HIDSTDEAM END TO TELE                  | IINATE  |        | 0      |
|----------------|----------------------------------------------------------------------------|----------------------------------------|---------|--------|--------|
| SO             | 742.000 921.250 1                                                          | ====================================== | 926.100 |        |        |
| R              | 1028.000 929.390 1                                                         | .013                                   | 220.100 |        |        |
| JX             | 1032.000 929.420 1 2                                                       | .013 5.900                             |         | .000   | .000 0 |
| R              | 1057.000 929.620 1                                                         | .013                                   | 930.140 | 90.0   | .000   |
| JX             | 1059.000 929.640 1 2                                                       | .013 10.900                            |         | 31.831 | .000 1 |
| R              | 1103.000 929.830 1                                                         | .013                                   | 931.500 | 30.0   | 2.546  |
| R              | 1209.000 930.750 1                                                         | .013                                   |         | 56.023 | .000 0 |
| SH             | 1209.000 930.750 1                                                         | .013                                   |         | .000   | .000 0 |
| CD             | 1 4 1 .000 3.000                                                           | 000                                    | 930.750 |        |        |
| CD             | 2 4 1 .000 1.500                                                           | .000.000                               | 0 .00   |        |        |
| CD             | 7 4 7                                                                      | .000 .000                              | 0 .00   |        |        |
| Q              | 000 1.500                                                                  | .000 .000 .000                         | 0 .00   |        |        |
|                | 63.500 .0                                                                  |                                        |         |        |        |

PIPE

0.

000 00.

3.000

2.49 1.87

2.77

00.

934.02

2.86

80.30

931.161

2.339

928.822

1008.040

.0285

2.34

. 16

2.60 0152

12.95

80.30

931.583

2.460

929.123

1018.613 10.573

.0285

6.704

.013

1.71

2.23

PIPE

00. 00.

> 00. 000

PIPE

00

0

00. 00.

3.000

.013

1.87

1.39

.09

0139

| -     |
|-------|
| MSM   |
|       |
| 78EXA |
| 778   |
| 27    |
| Ξ.    |
|       |
| E     |

WATER SURFACE PROFILE LISTING SPEILBERG DRIVE- REMODEL UPSTREAM END TO ELIMINATE EXISTING 36" R.C.P UNDER MULHOLLAND DRIVE AT

Time: 2:21:11

Date: 4-19-2000

PAGE

Prs/Pip 0. 0. No wth 0. 0. PIPE PIPE PIPE PIPE 00. 00. 00. 00. 00. 00. 00. ZL00. 00. 00 00. 00. Super |Critical|Flow Top|Height/|Base Wt| 00. 000. or I.D. X-Fall 000 ı 00. 000. 000 00. 00. 000 1 00. 000 Dia.-FT 3.000 3.000 3.000 3.000 3.000 .013 .013 .013 SE Dpth|Froude N|Norm Dp Width 00. 00. 2.88 1.87 1.87 2.86 2.80 1.87 1.87 2.72 1.87 2.62 00. Depth 2.30 2.21 2.77 2.77 2.77 2.04 1.87 2.77 2.77 2.77 4.85 Elev 1.92 00. 1.962.04 00. 00. 2.13 00. 00. 00. 00. 90 DEG. ANGLE POINT-POST DEVELOPMENT. W.O.2778 Energy | Grd.El. .90 1.80 929.01 929.33 931.16 1.46. 73 932.61 933.76 ΗF 2.00 Head SF Ave 4.39 2.00 0145 .0258 4.19 3.46 3.81 0188 3.15 0169 Vel 0211 11.36 15.66 16.81 16.43 (FPS) Vel 14.94 14.24 80.30 80.30 80.30 80.30 80.30 80.30 80.30 (CFS) \*\*\*\*\*\* 926.100 927.002 924.941 926.969 928.805 929.878 930.615 Elev \*\*\*\*\* 4.850 3.981 1.919 1.958 2.043 2.133 2.232 (FT)\*\*\*\*\*\* 921.250 923.022 923.022 Slope 925.010 .0285 926.762 927.744 .0285 928.383 Invert .0285 .0285 .0285 .0285 Elev JUMP \*\*\*\*\* 742.000 62.242 804.242 HIDRAULIC 804.242 Station 69.870 874.112 970.176 935.656 61.544 34.520 992.628 L/Elem 22.451 15.413

FILE: 2778EXA.WSW

- CIVILDESIGN Version 12.4 P G W ഗ

For: Pace Engineering, Inc., Chatsworth, California - S/N 747 WATER SURFACE PROFILE LISTING

| Date: 4-19-2000 Time: 2:21:11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |       |                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|---------------------------|
| SPETTERED DRIVE AT            | ON THE STATE OF TH | ************************************** | 0//2) | Depth Water   Depth Water |

| * * * * * * *                          | No Wth<br>Prs/Pip | Trans.            | *****                                   | 9.      | PIPE     | 0.         | -<br>PIPE | 0.            | -<br>0 1 0 0 | C.        | Ĺi.         | o.      |                 | 9.      | ក           | 0.           |   |
|----------------------------------------|-------------------|-------------------|-----------------------------------------|---------|----------|------------|-----------|---------------|--------------|-----------|-------------|---------|-----------------|---------|-------------|--------------|---|
| * :                                    |                   | <del>É</del>      | -                                       |         |          |            |           | -             | _            | _         | -  <br>PIPE | -       | -<br>PIPE       |         | -<br>  PIPE |              | _ |
| * * *                                  | 2L                | 1 23              | *                                       | 00.     | . 00     | 00.        | .00       | 00.           |              | 00.       | 00.         | .00     | 00.             | 00.     | 00.         | 00.          |   |
| * * * * * * * * * * * * * * * * * * *  | or I.             | <br>  X-Fall      | * * * * * *                             | 000.    | 00.      | 000.       | 00.       | 000.          | .   - 00.    | 000.      | -1          | 000.    |                 | 000.    | - 00.       | 000.         | _ |
| ********                               | DiaFT             | - "N"             | * * * * * *                             | 3.000   | .013     | 3.000      | .013      | 3.000         | .013         | 3.000     | .013        | 3.000   | - -<br>.013     | 3.000   | .013        | 3.000        | - |
| ************************************** | Width             | Norm Dp           | ***                                     | 2.04    | 1.87     | 1.59       |           | 00.           | 3.00         | - 00.     |             | - 00.   | 3.00            | 00.     | 2.52        | 00.          | - |
| ********<br> Critical                  | Depth             | Froude            | * * * * * * * * * * * * * * * * * * * * | 2.77    | 1.22     | 2.77       | 1.00      | 2.71          | 00.          | 2.71      | 00.         | 2.56    |                 | 2.56    | 00.         | 2.56         |   |
| Super                                  | Elev<br>-         | SE Dpth           | K<br>K<br>K                             | 00.     | 2.60     | .00        | 2.92      | 00.           | 00.          | 00.       | 00.         | 00.     | 00.             | 00.     | 5.00        | 00.          |   |
| Energy                                 | Gra.El.           | HF ****           |                                         | 934.28  | .03      | 934.31     | . 05      | 934.66        | .31          | 935.26    | .02         | 935.49  | .40             | 936.09  | 96.         | 937.05       |   |
| Vel                                    | - near            | SF Ave            |                                         | 2.37    | .0129    | 2.15       | .0125     | 1.72          | .0124        | 1.72      | .0108       | 1.25    | .0091           | 1.25    | .0091       | 1.25         |   |
| Vel<br>(FPS)                           | ,                 | * * * * * *       |                                         | - 12.34 |          |            |           | 10.53         |              | 10.53     |             | 8.98    |                 | 8.98    |             | 8.98         |   |
| Q<br>(CFS)                             | ,                 | ****              | 0                                       | 05.00   | - 00     |            |           | 74.40         |              | 74.40     |             | 63.50   | - 0             | -   -   |             | 63.50        |   |
| Water<br>Elev                          | 1                 | * * * * * * *     | 931.912                                 |         | 932.163  |            | - 200     | -   -   -   - |              | 933.538   |             | 934.238 | 1 2 4 8 4 8 9 4 |         | - 100       |              |   |
| Depth<br>(FT)                          | 1                 | * * * * * *       | 2.599                                   | 1       | 2.773    | 1          | 3 516     |               | -            | 3.918     | - 00        | 966.1   | 5.004           |         | 7 045       | <del>-</del> |   |
| Elev                                   | ch Slope          | * * * * * * *     | 929.314                                 | .0285   | 929.390  | -          | 929.420   | 1- 0800.      | 1009 606     | -1- 0100  | 929.640     |         | 929.830         | -   -   | 930.750     | 1            |   |
| Station                                | L/Elem            | * * * * * * * * * | 1025.317                                | 2.683   | 1028.000 | JUNICT STR | 1032.000  | 25.000        | 1057.000     | JUNCT STR | 1059.000    | 44.000  | 1103.000        | 106.000 | 1209.000    | ( )          |   |

# APPENDIX M

Line "B"
Existing 39" R.C.P.
Caltrans Drain Pre-Development
and
"W.S.P.G.W." Hydraulic Printouts

| T1 | EXISTING CALT    | RANS DRAIN IN  | AVE SAN L  | מאג פווו         |                |          |
|----|------------------|----------------|------------|------------------|----------------|----------|
| T2 | MOLHOLLAND DR    | IVE S/O 101 FR | WY DED E   | Y C D DIAMO      |                | 0        |
| T3 | W.O. 2778-PRE    | -DEVLOPMENT CO | NDITIONS - | LINE "B"-2778PRE |                |          |
| SO | 40.000 906.000   | 1              |            |                  | . WSW          |          |
| R  | 82.220 906.150   | 1 .013         |            | 910.683          |                |          |
| JX | 82.220 906.160   | 1 2 .013       | 3.300      | 006 700          | .000           | .000 0   |
| R  | 325.000 907.000  | 1 .013         | 3.300      | 906.790          | 90.0           | .000     |
| R  | 412.880 907.270  | 1 .013         |            |                  | .000           | .000 1   |
| R  | 550.000 907.700  | 1 .013         |            |                  | .000           | .000 0   |
| R  | 710.000 909.000  | 1 .013         |            |                  | 15.465         | .000 0   |
| JX | 710.000 909.010  | 1 2 .013       | 1.300      |                  | -18.046        | .000 1   |
| R  | 748.880 909.680  | 1 .013         | 1.300      | 909.640          | 55.5           | .000     |
| R  | 933.880 912.940  | 1 .013         |            |                  | .000           | .000 0   |
| R  | 1022.500 914.500 | 1 .013         |            |                  | .000           | .000 0   |
| R  | 1035.990 914.750 | 1 .013         |            |                  | -56.417        | .000 0   |
| JХ | 1035.990 914.760 | 1 2 .013       | 40.300     |                  | .000           | .000 0   |
| R  | 1050.990 915.000 | 1 .013         | 40.300     | 915.380          | 65.0           | .000     |
| JX | 1050.990 915.010 | 1 2 .013       | .001       |                  | .000           | .000 1   |
| R  | 1137.870 915.760 | 1 .013         | .001       | . 915.730        | 70.0           | .000     |
| R  | 1184.990 916.180 | 1 .013         |            |                  | .000           | .000 0   |
| R  | 1201.730 916.330 | 1 .013         |            |                  | 29.998         | .000 0   |
| R  | 1248.850 916.740 | 1 .013         |            |                  | .000           | .000 0   |
| R  | 1266.910 916.900 | 1 .013         |            |                  | 29.998         | .000 0   |
| R  | 1335.410 919.920 | 1 .013         |            |                  | .000           | .000 1   |
| JX | 1335.410 919.930 | 1 2 2.013      | 9.350      | 0.050.050        | .000           | .000 0   |
| SH | 1335.410 919.930 | 1              | 3.350      | 9.350 920.560    | 920.560 47.0-6 | 5.0 .000 |
| CD | 1 4 1 .000       |                | 000 .000   | 919.930          |                |          |
| CD | 2 4 1 .000       |                |            | .000 .00         |                |          |
| CD | 3 4 1 .000       |                |            | .000 .00         |                |          |
| Q  |                  | .0             | 000 .000   | .000 .00         |                |          |
|    |                  | • •            |            |                  |                |          |

w---/

|       | 3 |  |  |
|-------|---|--|--|
| 10000 | 1 |  |  |
| נונו  | 7 |  |  |
|       |   |  |  |

FILE:

| PAGE 1                                                  | Time: 1:38:21                                                    |                                                 |
|---------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
|                                                         | Date:10-20-2000 Time: 1:38:21                                    |                                                 |
| For: Pace Engineering, Inc., Charsworth California, 200 | WATER SURFACE PROFILE LISTING CALTRANS DRAIN IN AVE SAN LUIS AND | MULHULLAND DRIVE S/O 101 FRWY. PER EX S D DIAME |
| BPRE.WSW                                                |                                                                  |                                                 |

Prs/Pip PIPE PIPE PIPE PIPE PIPE 00. 00. 00. 00. 00. Super |Critical|Flow Top|Height/|Base Wt| Dia.-FT or I.D. .000 000 000 00. 000. 00. 000 000 00. 000 00. 000 000 00. 3.250 3.250 3.250 .013 .013 3.250 .013 .013 .013 \*\*\*\*\*\* SE Dpth Froude N Norm Dp 00. Width 00. 00. 3.25 00. 3.25 HOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS W.O. 2778-PRE-DEVLOPMENT CONDITIONS-LINE "B"-2778PRE.WSW 00. 00. Depth 00. 00. 00. 2.48 2.48 2.48 2.48 2.48 2.45 4.68 4.96 00. 5.45 00. 00. 4.78 00. 00. 00. 00. 5.69 Energy Grd.El. .25 911.60 00. 1.29 .47 911.85 913.74 .73 .85 00. 913.27 911.94 914.54 915.54 .91 SF Ave Head .0059 .91 .82 0056 0053 .82 .82 0053 .0053 .82 . 79 0053 .82 0052 0051 7.27 - |-7.67 Vel (FPS) 7.27 7.27 7.11 7.27 7.27 \*\*\*\*\*\* 63.60 63.60 60.30 60.30 60.30 60.30 60.30 59.00 Q (CFS) 59.00 \*\*\*\*\* 910.683 911.118 910.933 912.454 912.923 913.722 914.690 914.759 914.957 4.958 4.783 5.454 5.653 5.690 6.022 5.749 5.277 (FT) 906.000 906.150 906.160 Ch Slope 907.000 907.270 .0036 .0035 .0031 907.700 909.000 909.010 909.680 .0031 .0081 .0000 .0172 Elev .0000 40.000 82.220 82.220 Station 42.220 JUNCT STR 325.000 242.780 412.880 87.880 137.120 550.000 L/Elem 710.000 160.000 JUNCT STR 710.000 38.880 748.880 158.608

FILE: 2778PRE.WSW

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

WATER SURFACE PROFILE LISTING

EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND

MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS

W.O. 2778-PRE-DEVLOPMENT CONDITIONS-LINE "B"-2778PRE.WSW

7

PAGE

Date:10-20-2000 Time: 1:38:21

| ******<br>No Wth               | Type Ch                                 | 0.      |                | c       |          | °.      | Ĕ                   | 0.      | ស្ន           | 0.      |                  | o.<br>1  |        | C.       |                   | c<br>1   | •                                             | 0.       | ω         |
|--------------------------------|-----------------------------------------|---------|----------------|---------|----------|---------|---------------------|---------|---------------|---------|------------------|----------|--------|----------|-------------------|----------|-----------------------------------------------|----------|-----------|
| * 0 K                          | <u> </u>                                |         |                | _       |          | -       | -<br>PIPE           |         | -<br>PIPE     | _ r     | -<br> <br>  PTPE |          |        |          | -<br> -<br>  PTDE | -        | PIPE                                          |          | -<br>PIPE |
| * .                            | ZR .                                    | 00.     | ,              | C       | 2        | 00.     | .00                 | 00.     | 00.           | 00.     | 00.              | 00.      | 00.    | 00       |                   | 00       | 00.                                           | 00.      | - 00.     |
| *******<br>Base Wt             | )   X *                                 |         | <del>-</del>   | 000     | - 0      | 000.    | - 00.               | 000.    | -<br> -<br> - | 000.    | 1-00.            | 000.     | - 00.  | 000.     | - 00              | 000.     | - 00.                                         | 000.     | - 00.     |
| *******<br> Height/<br> DiaFT  | * * * * * * * * * * * * * * * * * * *   | 3.250   | 1              | 3.250   |          | 3.250   | -<br> -<br> -<br> - | 3.250   |               | 3.250   |                  | 3.250    |        | 3.250    |                   | 3.250    |                                               | 3.250    | . 013     |
| Flow Top                       | Norm Dp                                 | 00.     | 1              | 3.24    | 1.70     | 3.23    | 1.70                | 3.22    | 1.70          | 3.19    |                  | 3.16     | - 1.70 | 3.12     | 1.67              | 3.08     | 1.67                                          | 3.01     | 1.67      |
| Critical Depth                 | Froude N                                | 2.45    | 1              | 2.45    | 1.89     | 2.45    | 1.84                | 2.45    | 1.73          | 2.45    | 1.60             | 2.45     | 1.49   | 2.45     | 1.37              | 2.45     | 1.30                                          | 2.45     | 1.20      |
| *******<br>  Super  <br>  Elev | SE Dpth                                 | 00.     | <u> </u>       | - 00.   |          | .18     | 1.97                | .16     | 2.01          | . 15    | 2.07             | .13      | 2.14   | 00.      | - -               | _<br>00· | 2.15                                          | 00.      | 2.24      |
| *******<br>Energy<br>Grd.El.   | -<br>HF<br>******                       | 916.55  | 1              | 916.79  | .40      | 917.19  | - 49                | 917.67  | .33           | 918.00  | .18              | 918.18   | - 11.  | 918.29   | - 04              | 918.34   | - 40.                                         | 918.38   | . 02      |
| vel  <br>Head                  | SF Ave                                  | 97.     | <del>-</del>   | 2.54    | .0151    | 2.45    | .0140               | 2.27    | .0125         | 2.06    | - -<br>  1110.   | 1.87     | - -    | 1.70     | -1-               | 1.60     | - -<br>.0081                                  | 1.45     | .0072     |
| vel<br>Vel<br>(FPS)            | · * * * * * * * * * * * * * * * * * * * | 7.11    |                | 12.80   | 1        | 12.56   | -                   | 12.09   | _             | 11.52   | 1                | 10.99    | 1      | 10.48    | <u>.</u>          | 10.14    | <u>,                                     </u> | 9.67     | <u>.</u>  |
| Q<br>(CFS)                     | ****                                    | 59.00   |                | 59.00   |          | 59.00   |                     | 59.00   |               | 59.00   | -                | 59.00    | 1      | 59.00    | <del>-</del> -    | 59.00    | <u> </u>                                      | 59.00    |           |
| Water                          | * * * * * * * * * * * * * * * * * * * * | 915.766 |                | 914.243 | <u> </u> | 914.734 |                     | 915.404 | -             | 915.936 | _                | 916.308  |        | 916.588  |                   | 916.737  | <u> </u> _                                    | 916.922  | _         |
| Depth<br>(FT)                  | * * * * * * * * * * * * * * * * * * *   | 3.291   |                | 1.768   | -        | 1.794   | -                   | 1.852   | -             | 1.926   |                  | 2.005    |        | 2.088    | _                 | 2.147    |                                               | 2.241    | -         |
| Invert                         | Ch Slope                                | 912.475 | JUMP           | 912.475 | .0176    | 912.940 | .0176               | 913.553 | .0176         | 914.010 | .0176            | 914.304  | .0176  | 914.500  | .0185             | 914.590  | .0185                                         | 914.682  | .0185     |
| Station                        | L/Elem<br>*******                       | 907.488 | HYDRAULIC JUMP | 907.488 | 26.392   | 933.880 | 34.822              | 968.702 | 25.969        | 994.672 | 16.671           | 1011.343 | 11.157 | 1022.500 | 4.844             | 1027.344 | 4.969                                         | 1032.313 | 2.780     |

| - CIVILDESIGN Vers | atsworth, Ca      |
|--------------------|-------------------|
| ∑<br>U             | Inc., Ch          |
| A S M              | Pace Engineering, |
|                    | For: 1            |

FILE: 2778PRE.WSW

Date:10-20-2000 Time: 1:38:21

| -<br>K                    | Depth    | ************************************** | **********      | ******<br>Vp] | ****** | ****              | *                  | ****              | ****              |                   | ****               | * * * *      | ****              |
|---------------------------|----------|----------------------------------------|-----------------|---------------|--------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------|-------------------|
| 1                         | <u> </u> | Elev                                   | (CFS)           | (FPS)         | Head - | Energy<br>Grd.El. | Super              | Critical<br>Depth | Flow Top<br>Width | Height/<br>DiaFT  | Base Wt<br>or I.D. | 7Z           | No Wth<br>Prs/Pip |
| ***                       | *        | * * * * * * *                          | * * * * * * * * | * * * * *     | SF Ave | HF<br>******      | SE Dpth            | Froude N          | Norm Dp           | 1 * * X = *       | X-Fall<br>*****    | ZR *         | Type Ch           |
| 914.733 2.341 91          |          | 917.075                                | 59.00           | 9.22          | 1.32   | 918.40            | 00.                | 2.45              | 2.92              | 3.250             | 000.               | 00.          | 1.0               |
| _                         |          | -                                      |                 | _             | .0064  | .00.              | 2.34               | 1.10              | 1.67              | .013              | - 00.              | _<br>        | PIPE              |
| 914.750 2.451 91          |          | 917.201                                | 59.00           | 8.79          | 1.20   | 918.40            | 00.                | 2.45              | 2.80              | 3.250             | 000.               | 00.          | 1.0               |
| _                         |          | -                                      |                 | _             | .0033  | 00.               | 2.45               | 1.00              |                   | .013              | 00.                | - 00.        | PIPE              |
| 914.760 3.562 918.        | 918      | 3.322                                  | 18.70           | 2.25          | 80.    | 918.40            | 00.                | 1.35              | 00.               | 3.250             | 000.               | - 00.        | ٥.                |
| _                         |          |                                        |                 | •             | .0005  | .00.              | 3.56               | 00.               | . 93              | -<br>.013<br>.013 | 00.                | <br>00.      | -<br>PIPE<br>PIPE |
| 915.010 3.324 918<br>-  - | 918      | 918.334                                | 18.70           | 2.25          | 80.    | 918.41            | 00.                | 1.35              | - 00.             | 3.250             | 000.               | - 00.        | 0. 1              |
| _                         |          |                                        |                 | -             | .0005  | 00.               | 3.32               | - 00.             | 1.09              | .013              | 00.                | -<br>00:     | -<br>PIPE         |
| 915.088 3.250 918         | 918      | 918.338                                | 18.70           | 2.25          | 80.    | 918.42            | - 00.              | 1.35              | 00.               | 3.250             | 000.               | 00.          | 1 .0              |
| _                         |          |                                        |                 | -             | ,0000. | .02               | 3.25               | 00.               | 1.09              | .013              | . 00.              | - 00.        | -<br>PIPE         |
| 2.949 918                 | 918      | 918.347                                | 18.70           | 2.36          | - 60.  | 918.43            |                    | 1.35              | 1.89              | 3.250             | 000.               | _ 00.        | 1.0               |
|                           |          |                                        | ·               | -             | ,0000. | .01               | 2.95               | .20               | 1.09              | .013              |                    | 00.          | -<br>PIPE         |
| 2.774 918                 | 918      | 918.347                                | 18.70           | 2.48          | .10    | 918.44            |                    | 1.35              | 2.30              | 3.250             | 000.               | <b>-</b> 00. | 1.0               |
| _                         |          |                                        |                 | -             | .0005  | .01               | 2.77               | .24               | 1.09              | .013              |                    | 00.          | -<br>PIPE         |
| 2.629 918                 | 916      | 918.346<br>- -                         | 18.70           | 2.60          | 111.   | 918.45            | - <del>-</del> 00. | 1.35              | 2.55              | 3.250             | - 000.             | - 00.        | 1 .0              |
|                           |          |                                        |                 |               | . 0005 | 00.               | 2.63               | .27               | 1.09              | .013              |                    | . 00.        | -<br>PIPE         |

|             | v.     |
|-------------|--------|
| 4           |        |
| 12          | ן ת    |
| _           |        |
|             | Orr    |
| ersion      | įį     |
| Ve          | 37     |
| z           | ΰ      |
| IG          | 'n,    |
| S           | rt.    |
| LDES        | Ş      |
| Ε           | S      |
| CIV         | at     |
| ,           | บั     |
|             |        |
| S           | Ö.     |
| -           | Inc    |
| M<br>S<br>P |        |
| S           | ng     |
| 3           | ri     |
|             | ee     |
|             | in     |
|             | Engir  |
|             | Eng    |
|             |        |
|             | Pace   |
|             |        |
|             | For: I |
| ţ           | 14     |
|             |        |
|             |        |
|             |        |
|             |        |

FILE: 2778PRE.WSW

|                               | 3 SAN LUIS AND Date: 10-20-2000 Time: 1:38:21 | NY. PER EX. S.D. PLANS                        | ************************************** |
|-------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|
| WATER SURFACE PROFILE LISTING | EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND   | W.O. 2778-DBF-DEVI COMMENT CONSTRUCTION PLANS | ************************************** |

|                | ***            | *****             | **********        | *******      | ******       | *****       | 7474 + + + + + + + + + + + + + + + + + + | / / 7 O | BPKE.WSW                     |                        |                                       |                       |                  |                   |
|----------------|----------------|-------------------|-------------------|--------------|--------------|-------------|------------------------------------------|---------|------------------------------|------------------------|---------------------------------------|-----------------------|------------------|-------------------|
| Station        | Invert<br>Elev | Depth<br>(FT)     | Water<br>Elev     | Q<br>(CFS)   | Vel<br>(FPS) | Vel<br>Head | Energy Grd.El.                           | Super   | *******<br>Critical<br>Denth | *********<br> Flow Top | Heig                                  | * W                   | *                | ******<br> No Wth |
| L/Elem         | Ch Slope       | 1                 | 1                 | 1            | 1            | 1           |                                          | -       | י                            | Midth -                | D1aFT                                 | or I.D.               | $Z\Gamma$        | Prs/Pip           |
| * * * * * *    |                | ****              | * * * * * * * * * | ****         | ****         | SF Ave      | HF<br>*******                            | SE Dpth | Froude N                     | Norm Dp                | : N: *                                | X-Fall                | ZR               | Type Ch           |
| 1137.870       | 915.760        | 2.585             | 918.345           | 18.70        | 2.64         | 11.         | 918.45                                   | 10      | ם כ ר                        | (                      |                                       | k<br>k<br>k<br>k<br>k | *<br>*<br>*      | * * * * * *       |
| 13.297         | 6800.          | 1                 | <u>.</u>          | 1            | <del>'</del> | - 000       | -                                        |         | - CC - T                     | -<br> -<br> -          | 3.250                                 | 000.                  | 00.              | 1.0               |
| 1151.167       | 915.879        | 2 464             | - 676             |              |              | 9000.       | .01                                      | 2.59    | .28                          | 1.08                   | .013                                  | 00.                   | 00.              | PIPE              |
| 11.886         |                |                   | - 718.342         | 18.70        | 2.77         | .12         | 918.46                                   | .01     | 1.35                         | 2.78                   | 3.250                                 | 000.                  | _<br>00·         | 1.0               |
| 1163 053       |                |                   |                   |              |              | 9000.       | .01                                      | 2.47    | .31                          | 1.08                   | .013                                  | ·  00.                | _<br>            | -<br>PIPE         |
|                | <u>-</u>       | 2.353             | 918.338           | 18.70        | 2.91         | .13         | 918.47                                   | .01     | 1.35                         | 2.91                   | 3.250                                 | 000.                  | - 00.            | 1.0               |
|                | 6800.          |                   | -                 |              | -            | ,0000.      | .01                                      | 2.36    | .34                          | 1.08                   | .013                                  |                       |                  | 1010              |
| 11/3.817       | 916.080        | 2.252             | 918.332           | 18.70        | 3.05         | .14         | 918.48                                   | . 01    | 1.35                         | 3.00                   | 3.250                                 | 000.                  | 000              |                   |
| 7.10.6         | 6800.          | _                 | -                 |              | -            | 8000.       | .01                                      | 2.26    | - 85                         | 80 L                   | · · · · · · · · · · · · · · · · · · · | <del>'</del> ;        |                  | •                 |
| 1183.634       | 916.168        | 2.158             | 918.326           | 18.70        | 3.20         | 16          | 918 48                                   |         |                              | -                      | - 013                                 | 00.                   | ~ <del>_</del>   | PIPE              |
| 1.356          | 6800.          | <del>-</del><br>1 | <del>;</del>      | <del>'</del> | -            | -           |                                          | - -     | 1.35                         | 3.07                   | 3.250                                 | 000                   | . 00.            | 1 .0              |
| 1184.990       | 916.180        | 7 145             |                   | 1            |              | 6000.       | 00.                                      | 2.17    | .41                          | 1.08                   | .013                                  | 00.                   | 00.              | -<br>PIPE         |
| 8.809          |                |                   | - -               | - -          | 3.22         | .16         | 918.49                                   | - 00.   | 1.35                         | 3.08                   | 3.250                                 | 000.                  | - 00.            | 1.0               |
| 1193.799       | 916.259        | - 630             | - 1               |              |              | 6000.       | .01                                      | 2.15    | .41                          | 1.08                   | .013                                  | 00.                   | - 00·            | -<br>PIPE         |
| 7.931          | - - 0600       |                   | - -               | 18.70        | 3.38         | .18         | 918.49                                   | - 00.   | 1.35                         | 3.13                   | 3.250                                 | 000.                  | - 00.            | 1.0               |
| 1201.730       | 025 319        | - 6               | _                 | -            |              | .0010       | . 01                                     | 2.06    | .45                          | 1.08                   | .013                                  | - 00.                 | - 00·            | -<br>PIPE         |
| 6.679          | - -            | -   -             | 918.308           | 18.70        | 3.54         | .19         | 918.50                                   | .01     | 1.35                         | 3.17                   | 3.250                                 | 000.                  | <del>-</del> 00: | 1.0               |
| 1200 4001      |                |                   |                   |              |              | .0012       | .01                                      | 1.99    | .48                          | 1.09                   | - -                                   | - 00.                 | 00·              | -<br>Ed T G       |
|                | - -            | 1.901             | 918.289           | 18.70        | 3.71         | .21         | 918.50                                   | . 02    | 1.35                         | 3.20                   | 3.250                                 | 1 000.                |                  |                   |
| HIDKAULIC JUMP | JUMP           | 1                 | -                 | =            | -            | 1           | -                                        | 1       | -                            | -                      | -                                     | -                     | ?                | · ·               |

FILE: 2778PRE.WSW

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

WATER SURFACE PROFILE LISTING

WATER SURFA

S

PAGE

Date:10-20-2000 Time: 1:38:21

|                                         | No wen<br>Prs/Pip | Type Ch         | * * * * * *                | 1 .0  | -<br>PIPE    | 1 .0      | -<br>PIPE    | 0.      | -<br>PIPE    | 0.     | -<br>PIPE    | 0.           | -<br>PIPE | 0.     | -<br>PIPE  | 0.     | -<br>PIPE | 0.           | <b>3</b> c             | 0.     | E<br>E      |
|-----------------------------------------|-------------------|-----------------|----------------------------|-------|--------------|-----------|--------------|---------|--------------|--------|--------------|--------------|-----------|--------|------------|--------|-----------|--------------|------------------------|--------|-------------|
| * * * *                                 | ZL F              | ZR T            | * * * *                    | . 00. | - <br>-  00. | <br>00:   | - 00.        | - °°    | - <br>[4 00. | - 00.  | - <br>[4 00. | - 00.        | - <br>.00 | .00    | - <br>.00  | .000   | - <br>.00 | .000         | -<br> -<br>  00   PIPE | .00    | -<br>0 PIPE |
| * * - +3                                |                   |                 | * * *                      | 000.  | - 00.        | - 000     | <u>-</u> 00: | . 000.  | - -<br>00:   |        | - -          | _            | - -       |        | <u>.</u> . |        | 1         |              | <u> </u>               |        | -   -       |
| * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 | or                | X-Fall          | *<br>*<br>*<br>*           |       | <u>.</u>     | °.        |              | 0.      |              | .000   | ,            | .000         | 0.        | .000   | 00.        | .000   | .00.      | 000.         | 00.                    | .000   | 00.         |
| *******                                 | DiaFT             |                 | *<br>*<br>*<br>*<br>*<br>* | 3.250 | .013         | 3.250     | .013         | 3.250   | .013         | 3.250  | .013         | 3.250        | <br>.013  | 3.250  | .013       | 3.250  | .013      | 3.250        | .013                   | 3.250  | .013        |
| Flow Top                                | Width .           | Norm Dp         | k<br>k<br>k                | 2.93  | 1.09         | 2.91      | 1.09         | 2.88    | 1- 60.1      | 2.85   | 1.09         | 2.82         | 1.09      | 2.82   | 1.09       | 2.79   | 1.09      | 2.75         | .72                    | 2.77   | .72         |
| ********Critical                        | Depth             | Froude N        |                            | 1.35  | 2.08         | 1.35      | 2.17         | 1.35    | 2.32         | 1.35   | 2.47         | 1.35         | 2.64      | 1.35   | 2.66       | 1.35   | 2.84      | 1.35         | 3.04                   | 1.35   | 2.92        |
| *******<br>  Super                      | Elev              | SE Dpth         |                            | 60.   | 1.02         | . 10      | 1.00         | .11.    | 86.          | .12    | 96.          | - 00.        | .82       | - 00.  | .81        | - 00.  | .79       | 00.          | .76                    | 00.    | .78         |
| Energy                                  | Grd.El.           | HF<br>*******   | 918 75                     | 7-    | .15          | 918.89    | .22          | 919.12  | .23          | 919.35 | . 24         | 919.59       | .03       | 919.61 | .26        | 919.87 | .27       | 920.14       | .41                    | 920.55 | . 43        |
| Ve1                                     | nead .            | SF Ave          | 1.44                       | -     | .0171        | 1.52      | .0191        | 1.68    | .0218        | 1.84   | .0250        | 2.03         | .0269     | 2.05   | .0290      | 2.25   | .0332     | 2.48         | .0341                  | 2.35   | .0307       |
| Vel<br>(FDC)                            |                   | ****            | 9.62                       | 1     |              | 9.90      |              | 10.39   |              | 10.89  |              | 11.43        |           | 11.49  |            | 12.05  |           | 12.64        |                        | 12.29  |             |
| Q<br>(CFS)                              | 1                 | *****           | 18.70                      | •     |              | 18.70     |              | 18.70   |              | 18.70  |              | 18.70<br>- - |           | 18.70  | _          | 18.70  |           | 18.70<br>- - | -                      | - -    |             |
| Water<br>Elev                           | 1                 | * * * * * * * * | 917.313                    | 1     |              | - 717.368 |              | 917.440 | - 6          | - -    |              | - -          |           | - -    |            | - -    | -         | - -          | - 200                  | - -    |             |
| Depth<br>(FT)                           | 1                 | * * * * * * *   | . 925                      | 1     | - 400        |           | - 1          | 6/8.    | - 846        |        |              | 970.         | 2         | - -    | 788        |        | 152       |              | 1                      | -      |             |
| Invert<br>Elev                          | ch Slope          | ****            | 916.388                    | .0087 | 916.463      | _         | 916 565      |         | 916.656      |        | 916 740      | -1-          | 916.749   |        | 916.827    |        | 916.900   | -   -        | 917.430                | -   -  |             |
| Station                                 |                   | * * * * * * *   | 1208.409                   | 8.611 | 1217.020     | 11.715    | 1228.735     | 10.522  | 1239.257     | 9.593  | 1248.850     | 1.019        | 1249.869  | 8.836  | 1258.705   | 8.205  | 1266.910  | 12.026       | 1278.936               | 13.920 |             |

e.,

For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS

9

PAGE

Date:10-20-2000 Time: 1:38:21

| 778                | Vel   Energy   Super   Critical   Flow Top   Height   Base Wt   Head   Grd.El.   Elev   Death   Wist. | HF OF DATE EVEN ALL MIGEN DIA - FT C | *****                                   | 11.72 2.13 920.98 .00 1.35 2.80 3.250 .000 .00 1 .0 | .0268 .26 .80 2.74 .72 .013 | 000.     | -  -  |          |          | 2.90 3.250 3.20 SIPE |              |          | -     -   - | .0157 .06 .92 2.10 .72 .013 .00 .00 PIPE | 9.24 1.32 921.65 .00 1.35 2.96 3.250 .000 .00 1 .0 | -  -         - |          | - -   | 0210.    | 8.40 1.09 921.72 .00 1.35 3.02 3.250 .000 .00 1 .0<br>-          - | .0105 .02 1.02 1.72 .72 -1 | 8.01 1.00 921.74 .00 1.35 3.04 3.250 .000 .00 1 .0 |       |
|--------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------|----------|-------|----------|----------|----------------------|--------------|----------|-------------|------------------------------------------|----------------------------------------------------|----------------|----------|-------|----------|--------------------------------------------------------------------|----------------------------|----------------------------------------------------|-------|
| 78PRE.WSW          | Critical Denth                                                                                        | - Peptil                             | *****                                   | 1.35                                                | <u>.</u> .                  | 1.35     | 2.56  | 1.35     | - 2.40   | 1.35                 |              | 7.75     | 1.35        | 2.10                                     | 1.35                                               | 1.97           | 1 35     | -     | 1.84     | 1.35                                                               | 1.72                       | 1.35                                               |       |
|                    | * ()<br>*                                                                                             | 1                                    | -                                       | 00.                                                 | . 80                        | 00.      | . 83  | 00.      | - 86     | -<br>00.             | - 0          | . —      | 00.         | . 92                                     | 00.                                                | .95            | - 00.    | -     | 66.      | 00.                                                                | 1.02                       | 00.                                                |       |
| TIONS-LIN          | Energy Grd.El.                                                                                        | · 日田                                 | *****                                   | 920.98                                              | .26                         | 921.24   | .17   | 921.41   |          | 921.52               | - 80         | 2        | 921.60      | 90.                                      | 921.65                                             | .04            | 921.69   | - 5   | . 03     | 921.72<br>- -                                                      | .02                        | 921.74                                             | (     |
|                    | Vel Head                                                                                              | -<br>SF Ave                          | ****                                    | 2.13                                                | .0268                       | 1.94     | .0235 | 1.76     | .0205    | 1.60                 | - -          | ,        | 1.46        | .0157                                    | 1.32                                               | .0138          | 1.20     | 00.50 | - 0750.  | 1.09                                                               | .0105                      | 1.00                                               | _     |
| DEVLOPME<br>****** | Vel<br>(FPS)                                                                                          | ī                                    | *                                       | 11.72                                               | -                           | 11.17    | _     | 10.65    | <u>.</u> | . 1                  | <del>-</del> | d        |             |                                          | 9.24                                               | -              | 8.81     | -     | 9        |                                                                    |                            | 8.01                                               | -     |
| 2778-PRE-          | Q<br>(CFS)                                                                                            | 1                                    | * * * * * * *                           | 18.70                                               |                             | 18.70    |       | 18.70    |          | 18.70                | 1            | _ 07 8L  |             | •                                        | 18.70                                              | -              | 18.70    | 1     | 07 81    |                                                                    |                            | 18.70                                              | -     |
| .O.W<br>********   | Water<br>Elev                                                                                         | 1                                    | * * * * * * * * * * * * * * * * * * * * | 918.847                                             |                             | 919.299  | -     | 919.644  |          | 919.918              | <u>-</u> -   | 920.142  | -           |                                          | 920.330                                            |                | 920.490  | 1     | 920.628  | -                                                                  |                            | 920.747                                            |       |
| *****              | Depth<br>(FT)                                                                                         | 1 1                                  | k<br>k<br>k<br>k                        | . 803<br>                                           | -                           | . 831    |       | 859.     |          | 889.                 |              | .920     | 1           |                                          | . 952                                              |                | . 985    |       | 1.020    | 1                                                                  | -                          | 1.056                                              |       |
| *                  | Invert<br>Elev                                                                                        | Ch Slope                             |                                         | 918.044                                             | .0441                       | 918.469  | .0441 | 4.       | .0441    | 919.029              | .0441        | 919.222  |             | - 6                                      | -   -                                              | T # # O .      | 919.505  | .0441 | 919.608  | -   -                                                              |                            | -   -                                              | .0441 |
| *****              | Station                                                                                               | L/Elem                               | 730 666                                 | 1- 0.26.24                                          |                             | 1302.491 | 951./ | 1309.647 | 5.542    | 1315.189             | 4.397        | 1319.586 | 3.537       | 1323 123                                 | 2.875                                              |                | 1325.999 | 2.339 | 1328.338 | - -<br>1.897                                                       | 1330 235                   |                                                    | 1.526 |

W S P G W - CIVILDESIGN Version 12.4
For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND
MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS

Date:10-20-2000 Time: 1:38:21

PAGE

| ****          | ******         | *****      | 1-8772 . O. W. |         | DEVLOPME                | ENT CONDI              | DITIONS-LINE                           | . PLANS<br>3 "B"-277     | BPRE.WSW            |            |                  |                                        |                  |                    |
|---------------|----------------|------------|----------------------------------------------------------------------------------------------------------------|---------|-------------------------|------------------------|----------------------------------------|--------------------------|---------------------|------------|------------------|----------------------------------------|------------------|--------------------|
| Station       | Invert<br>Elev | Depth (FT) | Water<br>Elev                                                                                                  | (CFS)   | v******<br>Vel<br>(FPS) | *******<br>Vel<br>Head | ************************************** | Super                    | *********Critical   | * [14      |                  | ************************************** | * * * *          | *******<br> No Wth |
| L/Elem        | Ch Slope       | 1          | 1                                                                                                              | 1       | -<br>-                  | ı                      |                                        | 2                        | nadan -             | width<br>- | DiaFT            | or I.D.                                | $Z\Gamma$        | Prs/Pip            |
| * * * * * * * |                | ****       | * * * * * * * * *                                                                                              | ****    | *****                   | SF Ave                 | HF<br>*******                          | SE Dpth                  | Froude N            |            |                  | X-Fall                                 | ZR               | Type Ch            |
| 1331.760      | 919.759        | 1.093      |                                                                                                                | 18.70   | 7.63                    | - 06.                  | 921.76                                 |                          | ı.                  |            | k<br>k<br>k<br>k | *<br>*<br>*<br>*<br>*<br>*             | * * * *          | * * * * * *        |
| 1.207         | .0441          | 1<br>t     | -                                                                                                              | •       | 1                       |                        | <br><br>                               |                          |                     | 3.07       | 3.250            | 000.                                   | 00.              | 1 .0               |
| 1332.967      | 919,812        |            |                                                                                                                |         |                         | .0081                  | .01                                    | 1.09                     | 1.51                | .72        | .013             | 00.                                    | 00.              | -<br>PIPE          |
| -<br>  - 832  |                |            | - 920.944                                                                                                      | 18.70   | 7.28                    | . 82                   | 921.77                                 | 00.                      | 1.35                | 3.10       | 3.250            | 000.                                   | 00.              | 1.0                |
| 1333.899      | - 619 919      |            |                                                                                                                |         |                         | .007                   | .01                                    | 1.13                     | 1.41                | .72        | .013             | 00.                                    | - 00.            | -<br>PIPE          |
|               |                | -          | 921.025                                                                                                        | 18.70   | 6.94                    | .75                    | 921.77                                 | 00.                      | 1.35                | 3.12       | 3.250            | 000.                                   | _<br>00·         | 1.0                |
|               |                |            |                                                                                                                | _       | -                       | ,0062                  | - 00.                                  | 1.17                     | 1.32                | - 27.      |                  | -<br>-<br>-                            | - 00             | -<br>91070         |
| 1334.585      | 919.884        | 1.214      | 921.098                                                                                                        | 18.70   | 6.62                    | - 89 .                 | 921.78                                 | 00.                      | 1.35                | 3.14       | 3.250            | _                                      | 2                |                    |
| .468          | .0441          |            | _                                                                                                              | 1       | <del>:</del>            | 00                     | <del>-</del>                           | <u>'</u>                 | -                   |            | -                |                                        |                  | 0.                 |
| 1335.053      | 919.904        | 1.258      | 621 169                                                                                                        |         |                         | _                      |                                        | 17:1                     | 1.23                | .72        | .013             | 00.                                    | 00.              | PIPE               |
| - 1-          |                |            | _                                                                                                              | - -     | 6.31                    | . 62                   | 921.78                                 | 00.                      | 1.35                | 3.17       | 3.250            | 000.                                   | - 00.            | 1.0                |
| 1335 322      | 7.00.00        | -          | _                                                                                                              |         |                         | .0048                  | 00.                                    | 1.26                     | 1.15                | .72        | .013             |                                        | - 00             | -<br>PIPE          |
| -1-           | - - -          | 1.303      | 921.219<br>-  -                                                                                                | 18.70   | 6.01                    | .56                    | 921.78                                 | - 00.                    | 1.35                | 3.19       | 3.250            | 000.                                   | <del>-</del> 00. | 1.0                |
| 017 3551      |                |            |                                                                                                                | _       | -                       | .0042                  | 00.                                    | 1.30                     | 1.07                | .]-        | - -              | - -                                    | - 00             | -<br>PIPE          |
| JUNCT STR     | -  -           | 1.352      | 921.272                                                                                                        | 18.70   | 5.73                    | .51                    | 921.78                                 |                          | 1.35                | 3.20       | 3.250            | 000.                                   |                  | 1 .0               |
|               |                |            |                                                                                                                | WARNING | 1                       | Junction Ana           | Analysis - La                          | 1.35 1.<br>Large Lateral | 1.00<br>ral Flow(s) | ·   - (s)  | .013             | - 00.                                  | - 00.            | -<br>PIPE          |
| 1335.410      | 919.930        | -   -      | 919.939                                                                                                        | - 00.   | .45                     | - 00.                  | 919.94                                 | - 00.                    | .01                 | .35        | 3.250            | 000.                                   | - 00.            | .0                 |
|               |                |            |                                                                                                                |         |                         | •                      | _                                      | _                        | <u>-</u>            | 1          | 1                | i                                      |                  |                    |

# APPENDIX N

Line "B"
Existing 39" R.C.P.
Caltrans Drain in
Mulholland Drive and
Avenue San Luis
Per Storm Drain Plans Post-Development
and
"W.S.P.G.W." Hydraulic Printouts

į

FILE: 2778.WSW
For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND
MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS
W.O. 2778-POST-DEVLOPMENT CONDITIONS-LINE "B"-2778.WSW

Date:10-18-2000 Time: 1:11:21

PAGE

| ******<br>No Wth<br>Drs/Din            | Type Ch                                 | 0.      | -<br>FIPE  | 0         | )<br>1<br>1<br>1 | 0.      | -<br>PIPE | 0.      | PIPE         | 0       | -<br>PTPE                                    | 0       | - 4010        | 1       | •            | PIPE    |                | PIPE    | 0.      | -<br>PIPE |
|----------------------------------------|-----------------------------------------|---------|------------|-----------|------------------|---------|-----------|---------|--------------|---------|----------------------------------------------|---------|---------------|---------|--------------|---------|----------------|---------|---------|-----------|
| ** ***                                 | ١ .                                     | <br>00. |            | _         | _                | _       | - 00 ·    | — °°    | - <br>[4 00. | _       | -  00.                                       |         | _             | _       | -            | . 00.   | -              | OO PI   | 00 1    | -<br>  00 |
| ************************************** | 1 *                                     | 000.    | -          | -<br>000· | -1               | 000.    |           | 000.    |              | - 000.  | - -                                          |         |               |         | <u>.</u>     |         |                | 00:     | . 000.  |           |
| .*******<br>Height/ <br>DiaFT          | * * *                                   | 3.250   |            | 3.250     |                  | 3.250   | -         | 3.250   | - -<br>-013  | 3.250   | - -<br>- -<br>.013                           | 3.250   | -  -          | 3.250   |              | 1 250   | )<br>          | .013    | 3.250   | .013      |
| *********<br> Flow Top<br>  Width      | -<br>Norm Dp<br>******                  | 00.     | -<br> 3.25 | 00·       |                  | 00.     | 3.25      | 00.     | 3.25         | 00.     | 3.25                                         | 00.     | 2.54          | - 00    | -            | 00      | -              | 1.90    | 00.     | 1.88      |
| critical<br>Depth                      | I <u>⊑</u> . ∗                          | 2.72    | 00.        | 2.72      | . 00.            | 2.67    | 00.       | 2.67    | - 00.        | 2.67    | - 00.                                        | 2.67    | -<br> -<br> - | 2.67    | - 0          | 2.65    | <del>-</del> ; | 00.     | 2.65    | 00.       |
| Super                                  | SE Dpth                                 | ·       | 4.68       | 00.       | 4.87             | - 00.   | 5.06      | 00.     | 6.07         | 00.     | 00.                                          | 00.     | - 00.         | - 00.   |              | - 00.   | · ·            | 7.23    | 00.     | 6.84      |
| Energy<br>Grd.El.                      | - HF<br>*******                         | 911.92  | .34        | 912.26    | 00.              | 912.36  | 1.79      | 914.21  | . 65         | 914.85  | 1.01                                         | 915.96  | 1.18          | 917.30  | - 00         | 917.33  | 1 00           | 87.     | 917.61  | 1.32      |
| Vel<br>Head                            | SF Ave                                  | 1.24    | 0800.      | 1.24      | 1                | 1.13    | .0074     | 1.13    | .0074        | 1.13    | .0074                                        | 1.13    | . 0074        | 1.13    | -   -        | 1.10    | - -            | 1,00.   | 1.10    | .0071     |
| Vel<br>(FPS)                           | - * * * * * * * * * * * * * * * * * * * | 8.92    | 1          | 8.92      | 1                | 8.55    | -         | 8.55    |              | 8.55    | <u>.                                    </u> | 8.55    | 1             | 8.55    | <del>.</del> | 8.40    | <del>!</del>   |         | 8.40    | _         |
| Q<br>(CFS)                             | ***                                     | 74.00   | <u> </u>   | 74.00     | <br>1            | 70.90   | -         | 70.90   |              | 70.90   | _                                            | 70.90   |               | 70.90   | <del>-</del> | 69.70   | <u>.</u>       |         | 69.70   | -         |
| Water<br>Elev                          | * * * * * * * * * * * * * * * * * * *   | 910.683 | _          | 911.022   | <br>!            | 911.225 | -         | 913.072 | <del>-</del> | 913.720 |                                              | 914.825 | _             | 916.163 | •            | 916.238 | <del>.</del>   |         | 916.515 |           |
| Depth<br>(FT)                          | ***                                     | 4.683   |            | 4.872     |                  | 5.065   | _         | 6.072   |              | 6.450   |                                              | 7.125   | _             | 7.163   |              | 7.228   | <u> </u>       |         | 6.835   |           |
| Invert<br>Elev                         | Ch Slope<br>*******                     | 906.000 | .0036      | 906.150   | 0000.            | 906.160 | .0035     | 907.000 | .0031        | 907.270 | .0031                                        | 907.706 | .0081         | 000.606 | 0000.        | 909.010 | .0172          | _ 000   | - -     | .0176     |
| Station                                | L/Elem<br>******                        | 40.000  | 42.220     | 82.220    | JUNCT STR        | 82.220  | 242.780   | 325.000 | 87.880       | 412.880 | 137.120                                      | 550.000 | 160.000       | 710.000 | JUNCT STR    | 710.000 | 38.880         | 748 880 |         | 185.000   |

+

| _     |
|-------|
| WSW   |
| 778.  |
| 27    |
| FILE: |

| Existing Invest both Matery Experiments Park National Park |               |                       | FC         | For: Pace Engineerir   | ğ,                | Inc., Cl                                    | Chatsworth,                      | hatsworth, California              | n 12.4<br>nia - S/N | N 747                                        |         |          |                                          | PA       | PAGE 2             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|------------|------------------------|-------------------|---------------------------------------------|----------------------------------|------------------------------------|---------------------|----------------------------------------------|---------|----------|------------------------------------------|----------|--------------------|
| Pickett   Papph   Water   CFS   (FPS)   Head   Grd EL   Flow   Critical Flow Top   Head   Grd EL   Flow   Grd El   | ***           | +<br>+<br>+<br>+<br>* |            | EXISTING MULHOLL:      |                   | MAIEK<br>VAIN IN ?<br>3/0 101 F<br>DEVLOPME | SURFACE<br>NVE SAN I<br>RWY. PER | PROFILE L<br>LUIS AND<br>REX. S.D. | ISTING<br>PLANS     | :                                            |         | Date:10- | 18-2000                                  |          | 1:11:21            |
| Charles   Charle | Station       | Invert                | Depth (FT) | water<br>Water<br>Elev |                   | .*****<br>Vel                               |                                  | Energy                             | *                   | o.wsw<br>*********************************** |         | ******** | **************************************   | * * *    | ****               |
| 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.940 912.94 | ./Elem        | Ch Slope              | 1          | 1                      | - (613)           | (FPS)<br>-                                  | Head -                           | Grd.El.                            |                     | Depth                                        |         | DiaFT    | μi                                       |          | No wth<br> Prs/Pip |
| 914.750 915.940 917.941 917.940 918.940 917.940 918.940 917.940 918.940 917.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.940 918.94 | ***           |                       | ****       |                        | *                 | ****                                        | SF Ave                           | *                                  | SE Dpth             | Froude N                                     |         | Z        | X-Fall                                   | ZR       | Type Ch            |
| 14.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 933.880       |                       | 4.894      |                        |                   | 8.40                                        | 1.10                             | 918.93                             | 00.                 | 2.65                                         |         | * 0      | * (* (* (* (* (* (* (* (* (* (* (* (* (* | * *      | * * * * *          |
| 914.750   4.139   918.639   69.70   8.40   1.10   919.73   1.00   2.65   1.00   3.250   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00  | 88.620        |                       |            |                        | 1                 | 1                                           | 1.000.                           | . 63                               | -<br> -             | ,                                            | -       | -        | )-<br> -                                 | 00.      | 0                  |
| 10.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1.0185   1. | 022.500       |                       | 4.139      |                        | 7                 | 8.40                                        | 1.10                             | 57, 919                            | _                   |                                              | 1.68    | .013     | 00.                                      | 00.      | PIPE               |
| 914.756   3.985   918.735   69.70   8.40   1.10   919.83   .00   2.65   .013   .00   .00   PIPE   .0000   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .00   .0 | 13.490        | _                     | 1          | <u> </u>               | 1                 | 1                                           | <del>-</del>                     | ,                                  | ?<br>               |                                              | 00.     | 3.250    | 000.                                     | 00.      | 1 .0               |
| 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 035.990       | _                     |            |                        | _                 |                                             | .0071                            | .10                                | 4.14                | 00.                                          | 1.85    | .013     | 00.                                      | 00.      | PIPE               |
| 914.766  4.958  919.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CT STR        |                       | -          |                        | 69.70<br>-<br>- - | 8.40                                        | 1.10                             | 919.83                             | 00.                 | 2.65                                         | 00.     | 3.250    | 000.                                     | - 00.    | 1.0                |
| - 0160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75 990        |                       |            |                        |                   | •                                           | .0042                            | 00.                                | 3.98                | 00.                                          | 1       | .013     | - 00.                                    | - 00.    | -<br>PIDE          |
| 00000 00000 00000 00000 00000 00000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | י ה<br>היים ה |                       | 4.958      | 919.718                | m                 | 3.53                                        | .19                              | 919.91                             | - 00.               | 1.71                                         | - 00.   | 3.250    | - 000                                    |          |                    |
| 915.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CT STR        | .0000                 |            | -                      | -                 | -                                           | .0013                            | - 0.                               | 4.96                | -<br> -<br> -                                | - 81. 1 |          | · ;                                      |          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.990        | 915.010               | 756 4      | -                      |                   |                                             | .0013                            | 00.                                | 4.75                | 000.                                         | 2       | .013     | 000.                                     | 00.      | PIPE<br>PIPE       |
| 915.760 4.096 919.856 29.30 3.53 .19 920.05 .00 1.71 .00 3.250 .000 .00 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>86.880   | -   - 9800.           | 05/:# -    | -   -   -   -          | 29.30             | 3.53                                        | .19                              | 919.94                             | - 00                | 1.71                                         | 00.     | 3.250    | 000.                                     | _<br>00· | 1.0                |
| -   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.870        | 915 750               |            |                        |                   |                                             | .0013                            | .11.                               | 4.74                | 00.                                          | 1.39    | -        | 0.                                       |          | PIPE               |
| 916.180 3.758 919.938 29.30 3.53 .19 920.13 .00 1.71 .00 3.250 .000 .00 PIPE 0090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.120        | -1- 6800              |            |                        |                   | . 2                                         | .19                              |                                    |                     | 1.71                                         | - 00.   | 3.250    | 000.                                     | _        | ٥.                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.990        | 081 319               |            |                        |                   |                                             | .0013                            |                                    |                     | - 00.                                        | 1.38    | - -      | - -                                      | _        | PE                 |
| 916.330 3.629 919.959 29.30 3.53 .19 920.15 .00 1.71 .00 3.250 .000 .00 1.00 .00 .00 .00 .00 .00 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                       | 3.758      |                        |                   | 3.53                                        | 19.                              | 920.13                             | 00.                 | 1.71                                         | 00.     | 3.250    | 000.                                     | _        | 1 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 730         | - 600                 |            |                        |                   | -                                           | .0013                            | .02                                | ٠.                  | 00.                                          | 1.38    | - -      | -1-                                      | _        |                    |
| -  -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                       | 3.629      |                        | 29.30             | 3.53                                        | 19.                              | 920.15                             | 00.                 | 1.71                                         | 00.     | 3.250    | 1000.                                    | _        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 071.          | /800.                 |            |                        | -                 | -                                           | .0013                            | - 90.                              | - -                 |                                              |         | -        | - 0                                      | _        |                    |

FILE: 2778.WSW

W S P G W - CIVILDESIGN Version 12.4

For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND
MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS
W.O. 2778-POST-DEVLOPMENT CONDITIONS-LINE "B"-2778.WSW

Date:10-18-2000 Time: 1:11:21

| ***              | *************          | *****         | *******        | *****      | ******                                | *******     | TTONS-LINE          | 3 "B"-277 | 8.WSW             |                  |                                |                 |          |                       |
|------------------|------------------------|---------------|----------------|------------|---------------------------------------|-------------|---------------------|-----------|-------------------|------------------|--------------------------------|-----------------|----------|-----------------------|
| Station          | Invert<br>Elev         | Depth<br>(FT) | Water<br>Elev  | Q<br>(CFS) | Vel<br>(FPS)                          | Vel<br>Head | Energy Grd.El.      | Super     | Critical<br>Depth | Flow Top   Width | *******<br> Height/<br> Dia_FT | Base Wt         | * * *    | *******<br>No Wth     |
| L/Elem<br>****** | Ch Slope<br>*******    | * * * * * * * | ****           | ****       | * * * * * * * * * * * * * * * * * * * | SF Ave      | -<br>HF<br>******   | SE Dpth   | Froude N          | Norm Dp          |                                | 1 [4]           | ZR       | Type Ch               |
| 1248.850         | 916.740                | 3.300         | 920.040        | 29.30      | 3.53                                  | .19         | 920.23              | <br>00.   | 1.71              | 00.              | 3.250                          |                 | * C      | * (<br>* * *<br>* * * |
| 7.133            | 6800.                  | _             |                | -          | ī<br>ī                                | .0012       | - 10.               | 3.30      | - 00              | - 86             |                                | -               | 20.      | 0.                    |
| 1255.983         | 916.803                | 3.250         | 920.053        | 29.30      | 3.53                                  | 19.         | 920.25              | 00.       | 1.71              | 00.              | 3.250                          | 00.             | 0 0      | PIPE                  |
| 10.927           | 6800.                  |               | -              |            |                                       | .0012       | -<br> -<br> -<br> - | 3.25      | - 00.             | - 1.38           |                                | 00.             | 200      |                       |
| 1266.910         | 916.900                | 3.162         | 920.062        | 29.30      | 3.56                                  | .20         | 920.26              | 00.       | 1.71              | 1.05             | 3.250                          | 000.            | 00.      | 1 .0                  |
| - 625.0          | . 0439                 |               |                |            | -                                     | .0011       | .01                 | 3.16      | .22               | . 90.            | .013                           | <u>-</u><br>00. | _<br>    | -<br>PIPE             |
|                  | -    -  -              | 2.918         | 920.048        | 29.30      | 3.73                                  | .22         | 920.26              | - 00.     | 1.71              | 1.97             | 3.250                          | 000.            | - 00.    | 1.0                   |
| # 60 P           | . 0439                 |               |                |            | -                                     | .0012       | - 00.               | 2.92      | .33               | 06.              |                                | 00.             | - 00.    | -<br>PIPE             |
| 14/5.583         |                        | 2.750         | 920.031        | 29.30      | 3.91                                  | .24         | 920.27              | - 00.     | 1.71              | 2.35             | 3.250                          | 000.            | -<br>00· | 1 .0                  |
| 706.7            | . 0439                 |               |                | -          | -                                     | .0012       | 00.                 | 2.75      | .39               | . 06.            | .013                           | - -00.          | - 00.    | -<br>PIPE             |
| - -<br>HYDRAULIC | 917.385<br>- -<br>JUMP | 2.628         | 920.013        | 29.30      | 4.08                                  | .26         | 920.27              | - 00.     | 1.71              | 2.56             | 3.250                          | 000.            | - 00.    | 1 .0                  |
| 1277.946         | 917.385                | 1.062         | 918.448        | 1 05 90    | ,                                     | - 6         |                     | -         | _                 |                  |                                |                 | -        |                       |
| 6.911            |                        | <del>-</del>  | -              | 2          | - -                                   | 2.40        | 920.85              | 00.       | 1.71              | 3.05             | 3.250                          | 000.            | - 00.    | 1.0                   |
| 1284 856         | - 000 110              | -             |                |            |                                       | .0223       | .15                 | 1.06      | 2.49              | - 06.            | .013                           |                 |          | -<br>PIPE             |
| - -              | - -                    | 1.096         | 918.784        | 29.30      | 11.92                                 | 2.21        | 920.99              | - 00.     | 1.71              | 3.07             | 3.250                          | 000.            | - 00.    | 1 .0                  |
| 1291 514         | 7550.                  |               | _              |            |                                       | 7610.       | .13                 | 1.10      | 2.35              | - 06.            | - -                            | - 00.           | - 00.    | PIPE                  |
| -   -            | - -                    | 1.135         | 919.116<br>- - | 29.30      | 11.36                                 | 2.00        | 921.12              | .00.      | 1.71              | 3.10             | 3.250                          | 000.            | - 00.    | 1.0                   |
|                  |                        |               |                |            |                                       | .0173       | 60.                 | 1.13      | 2.19              | .90              | -1-                            | - 00.           | -) 00.   | -<br>PIPE             |

FILE: 2778.WSW

W S P G W - CIVILDESIGN Version 12.4
For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND
MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS

Date:10-18-2000 Time: 1:11:21

| W.O. 2778-DOT-DEVLOPMENT CONDITIONS-LINE "B"-2778.WSW  ********************************** |
|-------------------------------------------------------------------------------------------|
| **********                                                                                |

| * * *<br>Ith                            | 4. Ch                                 | 0.       |             | 0.       |           | 0.       |           | 0.       |                | 0        |           | 0        |           | 0.       |           | c        |                     | c        |              |
|-----------------------------------------|---------------------------------------|----------|-------------|----------|-----------|----------|-----------|----------|----------------|----------|-----------|----------|-----------|----------|-----------|----------|---------------------|----------|--------------|
| *******<br>No Wth                       | Type                                  |          | -<br>  PTPE | -        | -<br>PIPE |          | -<br>PIPE | _ ~      | -<br>PIPE      |          | -<br>PIPE | -        | -<br>PIPE | -        | -<br>PIPE |          | <br>gard            | 1 .      | -<br>PIPE    |
| * * * * * * * * * * * * * * * * * * * * | - *<br>* ZR .                         | 00.      | 00.         | 00.      | 00.       | 00.      | 00.       | 00.      | 00.            | 00.      | 00.       | 00.      | 00.       | 00.      | 00.       | 00       |                     | 2 6      | 00.          |
| *******<br>Base Wt                      | 1 [i, *                               | 000.     | - 00.       | 000.     | - 00.     | 000.     | 00.       | 000.     | 1              | 000.     | - 00.     | - 000.   | - 00.     | 000.     | - 00.     | 1000.    | - 0                 | - 000    | -1-00.       |
| *******<br> Height/<br> DiaFT           | · 2 *                                 | 3.250    |             | 3.250    |           | 3.250    | 1         | 3.250    |                | 3.250    |           | 3.250    |           | 3.250    |           | 3.250    |                     | 3.250    |              |
| Flow Top                                | -<br>Norm Dp<br>******                | 3.12     | . 90        | 3.15     | . 90      | 3.17     | . 90.     | 3.19     | 1              | 2.86     |           | 2.87     | - 27.     | 2.90     |           | 2.93     |                     | 2.96     |              |
| Critical<br>Depth                       | Froude N                              | 1.71     | 2.05        | 1.71     | 1.92      | 1.71     | 1.79      | 1.71     | 1.67           | 1.35     | 2.45      | 1.35     | 2.40      | 1.35     | 2.25      | 1.35     | - 2.10              | 1.35     | 1.97         |
| Super Elev                              | -<br>SE Dpth<br>******                | - 00.    | 1.18        | - 00     | 1.22      | 00.      | 1.26      | 00.      | 1.31           | 00.      | 85        | - 00 .   | - 86      | - 00.    | - 68.     | - 00.    |                     | - 00.    |              |
| Energy<br>Grd.El.                       | - HF<br>******                        | 921.21   | 90.         | 921.28   | - 0.      | 921.32   | .03       | 921.36   | 00.            | 921.36   | - 50.     | 921.40   | -11.      | 921.52   | 80.       | 921.60   | 90.                 | 921.65   | - 04         |
| Vel Head                                | SF Ave                                | 1.82     | .0151       | 1.66     | -<br>0133 | 1.51     | .0116     | 1.37     | 0169<br>.0169  | 1.82     | .0224     | 1.76     | .020.     | 1.60     | - -       | 1.46     | - -<br>- -<br>.0157 | 1.32     | .0138        |
| Vel<br>(FPS)                            | *<br>  *<br>  *<br>  *                | 10.83    | 1           | 10.33    | 1         | 9.85     | _         | 9.39     | 1              | 10.82    | 1         | 10.65    | 1         | 10.16    | 1         | 9.69     | <u>.</u><br>1       | 9.24     | <del>,</del> |
| Q<br>(CFS)                              | *<br>*<br>*<br>*<br>*<br>*            | 29.30    |             | 29.30    | <br>I     | 29.30    |           | 29.30    |                | 18.70    | <br>1     | 18.70    |           | 18.70    |           | 18.70    | 1                   | 18.70    | 1            |
| Water<br>Elev                           | * * * * * * * * * * * * * * * * * * * | 919.390  |             | 919.620  | _         | 919.817  |           | 919.987  | <del>-</del> - | 919.540  | <u> </u>  | 919.642  | <u> </u>  | 919.916  |           | 920.141  |                     | 920.330  | 1            |
| Depth<br>(FT)                           | *<br>*<br>*<br>*<br>*                 | 1.175    |             | 1.217    | -         | 1.261    |           | 1.307    |                | .850     | _         | . 859    |           | 688.     |           | . 920    | <u>-</u> -          | 952      | <u>.</u>     |
| Invert                                  | Ch Slope<br>******                    | 918.215  | .0439       | 918.403  | .0439     | 918.556  | . 0439    | 918.680  | 0000.          | 918.690  | .0439     | 918.782  | .0439     | 919.027  | .0439     | 919.221  | .0439               | 919.378  | . 0439       |
| Station                                 | L/Elem<br>*******                     | 1296.823 | 4.287       | 1301.109 | 3.478     | 1304.587 | 2.823     | 1307.410 | JUNCT STR      | 1307.410 | 2.094     | 1309.504 | 5.579     | 1315.083 | 4.424     | 1319.508 | 3.557               | 1323.065 | 2.891        |

2

PAGE

Date:10-18-2000 Time: 1:11:21

FILE: 2778.WSW
FOI: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND
MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS
W.O. 2778-POST-DEVLOPMENT CONDITIONS-LINE "B"-2778.WSW

| ******<br>No Wth<br>Prs/Pip          | oe Ch                                   | 0.       | ĕ         | ٥.       | ă                 | 0.       | ñ         | 0.       | ម៉        | 0.       | Ē         | 0.       | M                                                                             | 0.       | ы         | 0.       | ш          | 0.               | ы         |
|--------------------------------------|-----------------------------------------|----------|-----------|----------|-------------------|----------|-----------|----------|-----------|----------|-----------|----------|-------------------------------------------------------------------------------|----------|-----------|----------|------------|------------------|-----------|
| * NO<br>Pre                          | -<br>Type<br>****                       |          | -<br>PIPE |          | PIPE              | _ ~      | -<br>PIPE | _ H      | -<br>PIPE |          | -<br>PIPE | — .      | PIPE                                                                          |          | -<br>PIPE |          | -<br> PIPE | _ <del>-</del> - | -<br>PIPE |
| * * * * * *                          | -<br>* * * * *                          | 00.      | -         | 00.      | 00.               | 00.      | 00.       | 00.      | 00.       | 00.      | . 00      | 00.      | .00                                                                           | 00.      | . 00      | 00.      | .00        | 00.              | 00.       |
| Base Wt<br>or I.D.                   | -<br>X-Fall<br>*****                    | 000.     | 00.       | 000.     | 00.               | 000.     | 00.       | 000.     | 00.       | 000.     | 00.       | 000.     | 00.                                                                           | 000.     | 00.       | 000.     | 00.        | 000.             | 00.       |
| ********<br>  Height/<br>  DiaFT     | *******                                 | 3.250    |           | 3.250    | -<br> -<br> - 013 | 3.250    |           | 3.250    |           | 3.250    |           | 3.250    | -<br> | 3.250    | .013      | 3.250    | .013       | 3.250            | .013      |
| *******<br>Flow Top<br>Width         |                                         | 2.99     | . 72      | 3.02     | .72               | 3.04     | . 72      | 3.07     | . 72      | 3.10     | . 72      | 3.12     | . 72                                                                          | 3.14     | . 27.     | 3.17     | . 27.      | 3.19             | - 27.     |
| *********<br>Critical<br>Depth       | Froude N                                | 1.35     | 1.84      | 1.35     | 1.72              | 1.35     | - 1.61    | 1.35     | 1.51      | 1.35     | 1.41      | 1.35     | 1.32                                                                          | 1.35     | 1.23      | 1.35     | 1.15       | 1.35             | 1.07      |
| ********<br>  Super  <br>  Elev      | SE Dpth                                 | 00.      | - 66.     | - 00.    | 1.02              | 00.      | 1.06      | _ 00.    | 1.09      | - 00.    | 1.13      | - 00.    | 1.17                                                                          | 00.      | 1.21      | 00.      | 1.26       | - 00.            | 1.30      |
| *******<br>Energy<br>Grd.El.         | HF *****                                | 921.69   | . 03      | 921.72   | . 02              | 921.74   | .01       | 921.76   | .01       | 921.77   | .01       | 921.77   | - 00.                                                                         | 921.78   | 00.       | 921.78   | 00.        | 921.78           | 00.       |
| ******<br>Vel<br>Head                | SF Ave<br>****                          | 1.20     | .0120     | 1.09     | .0105             | 1.00     | .0092     | 06.      | .0081     | . 82     | .0071     | .75      | .0062                                                                         | - 69.    | .0055     | . 62     | .0048      | .56              | .0042     |
| Vel<br>(FPS)                         | * * * * * * * * * * * * * * * * * * * * | 8.81     | 1         | 8.40     | 1                 | 8.01     | 1         | 7.63     | 1         | 7.28     | <br>!     | 6.94     | <u>-</u><br>!                                                                 | 6.62     | ;<br>;    | 6.31     |            | 6.01             | <u> </u>  |
| A********<br>Q<br>(CFS)              | * * * * * * * * * * * * * * * * * * *   | 18.70    | <br>1     | 18.70    |                   | 18.70    |           | 18.70    | <u> </u>  | 18.70    |           | 18.70    | -                                                                             | 18.70    |           | 18.70    | _          | 18.70            |           |
| Water  <br>Elev                      | * * * * * * * * * * * * * * * * * * *   | 920.490  |           | 920.628  |                   | 920.747  |           | 920.852  | <u> </u>  | 920.944  | _         | 921.025  |                                                                               | 921.098  | _         | 921.162  |            | 921.219          | _         |
| Depth (FT)                           | * * * * * * * * * * * * * * * * * * * * | . 985    |           | 1.020    |                   | 1.056    | _         | 1.093    | _         | 1.132    |           | 1.172    | _                                                                             | 1.214    |           | 1.258    |            | 1.303            | _         |
| Station   Elev   (FT)   Elev   (CFS) | Ch Slope                                | 919.505  | .0439     | 919.608  | .0439             | 919.692  | .0439     | 919.759  | .0439     | 919.812  | .0439     | 919.853  | .0439                                                                         | 919.884  | .0439     | 919.904  | .0439      | 919.916          | .0439     |
| Station                              | L/Elem                                  | 1325.955 | 2.351     | 1328.307 | 1.906             | 1330.212 | 1.533     | 1331.745 | 1.212     | 1332.957 | .936      | 1333.893 | 689.                                                                          | 1334.581 | .470      | 1335.051 | .270       | 1335.321         | 680.      |

| 4SW  |
|------|
| . 8  |
| 17   |
| 7    |
| ILE: |

| For: Pace Engineering, Inc., Chatsworth, California - S/N 747   PAGE 6 | Tim *  | 18-2000<br>********  Base Wt<br>Or I.D.<br>- X-Fall<br>****** | Date:10- ******* Height/ DiaFT  - "N"  ******* | Flow Top<br>Width | VILDESIGN Version 12.4  tsworth, California - S/N 747  URFACE PROFILE LISTING  E SAN LUIS AND  WY. PER EX. S.D. PLANS  *********************************** | nia - S/<br>ISTING<br>PLANS<br>E "B"-27<br>********<br>Super<br>Elev<br><br>SE Dpth<br>******* | W S P G W - CIVILDESIGN Version 12.4 ering, Inc., Chatsworth, California - 8 WATER SURFACE PROFILE LISTING RANS DRAIN IN AVE SAN LUIS AND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS 3-POST-DEVLOPMENT CONDITIONS-LINE "B"-2 O Vel Vel Berery Super CFS)   (FPS)   Head Grd.El.   Elev | CIVILDES: hatsworth SURFACE AVE SAN I FRWY. PEI FRWY. PEI Head | S P G W - C ng, Inc., Ch WATER S DRAIN IN A VE S/O 101 F **********  Vel (FPS) | EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND  WOTER SURFACE PROFILE LISTING  WOLHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS  W.O. 2778-POST-DEVLOPMENT CONDITIONS-LINE "B"-2778.WSW  WATER O Vel Vel Bergy Super Critical Flow T  Elev (CFS) (FPS) Head Grd.El. Elev Depth Width  SF Ave Grd.El. Blev Depth Width  *********************************** | For: Pace Engineering, Inc., Chatsworth, California - S/N 747  EXISTING CALTRANS DRAIN IN AVE SAN LUIS AND  MULHOLLAND DRIVE S/O 101 FRWY. PER EX. S.D. PLANS  W.O. 2778-POST-DEVLOPMENT CONDITIONS-LINE "B"-2778.WSV  Septh Water O Vel Vel Energy Super Critis  Flev CFS) (FPS) Head Grd.El. Elev Dept Frought  ******* ********* ******* ********** | Formula 1.352 | For: Pace Engineering, Inc.: Chatsworth, California - S/N 747  EXISTING CALTERNS DRAIN IN AVE SAN LUIS AND MULDES IN STAN IN STREAM CONDITIONS-LINE "B"-2778.WSW  ********************************** | ************************************** |
|------------------------------------------------------------------------|--------|---------------------------------------------------------------|------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| _                                                                      |        |                                                               |                                                |                   |                                                                                                                                                            |                                                                                                |                                                                                                                                                                                                                                                                                    | _                                                              | -                                                                              | (                                                                                                                                                                                                                                                                                                                                                        | 950 919 900                                                                                                                                                                                                                                                                                                                                            |               | 1333.410 919.930                                                                                                                                                                                     | 1777.410                               |
|                                                                        |        | : : :                                                         |                                                |                   |                                                                                                                                                            | ,                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                      | 1225 410                               |
| OO PIPE                                                                |        |                                                               | 1 i i i i i i i i i i i i i i i i i i i        | (S)               | ceral Flow                                                                                                                                                 | Large Lat                                                                                      | alysis - 1                                                                                                                                                                                                                                                                         | ction An                                                       | ING - Jur                                                                      | WAKN.                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                      |               |                                                                                                                                                                                                      |                                        |
| -  OC BITE                                                             | 1      | - 00                                                          | .013                                           | _                 | 1.00                                                                                                                                                       | 1.35                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                | T. F.                                                                          | MADNI                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                      | 1 1 1         |                                                                                                                                                                                                      | •                                      |
| 0. 1 .0                                                                | ·<br>' |                                                               | 002.0                                          | 1                 |                                                                                                                                                            | <u>-</u>                                                                                       | ı                                                                                                                                                                                                                                                                                  | 1                                                              | <u> </u>                                                                       | 1                                                                                                                                                                                                                                                                                                                                                        | <u>-</u>                                                                                                                                                                                                                                                                                                                                               | _             | 0000.                                                                                                                                                                                                | JUNCT STR                              |
|                                                                        |        |                                                               | 3 250                                          | 3.20              | 1.35                                                                                                                                                       | -<br>00.                                                                                       | 921.78                                                                                                                                                                                                                                                                             | .51                                                            | 5.73                                                                           |                                                                                                                                                                                                                                                                                                                                                          | 921.272                                                                                                                                                                                                                                                                                                                                                | 1.352         | 919.920                                                                                                                                                                                              | 1333.410                               |
| *****                                                                  | * *    | ****                                                          | ***                                            | *                 | k<br>k                                                                                                                                                     |                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |               | - 0                                                                                                                                                                                                  | 01235                                  |
| R Type Ch                                                              | [2     | X-Fall                                                        | "N"                                            | Norm Dp           | Froude N                                                                                                                                                   | SE Dpth                                                                                        | HF                                                                                                                                                                                                                                                                                 | SF Ave                                                         | ****                                                                           | *****                                                                                                                                                                                                                                                                                                                                                    | ****                                                                                                                                                                                                                                                                                                                                                   | ****          | *****                                                                                                                                                                                                | ***                                    |
|                                                                        | 2      | or 1.D.                                                       | D14F1                                          | י דמכוו           | -                                                                                                                                                          | 1                                                                                              | 1                                                                                                                                                                                                                                                                                  | 1                                                              | 1                                                                              | 1                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                      | 1             | Ch Slope                                                                                                                                                                                             | L/Elem                                 |
| No Wth                                                                 |        | Base Wt                                                       | Height/                                        | Flow Top          | Critical                                                                                                                                                   | Super                                                                                          | Energy<br>Grd.El.                                                                                                                                                                                                                                                                  | Vel                                                            | (FPS)                                                                          | (CFS)                                                                                                                                                                                                                                                                                                                                                    | Elev                                                                                                                                                                                                                                                                                                                                                   | (FT)          | Elev<br>-                                                                                                                                                                                            | Station                                |
| *****                                                                  | * * *  | ******                                                        | *****                                          | ******            | ****                                                                                                                                                       | *******                                                                                        | ***                                                                                                                                                                                                                                                                                | *****                                                          | *******                                                                        |                                                                                                                                                                                                                                                                                                                                                          | Water                                                                                                                                                                                                                                                                                                                                                  | Depth         | Invert                                                                                                                                                                                               |                                        |
|                                                                        |        |                                                               |                                                |                   | 78.WSW                                                                                                                                                     | E "B"-27                                                                                       | TIONS-LIN                                                                                                                                                                                                                                                                          | ENT COND                                                       | -DEVLOPM                                                                       | TSO4-8777                                                                                                                                                                                                                                                                                                                                                | · O · M                                                                                                                                                                                                                                                                                                                                                | ******        | ******                                                                                                                                                                                               | ******                                 |
|                                                                        |        |                                                               |                                                |                   |                                                                                                                                                            | PLANS                                                                                          | REX. S.D.                                                                                                                                                                                                                                                                          | FRWY. PEF                                                      | S/0 101                                                                        | AND DRIVE                                                                                                                                                                                                                                                                                                                                                | MULHOLL                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                      |                                        |
| le: 1:11:21                                                            | T.Tm   | 18-2000                                                       | Dare: 10-                                      | -                 |                                                                                                                                                            |                                                                                                | JUIS AND                                                                                                                                                                                                                                                                           | AVE SAN I                                                      | RAIN IN                                                                        | CALTRANS D                                                                                                                                                                                                                                                                                                                                               | EXISTING                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                      |                                        |
| ,                                                                      | E      | 0000                                                          | Date.10                                        | •                 |                                                                                                                                                            | ISTING                                                                                         | PROFILE L                                                                                                                                                                                                                                                                          | SURFACE                                                        | WATER                                                                          |                                                                                                                                                                                                                                                                                                                                                          | 01110                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                                                                                                      |                                        |
|                                                                        |        |                                                               |                                                |                   | N 747                                                                                                                                                      | nia - S/                                                                                       | n, Califor                                                                                                                                                                                                                                                                         | hatswort                                                       | Inc., C                                                                        | gineering,                                                                                                                                                                                                                                                                                                                                               | r. race En                                                                                                                                                                                                                                                                                                                                             | 2             |                                                                                                                                                                                                      |                                        |
|                                                                        |        |                                                               |                                                |                   |                                                                                                                                                            | n 12.4                                                                                         | IGN Versic                                                                                                                                                                                                                                                                         | CIVILDES                                                       | P G W                                                                          | Ω<br><b>3</b> ·                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                      | G             |                                                                                                                                                                                                      |                                        |

#### **APPENDIX O**

Line "B"
Existing 39" R.C.P.
Caltrans Drain in
Mulholland Drive and
Avenue San Luis
Per Survey - Post-Development
and
"W.S.P.G.W." Hydraulic Printouts

| T1<br>T2<br>T3<br>S0 | -"2778SUR-WSW                  | "-LINE "B" | AVE SAN L<br>AIN ADJUS | UIS & MULHOLLANI<br>TED PER SURVEY | 0                      |    |
|----------------------|--------------------------------|------------|------------------------|------------------------------------|------------------------|----|
| R                    | 40.000 905.11<br>82.220 905.32 |            |                        | 909.793                            |                        |    |
| JX                   | 82.220 905.32                  |            |                        |                                    | .000 .000 0            |    |
| R                    | 325.000 906.57                 |            | 3.100                  | 905.330                            |                        |    |
| R                    | 412.880 907.00                 |            |                        |                                    | .000 .000 1            | 00 |
| R                    | 550.000 907.70                 |            |                        |                                    | .000 .000 0            |    |
| R                    | 710.000 909.000                |            |                        |                                    | 15.465 .000 0          |    |
| JX                   | 710.000 909.010                |            |                        |                                    | -18.046 .000 1         |    |
| R                    | 748.880 909.690                |            | 1.200                  | 909.630                            |                        |    |
| R                    | 933.880 912.930                |            |                        |                                    | .000 .000 0            | 0  |
| R                    | 1022.500 914.490               |            |                        |                                    | .000 .000 0            |    |
| R                    | 1035.990 914.730               | 0 1 .013   |                        |                                    | -56.417 .000 0         |    |
| JX                   | 1035.990 914.740               | 0 1 2 .013 | 40 400                 |                                    | .000000                |    |
| R                    | 1050.990 915.000               | 0 1 .013   | 40.400                 | 915.380                            | 65.0 .00               | 0  |
| JX                   | 1050.990 915.010               | ) 1 2 013  | 001                    |                                    | .000 .000 1            | •  |
| R                    | 1137.870 915.760               | ) 1 013    | .001                   | 915.630                            | 70.0 .00               | 0  |
| R                    | 1184.990 916.180               | ) 1 013    |                        |                                    | .000 .000 0            |    |
| R                    | 1201.730 916.330               | 1 .013     |                        |                                    | -29.998 .000 0         |    |
| R                    | 1248.850 916.740               | 1 013      |                        |                                    | .000 .000 0            |    |
| R                    | 1266.910 916.800               | 1 013      |                        |                                    | 29.998 .000 0          |    |
| R                    | 1307.410 917.350               | 1 013      |                        |                                    | .000 .000 1            |    |
| JX                   | 1307.410 917.360               | 1 3 013    | 10.600                 |                                    | .000 .000 0            |    |
| R                    | 1335.410 917.730               | 1 013      | 10.000                 | 917.980                            | 45.0 .000              | )  |
| JX                   | 1335.410 917.740               | 1 2 2 013  | 9.350                  | 9 250 070 250                      | .000 .000 0            |    |
| SH                   | 1335.410 917.740               | 1          | 3.330                  | 9.350 918.360                      | 918.360 47.0-65.0 .000 | )  |
| CD                   | 1 4 1 .000                     | 3.250 .00  | 00 .000                | 917.740                            |                        |    |
| CD                   | 2 4 1 .000                     | 2.000 .00  |                        |                                    |                        |    |
| CD                   | 3 4 1 .000                     | 2.000 .00  |                        |                                    |                        |    |
| Q                    | .001                           | .0         |                        | .000 .00                           |                        |    |

^.\

FILE: 2778sur.WSW

W S P G W - CIVILDESIGN Version 12.4
For: Pace Engineering, Inc., Chatsworth, California - S/N 747
WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND
DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY

Date:10-17-2000 Time: 8:21:37

| =              |   |
|----------------|---|
| m              |   |
| ы              |   |
| LINE           |   |
| H              |   |
| =              |   |
| S              |   |
| 3              |   |
| Ĕ              |   |
| S              |   |
| 78             |   |
| -"2778SUR-WSW" |   |
| =              |   |
| •              |   |
|                | • |

| *****            | ******   | *                                     |                                         | = +                                   | LINE "B"                                      |                    |                              |          |               |                                  |                                  |                     |          |           |
|------------------|----------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------------|--------------------|------------------------------|----------|---------------|----------------------------------|----------------------------------|---------------------|----------|-----------|
| Station          | Invert   |                                       | Water<br>Elev                           | Q<br>(CFS)                            | Vel<br>(FPS)                                  | vel<br>Vel<br>Head | *******<br>Energy<br>Grd.El. | Super    | critical      | ********<br> Flow Top<br>  Width | ********<br>  Height/<br>  DiaFT | Base Wt             | *****    | No wth    |
| L/Elem<br>****** | Ch Slope | * * * * * * * * * * * * * * * * * * * | 1 * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * *         | SF Ave             | HF ***                       | SE Dpth  | Froude N      | Norm Dp                          | * * * * * * * * * *              | X-Fall<br>*****     | ZR -     | Type Ch   |
| 40.000           | 905.110  | 4.683                                 | 909.793                                 | 74.00                                 | 8.92                                          | 1.24               | 911.03                       | °        | 2.72          | 00.                              | 3.250                            | 000.                | 00.      | 1 .0      |
| 42.220           | 0500.    |                                       |                                         |                                       | 1                                             | .0800.             | .34                          | 4.68     | 00.           | 3.25                             | -<br>                            | 1                   | 00.      | -<br>PIPE |
| 82.220           | 905.320  | 4.812                                 | 910.132                                 | 74.00                                 | 8.92                                          | 1.24               | 911.37                       | 00.      | 2.72          | 00.                              | 3.250                            | 000.                | 00.      | 1 .0      |
| JUNCT STR        | 0000.    |                                       |                                         |                                       | 1                                             | 7700.              | - 00.                        | 4.81     | - 00.         |                                  |                                  | 00.                 | 00.      | -<br>PIPE |
| 82.220           | 905.330  | 5.005                                 | 910.335                                 | 70.90                                 | 8.55                                          | 1.13               | 911.47                       | - ·<br>· | 2.67          | 00.                              | 3.250                            | 000.                | 00.      | 1 .0      |
| 242.780          | .0051    |                                       |                                         | _ <b>-</b>                            | 1                                             | .0074              | 1.79                         | 5.00     | - 00.         | 3.25                             |                                  | 00.                 | 00.      | PIPE      |
| 325.000          | 906.570  | 5.612                                 | 912.182                                 | 70.90                                 | 8.55                                          | 1.13               | 913.32                       | - 00.    | 2.67          | 00.                              | 3.250                            | 000.                | - 00:    | 1.0       |
| 87.880           | .0049    |                                       |                                         | _                                     | -<br>1                                        | . 0074             | .65                          | 5.61     | -<br> -<br> - | 3.25                             | .013                             | 00.                 | _<br>    | -<br>PIPE |
| 412.880          | 907.000  | 5.830                                 | 912.830                                 | 70.90                                 | 8.55                                          | 1.13               | 913.96                       | 00.      | 2.67          | 00.                              | 3.250                            | 000.                | - 00.    | 0.        |
| 137.120          | .0051    |                                       | <del>-</del> -                          |                                       | 1                                             | .0074              | 1.01                         | 00.      | - 00.         | 3.25                             |                                  | - 00.               | - 00.    | -<br>PIPE |
| 550.000          | 907.700  | 6.235                                 | 913.935                                 | 70.90                                 | 8.55                                          | 1.13               | 915.07                       | 00.      | 2.67          | 00.                              | 3.250                            | - 000.              | _<br>    | 1.0       |
| 160.000          | .0081    | _                                     | -                                       |                                       | 1                                             | .0074              | 1.18                         | 00.      | 00.           | 2.54                             |                                  | -00.                | - 00.    | -<br>PIPE |
| 710.000          | 909.000  | 6.273                                 | 915.273                                 | 70.90                                 | 8.55                                          | 1.13               | 916.41                       | - 00.    | 2.67          | 00.                              | 3.250                            | 000.                | _<br>    | ٥.        |
| JUNCT STR        | 0000.    |                                       | -                                       | <u> </u>                              | 1                                             | .0072              | - 00.                        | 6.27     | - 00.         | 1                                | <br>.013                         |                     | -<br>00. | -<br>PIPE |
| 710.000          | 909.010  | 6.338                                 | 915.348                                 | 69.70                                 | 8.40                                          | 1.10               | 916.44                       | 00.      | 2.65          | 00.                              | 3.250                            | 000.                | - 00     | 1.0       |
| 38.880           | .0175    |                                       | -                                       | <del>-</del> -                        | <u>,                                     </u> | .0071              | .28                          | 6.34     | - 00.         | 1.89                             | <br>.013                         | <del>-  •</del> • • | - 00.    | -<br>PIPE |
| 748.880          | 909.696  | 5.935                                 | 915.625                                 | 69.70                                 | 8.40                                          | 1.10               | 916.72                       | _ 00.    | 2.65          | 00.                              | 3.250                            | 000.                | - 00.    | 1.0       |
| 185.000          | .0175    | _                                     |                                         | <u>.</u>                              | <u>.</u>                                      | .0071              | 1.32                         | 5.94     | - 00.         | 1.89                             | -  -                             |                     | - 00.    | -<br>PIPE |

7

PAGE

Date:10-17-2000 Time: 8:21:37 FILE: 2778sur.WSW

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

WATER SURFACE PROFILE LISTING

EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND
DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY
-"2778SUR-WSW"-LINE "B"

| .******<br>No Wth              | Type Ch                               | C       | . HQ10        | o.       | PIPE    | ٥.       | PIPE   | 0.       | Ē.                  | 0.       |                        | i<br>i   | •          | °.       |                                              | 0.       | ю́        |
|--------------------------------|---------------------------------------|---------|---------------|----------|---------|----------|--------|----------|---------------------|----------|------------------------|----------|------------|----------|----------------------------------------------|----------|-----------|
| *                              | ٠ .                                   |         |               |          |         |          |        |          | -<br>  PTPE         |          | -<br>PIPE              |          | -<br> PIPE | _        | -<br>PIPE                                    |          | -<br>PIPE |
| * * *                          | - *<br>* Z *                          |         |               | 00.      | <br>00. | 00.      | - 00.  | 00.      | - 00                | 00.      | 00.                    | 00.      | 00.        | 00.      | . 00                                         | 00.      | .00       |
| ******<br> Base Wt<br> or I D  | X X *                                 | 000.    | - 00          | 000.     | · 00·   | 000.     | - 00.  | _ 000.   | - 00.               | 000.     | - 00.                  | - 000.   | - 00.      | 000.     | - 00.                                        | 000.     | 00.       |
| ********<br> Height/<br> DiaFT | * * * * * * * * * * * * * * * * * * * | 3.250   |               | 3.250    |         | 3.250    | .013   | 3.250    |                     | 3.250    | 013                    | 3.250    |            | 3.250    | .013                                         | 3.250    | .013      |
| *******<br>Flow Top<br>Width   | -<br>Norm Dp<br>******                | 00.     | 1.88          | 00.      | 1.88    | 00.      | 1.88   | 1.57     | 1                   | 00.      | 1.15                   | - 00.    | 1.39       | - 00.    | 1.39                                         | .73      | 1.38      |
| Critical Depth                 | Froude N                              | 2.65    | -<br> -<br> - | 2.65     | 00.     | 2.65     | 00.    | 2.65     |                     | 1.71     | 00.                    | 1.71     | - 00.      | 1.71     |                                              | 1.71     | - -       |
| Super   Elev                   | SE Dpth                               | 00.     | 00.           | 00.      | 3.26    | - 00.    | 3.25   | - 00.    | 3.05                | 00.      | - 4.09<br>3.86         | - 00.    | 3.85       | - 00.    | 3.25                                         | - 00.    | 3.21      |
| Energy<br>Grd.El.              | - HF                                  | 918.04  | . 63          | 918.84   | .01     | 918.85   | 80.    | 918.93   | - 00.               | 919.03   | .00                    | 919.06   | .10        | 919.16   | .01                                          | 919.16   | .04       |
| Vel<br>Head                    | SF Ave                                | 1.10    | 1700.         | 1.10     | 1700.   | 1.10     | 9900.  | 1.15     | - -<br> -<br>  0037 | .19      | -  -<br>.0013<br>.0013 | . 19     | .0012      | .19      | .0012                                        | 19.      | .0011     |
| Vel<br>(FPS)                   | ! *<br>*<br>*<br>*                    | 8.40    | 1             | 8.40     |         | 8.40     | _      | 8.62     | -                   | 3.53     | ·                      | 3.53     | <u>.</u> - | 3.53     | <u>.                                    </u> | 3.54     | _         |
| Q<br>(CFS)                     | ** ** ** ** **                        | 69.70   | 1             | 069.70   |         | 69.70    |        | 69.70    |                     | 29.30    |                        | 29.30    | <u> </u>   | 29.30    | _                                            | 29.30    | -         |
| Water<br>Elev                  | *<br>*<br>*<br>*<br>*                 | 916.944 |               | 917.749  |         | 917.755  | _      | 917.779  |                     | 918.833  |                        | 918.862  | -          | 918.964  |                                              | 918.969  | -         |
| Depth<br>(FT)                  | ! **<br>**<br>**                      | 4.014   |               | 3.259    |         | 3.250    |        | 3.049    | _                   | 4.093    |                        | 3.852    |            | 3.250    |                                              | 3.209    |           |
| Invert<br>Elev                 | Ch Slope                              | 912.930 | .0176         | 914.490  | .0178   | - 2      | .0178  | 914.730  | 0000.               | 914.740  | .0173                  | 915.010  | .0086      | 915.714  | .0086                                        | 915.760  | .0089     |
| Station                        | L/Elem<br>******                      | 933.880 | 88.620        | 1022.500 | .818    | 1023.318 | 12.672 | 1035.990 | JUNCT STR           | 1035.990 | 15.000<br>JUNCT STR    | 1050.990 | 81.584     | 1132.574 | 5.296                                        | 1137.870 | 32.173    |

FILE: 2778sur.WSW

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

WATER SURFACE PROFILE LISTING
EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND
DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY
-"2778SUR-WSW"-LINE "B"

Date:10-17-2000 Time: 8:21:37

PAGE

ş.

| *******<br>No Wth               | Prs/Pip    | Type ch        |          | 0.             | ы        | 0.      | <sub>E</sub> 1 | 0.       | ۲۰        | 0       |            |          | 0.             | F-3      | 0.              |             | c        | •          |            | 0.    |       | 0.      |           |
|---------------------------------|------------|----------------|----------|----------------|----------|---------|----------------|----------|-----------|---------|------------|----------|----------------|----------|-----------------|-------------|----------|------------|------------|-------|-------|---------|-----------|
| * * NO                          | Prs        | Type           |          | <del>ا</del> _ | PIPE     |         | -<br>PIPE      |          | <br>prog  | -       | -<br> -    |          | ٦<br><u>-</u>  | PIPE     |                 | -<br>DIDE   | :<br>    | · _ ˈ      | 3414  <br> | ч_    | PIPE  | ٦_      | -<br>PIPE |
| * * *                           | ZI         | ZR<br>****     |          | 00             | 00.      | 00.     | . 00           | 00.      | - 00      | 00.     | ,          |          | 00.            | 00.      | 00.             | 00.         | 00       |            | 00.        | 00.   | 00.   | 00.     | 00.       |
| ****<br>Base                    | or I.D.    | X-Fall         |          | 000.           | 00.      | 000.    | ] -<br>00 ·    | 000.     | - 00.     | 000.    | - 00       | - 6      |                | 00.      | 000.            | -<br>-<br>- | - 000    | · ·        |            | 000.  | 00.   | 000.    |           |
| ****<br>Heig                    | DiaFT      | ******         |          | -<br> -<br> -  | .013     | 3.250   | .013           | 3.250    |           | 3.250   | - 013      | 0 20 0   |                | .013     | 3.250           | .013        | 3.250    |            | 7          | 3.250 | .013  | 3.250   | .013      |
| Flow Top                        | - אזמרוו   | Norm Dp ****** | 10       | 10.1           | 1.38     | 2.23    | 1.38           | 2.51     | -<br>1.38 | 2.52    | - 1.39     | 1,7,0    | -              | 1.39     | 2.85            | 1.39        | 2.95     | - 06       |            | 3.04  | 1.39  | 3.04    | 1.84      |
| ********Critical                | - modeon - | Froude N       | 1.71     | -              | .32      | 1.71    | .37            | 1.71     | .42       | 1.71    | . 42       | 1.7.1    | +              | .47      | 1.71            | .51         | 1.71     | - 45       | -          | - -   | .61   | 1.71    | -   -     |
| ********<br>  Super  <br>  Elev |            | SE Dpth        |          | <del>-</del>   | 2.95     | - 00.   | 2.81           | 00.      | 2.66      | .01     | 2.67       | - 03     | <del>'</del> - | 2.54     | .02             | 2.43        | . 02     | 2.33       | 60         |       | 2.23  | - 00.   | 2.20      |
| ********<br>Energy<br>Grd.El.   |            | HF<br>*******  | 919.20   | ,              | 70.      | 919.22  | .02            | 919.24   | 00.       | 919.24  | .02        | 919.26   | 1              | .02      | 919.27          | . 02        | 919.29   | .02        | 15.919     | -     | 00.   | 919.31  | .04       |
| Vel Head                        | 1          | ******         | .21      |                |          | .23     | .0012          | .25      | .0013     | .25     | .0013      | .28      |                | 5100.    | .31             | .0016       | .34      | - -        | 137        | -     | .0020 | .37     | .0020     |
| Vel<br>(FPS)                    | 1          | ****           | 3.71     | -              |          | 3.85    | •              | 4.03     | -         | 4.04    | -          | 4.24     | ÷              |          | 4.44            | -           | 4.66     | 1          | 4.89       | 1     |       | 4.91    | _         |
| Q<br>(CFS)                      | 1          | *****          | 29.30    | ī              |          | 29.30   | _              | 29.30    |           | 29.30   |            | 29.30    | -              | _        | 29.30           |             | 29.30    | <u>-</u> . | 29.30      | -     | _     | 29.30   | -         |
| Water<br>Elev                   | ı          | ****           | 918.985  | •              |          | 918.987 | _              | 918.984  | _         | 918.984 |            | 918.977  | · ·            |          | 918.967<br>-  - |             | 918.954  | -          | 918.938    | -     |       | 918.936 | -         |
| Depth<br>(FT)                   | 1          | * * * * * *    | 2.939    | <u>.</u>       | - :      |         |                | 2.658    | -         | 2.654   | -          | 2.525    | <u> </u>       | - 6      | 2.409           |             | 2.303    |            | 2.205      | 1     |       | 2.196   |           |
| Invert                          | Ch Slope   | * * * * * * *  | 916.047  | 6800.          | 001 319  |         | 0600.          | 916.326  | 0600.     | 916.330 | .0087      | 916.453  | .0087          | - 010    | - -             | /800.       | 916.651  | , 7800.    | 916.732    | - -   |       | ע       | .0033     |
| Station                         |            | * * * * *      | 1170.043 | 14.947         | 1184.990 |         | 707:01         | 1201.281 | 448       |         | 14.086<br> | 1215.816 | 12.173         | 1227 989 | - -             |             | 1238.628 | 9.331      | 1247.959   | - -   | - 010 |         | 18.060    |

FILE: 2778sur.WSW

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

WATER SURFACE PROFILE LISTING DRISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY -"2778SUR-WSW"-LINE "B"

Date:10-17-2000 Time: 8:21:37

PAGE

Prs/Pip \*\*\*\*\*\* 0. 0 No Wth PIPE ZR \*\*\*\*\* 00. 00. 00 00. 00.  $Z\Gamma$ 00 00. 00. 00. 00. Energy | Super | Critical | Flow Top | Height | Base Wt Grd.El. | Elev | Depth | Width | Dia.-FT | or I.D. X-Fall 000. 000 00. 000 00. 000 000. 000 00 00. 000 000 00. 3.250 3.250 3.250 Z 3.250 .013 3.250 3.250 .013 3.250 .013 .013 .013 .013 .013 .013 \*\*\*\*\* Froude N Norm Dp 3.07 1.23 3.07 3.20 1.23 3.21 3.24 1.23 1.23 3.25 3.24 \*\*\*\*\*\* . 64 1.59 1.53 1.43 1.24 1.71 1.71 1.08 1.71 1.71 SE Dpth 1.34 1.37 00. 1.42 00. 00. 1.53 . 59 . 65 00. 00 00. 00 00 00 919.35 00. 919.35 60. .10 90. 919.51 919.62 .03 .02 00. ΗF 919.71 .01 919.74 .39 .39 SF Ave \*\*\*\*\* 1.28 Head .0021 .0095 1.21 1.10 1.00 9800 9200 . 91 . 83 0067 .0059 . 75 5.01 8.41 5.01 9.07 8.82 8.02 7.65 (FPS) 29.30 29.30 29.30 29.30 29.30 29.30 29.30 29.30 29.30 Q (CFS) \*\*\*\*\*\* 918.962 918.957 918.146 918.305 918.518 918.678 918.803 918.904 918.988 Elev Depth (FT) 2.157 2.157 1.341 1.370 1.420 1.473 1.528 1.585 1.646 \*\*\*\*\*\* 916.800 916.805 916.936 916.805 917.099 Slope .0136 917.205 917.275 917.319 917.343 .0136 .0136 .0136 .0136 .0136 Invert .0136 .0136 Elev JUMP 뒨 \*\*\*\*\*\* .346 1266.910 HYDRAULIC 1267.256 1267.256 1276.915 Station 11.976 9.659 1296.740 1288.892 7.848 5.168 1301.908 3.227 1305.135 .538 L/Elem 1306.872 1.736

FILE: 2778sur.WSW

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

WATER SURFACE PROFILE LISTING

WATER SURFACE PROFILE LISTING

EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND

DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY

-"2778SUR-WSW"-LINE "B"

-"2778SUR-WSW"-LINE "B"

Date:10-17-2000 Time: 8:21:37

PAGE

| *******<br> No Wth | ors/Pip                                     | *******               | 1 .0         | PIPE                                         |         |            | 7<br>1<br>1 | 0.                                            | PIPE     | 0. 1          | -<br>PIPE  | C        | •          | 3 A T A  | 0.           | IPE      | 0.     | -<br>PIPE                   | 0.       |
|--------------------|---------------------------------------------|-----------------------|--------------|----------------------------------------------|---------|------------|-------------|-----------------------------------------------|----------|---------------|------------|----------|------------|----------|--------------|----------|--------|-----------------------------|----------|
| *                  | ZL                                          | *                     | - 00.        | - 00·                                        | _       | _          | _           | <del>-</del>                                  | .00.     | - ` .<br>00 · | -<br>- 00. | _ °0.    |            | _        | .00.         | .00.     | - 00   | -<br>  00                   | 00 1     |
| **                 | or I.D.                                     | * * * * *             | 000.         | <del>- </del> 00.                            | T 000.  | - 6        | -           |                                               | 00.      | 000.          | 00.        | - 000.   | <u>+</u> 6 | -        | -1-          | - 00.    | 000    | - -<br>. 00·                | .   000. |
| ****<br>Heic       | FT                                          | * * * * * *           | 3.250        | -<br> -<br>  -                               | 3.250   | -  -       | 3.250       | - :                                           | .013     | 3.250         |            | 3.250    |            | - 030    | -1-          | .013     | 3.250  | -    -                      | 3.250    |
| Flow Top           | <u>' z</u>                                  | ****                  | 3.25         | <u>.                                    </u> | 2.95    | -<br>- 86. | 3.04        | - 6                                           | 86.      | 3.10          | . 98       | 3.15     | - 86       | , a      | 04.5         | 86.      | 3.21   | , (                         | .35      |
| Critical Denth     | 1 124                                       | ****                  | 1.71         | 1.00                                         | 1.35    | . 36       | 1.35        | - 06                                          |          | 1.35          | .42        | 1.35     |            | 1.35     | -            | .50      | 1.35   | .1-<br>.53.                 | 0        |
| Super              | SE Dpth                                     | * * * * *             | 00.          | 1.71                                         | 00.     | 2.30       | - 00.       |                                               | -        | 00.           | 2.12       | 00.      | 2.03       | _<br>00· | -            | 1.95     | . 00.  | <br>  1.88<br> arde [atera] | 00.      |
| Energy<br>Grd.El.  | HF                                          | ****                  | 919.74       | 00.                                          | 919.80  | .01        | 919.81      | - 0.                                          |          | 919.81        | .01        | 919.82   | .01        | 919.82   | ī            | .01      | 919.83 | Analysis - La               | 7.75     |
| Vel<br>Head        | SF Ave                                      | k<br>k<br>k<br>k<br>k | 89.          | .0025                                        | . 14    | 8000.      | .15         | 8000.                                         |          | - 17          | .0010      | .18      | .0011      | .20      | - ;          | .0012    | . 22   |                             | - 00.    |
| Vel<br>(FPS)       |                                             |                       | 6.62         | •                                            | 2.97    | •          | 3.12        | <u>,                                     </u> | 0        | 3.27          |            | 3.43     | _          | 3.60     | <del>-</del> |          | 3.77   | G - Junction                | .45      |
| Q<br>(CFS)         | ! + * * * * * * * * * * * * * * * * * *     |                       | 29.30        | _                                            | 18.70   |            | 18.70       | <del></del>                                   | 18 70    | •             | _          | 18.70    |            | 18.70    | <del>.</del> | 1        | 18.70  | WARNING                     |          |
| Water<br>Elev      | **<br>  **<br>  * * * * * * * * * * * * * * |                       | 919.060<br>- |                                              | 919.664 | -          | 919.655     | -                                             | 919.645  | _             |            | 919.634  |            | 919.621  | <u>.</u>     | - 20     | - -    | -                           | 917.749  |
| Depth (FT)         |                                             |                       | -            | _                                            | 2.304   | _          | 2.206       |                                               | 2.115    | <del>-</del>  |            | 2.030    | _          | 1.950    | _            | 1 877    |        | 1                           |          |
| Invert<br>Elev     | L/Elem Ch Slope                             | 917 350               | 1- 0000      | -                                            | 917.360 | .0132      | 917.449     | .0132                                         | 917.530  |               | 7          | 917.604  | .0132      | 917.671  | .0132        | 917.730  | - -    | -                           | 917.740  |
| Station            | L/Elem<br>*******                           | 1307.410              | - TOWIT      |                                              |         | 6.742      | 1314.152    | 6.127                                         | 1320.279 | 5.592         | 1325 871   | 1/0.0251 | 5.091<br>  | 1330.963 | 4.448        | 1335.410 | - -    | _                           | 1335.410 |

Ü

# APPENDIX P

Line "B"
Existing 39" R.C.P.
Caltrans Drain in
Mulholland Drive and
Avenue San Luis.
Adjusted Per Survey to
Determine Maximum Capacity.
"W.S.P.G.W." Hydraulic Printouts

| Tl | EXISTING           | CALTRANS               | דמקת   | TAT TAT | 7.7.7 |          |           |         |                 |      |      |
|----|--------------------|------------------------|--------|---------|-------|----------|-----------|---------|-----------------|------|------|
| T2 | EXISTING DRIVE S/O | 101 FRW                | V CT   | CODM P  | AVE , | SAN LUIS | & MULHO   | LLAND   |                 |      | _    |
| T3 | DRIVE S/O          | THE MAYE               | ATTM C | ORM L   | DRAIN | ADJUSTE  | PER SU    | RVEY    |                 | 4    | 0    |
| SO |                    | 0 905.11               |        | APACI   | .TY-  | "2778POS | .WSW"-LIN | VE "B"  |                 |      |      |
| R  |                    | 0 905.320              |        |         |       |          |           | 909.793 |                 |      |      |
| JX | 82.22              | 0 905.320<br>0 905.330 | ) 1    | _       | .013  |          |           |         |                 |      |      |
| R  | 325.00             | 0 905.330<br>0 906.570 | ) 1    | 2       | .013  | 3.100    | )         | 905.33  | .000            | .000 | 0 0  |
| R  | 412 00             | 0 906.5/0              | ) 1    |         | .013  |          |           | 203.33  | 20.0            |      | .000 |
| R  | FEO 00             | 907.000                | 1      |         | .013  |          |           |         | .000            | .000 | ) 1  |
| R  | 770.000            | 907.700                | 1      |         | .013  |          |           |         | .000            | .000 | 0    |
| JX | 710.000            | 909.000                | 1      |         | .013  |          |           |         | 15.465          | .000 | 0    |
| R  | 710.000            | 909.010                | 1      | 2       | .013  | 1.200    |           | 000 50  | -18.046         | .000 | ) 1  |
| R  | 748.880            | 909.690                | 1      |         | .013  | _,       |           | 909.63  | 55.5            |      | .000 |
|    | 933.880            | 912.930                | 1      |         | .013  |          |           |         | .000            | .000 |      |
| R  | 1022.500           | 914.490                | 1      |         | .013  |          |           |         | .000            | .000 |      |
| R  | 1035.990           | 914.730                | 1      |         | .013  |          |           |         | -56.417         | .000 |      |
| JX | 1035.990           | 914.740                | 1      | -       | .013  | 40.400   |           |         | .000            | .000 | •    |
| R  | 1050.990           | 915.000                | 1      |         | 013   | 40.400   |           | 915.380 | 65.0            | .000 | -    |
| JX | 1050.990           | 915.010                | 1      | _       | 013   | 007      |           |         | .000            | .000 | .000 |
| R  | 1137.870           | 915.760                | 1      | -       | 013   | .001     |           | 915.630 | 70.0            | .000 | -    |
| R  | 1184.990           | 916.180                | 1      |         |       |          |           |         | .000            | 000  | .000 |
| R  | 1201.730           | 916.330                | î      |         | 013   |          |           |         | -29.998         | .000 | _    |
| R  | 1248.850           | 916 740                | 1      |         | 013   |          |           |         | .000            | .000 |      |
| R  | 1266.910           | 916 800                | 7      |         | 013   |          |           |         |                 | .000 | _    |
| R  | 1307.410           | 917 350                | -<br>- |         | 013   |          |           |         | 29.998          | .000 | •    |
| JX | 1307.410           | 917 360                | 1      | _       | 013   |          |           |         | .000            | .000 | _    |
| R  | 1335.410           | 917.360                |        |         | 013   | 28.000   |           | 917.980 | .000            | .000 | 0    |
| JX | 1335.410           | 917.730                | 1      |         | 013   |          |           | 217.500 | 45.0            |      | .000 |
| SH | 1335.410           | 917.740                |        | 2 2.    | 013   | 9.350    | 9.350     | 917 000 | .000            | .000 | 0    |
| CD | 1335.410<br>1 4 1  |                        | 1      |         |       |          | 9.330     | 17.740  | 917.900 47.0-65 | . 0  | .000 |
| CD |                    | .000                   |        | 250     | . 0   | 00 .000  | .000      | .00     |                 |      |      |
| Q  | 2 4 1              | .000                   |        | 000     | . 0   |          | .000      |         |                 |      |      |
| ×  |                    | .001                   | . 0    |         |       |          | .000      | .00     |                 |      |      |
|    |                    |                        |        |         |       |          |           |         |                 |      |      |

. .

. .

ı

For: Pace Engineering, Inc., Chatsworth, California - S/N 747

EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND
DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY
TO DETERMINE MAXIMUM CAPACITY- "2778POS.WSW"-LINE "B"

| *********      | ************************************** | *********<br>Depth (FT)                 | ********<br>Water Elev                | Q (CFS)                | vel<br>Vel<br>(FPS)    | vel<br>Vel<br>Head | Energy Grd.El.                          | Super  <br>Elev        | Critical<br>Depth | Flow Top<br>Width      | Height/<br>DiaFT | Base Wt<br>or I.D.   | ZL           | No Wth<br>Prs/Pip         | th<br>Sip |
|----------------|----------------------------------------|-----------------------------------------|---------------------------------------|------------------------|------------------------|--------------------|-----------------------------------------|------------------------|-------------------|------------------------|------------------|----------------------|--------------|---------------------------|-----------|
| L/Elem         | ch Slope                               | · * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * | *<br>  *<br>  *<br>  * | *<br>  *<br>  *<br>  * | * SF Ave * * * *   | - * * * * * * * * * * * * * * * * * * * | -<br>SE Dpth<br>****** | Froude N          | -<br>Norm Dp<br>****** | *******          | -<br>X-Fall<br>***** | - ZR<br>**** | Type Ch<br>******         | 다.<br>*   |
| 40.000         | 905.110                                | 4.683                                   | 909.793                               | 91.40                  | 11.02                  | 1.89               | 911.68                                  | - 00.                  | 2.94              | 00.                    | 3.250            | 000.                 | 00.          | _ <del>-</del> _          | ٥.        |
| 42.220         | 0500.                                  | 1                                       | 1                                     | <u>.</u> -             | 1                      | .0123              | .52                                     | 4.68                   | . 00.             | 3.25                   | .013             | 00.                  | 00.          | PIPE                      |           |
| 82.220         | 905.320                                | 4.990                                   | 910.310                               | 91.40                  | 11.02                  | 1.89               | 912.20                                  | 00.                    | 2.94              | 00.                    | 3.250            | 000.                 | 00.          |                           | 0.        |
| JUNCT STR      | 0000.                                  |                                         | 1                                     | 1                      | <del>-</del>           | .0118              | 00.                                     | 4.99                   | 00.               |                        | .013             | 00.                  | 00.          | PIPE                      |           |
| 82.220         | 905.330                                | 5.232                                   | 910.562                               | 88.30                  | 10.64                  | 1.76               | 912.32                                  | - 00.                  | 2.91              | 00.                    | 3.250            | 000.                 | 00.          | <u>-</u>                  | 0.        |
| 242.780        | 1500.                                  | 1                                       | 1                                     | <del>-</del> -         | <del>-</del>           | .0114              | 2.78                                    | 5.23                   | 00.               | 3.25                   | .013             | 00.                  | 00.          | PIPE                      |           |
| 325.000        | 906.570                                | 6.856                                   | 913.426                               | 88.30                  | 10.64                  | 1.76               | 915.19                                  | - 00.                  | 2.91              | 00.                    | 3.250            | 000.                 | 00.          | . H _                     | 0.        |
| 87.880         | - 0049                                 | 1                                       | 1                                     | <u> </u>               | ı                      | <br>.0114          | 1.01                                    | 6.86                   | 00.               | 3.25                   | .013             | 00.                  | 00.          | PIPE                      |           |
| 412.880        | 907.000                                | 7.431                                   | 914.431                               | 88.30                  | 10.64                  | 1.76               | 916.19                                  | - 00.                  | 2.91              | 00.                    | 3.250            | 000.                 | 00.          | <u>-</u>                  | ٥.        |
| 137.120        | 1500.                                  |                                         | 1                                     | 1                      | 1                      | .0114              | 1.57                                    | - 00.                  | 00.               | 3.25                   | .013             | 00.                  | 00.          | PIPE                      |           |
| 550.000        | 907.700                                | 8.446                                   | 916.146                               | 88.30                  | 10.64                  | 1.76               | 917.90                                  | 00.                    | 2.91              | 00.                    | 3.250            | 000.                 | 00.          |                           | 0.        |
| 160.000        | .0081                                  | 1                                       | 1                                     | 1                      | 1                      | 0114               | 1.83                                    | - 00.                  | 00.               | 3.25                   | .013             | 00.                  | 00.          | PIPE                      |           |
| 710.000        | 000.606                                | 9.221                                   | 918.221                               | 88.30                  | 10.64                  | 1.76               | 919.98                                  | 00.                    | 2.91              | 00.                    | 3.250            | 000.                 | 00.          | _ <del>-</del> ' <u>-</u> | 0.        |
| -<br>JUNCT STR | 0000.                                  |                                         | <del>-</del> -                        | 1                      | <del>-</del>           | -<br>0113          | 00.                                     | 9.22                   | 00.               |                        | .013             | 00.                  | 00.          | PIPE                      |           |
| 710.000        | 909.010                                | 9.305                                   | 918.315                               | 87.10                  | 10.50                  | 1.71               | 920.03                                  | 00.                    | 2.90              | 00.                    | 3.250            | 000.                 | 00.          |                           | 0.        |
| 38.880         | 0175                                   | 1                                       | 1                                     | -                      | 1                      | -<br> 1110.        | . 43                                    | -<br> -<br>  9.31<br>  | 00.               | 2.19                   | <br>.013         | 00.                  | 00.          | PIPE                      |           |
| 748.880        | 909.696                                | 9.058                                   | 918.748                               | 87.10                  | 10.50                  | 1.71               | 920.46                                  | 00.                    | 2.90              | 00.                    | 3.250            | 0001                 | 00.          | - <u>-</u>                | 0.        |
| 185.000        | .0175                                  | 1                                       | 1                                     | 1                      | 1                      | .0111              | 2.06                                    | 90.6                   | 00.               | 2.19                   | .013             | 00.                  | 00.          | PIPE                      |           |

FILE: 2778pos.WSW

|--|--|

| WATER SURFACE PROFILE LISTING Date:10-18-2000 Time: 9:19:17 | MULHOLLAND                                           | ID PER SURVEY                                       | OS.WSW"-LINE "B"                                      |
|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|
| WATER SURFACE 1                                             | EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND | DRIVE S/O 101 FRWY. STORM DRAIN ADJUSTED PER SURVEY | TO DETERMINE MAXIMUM CAPACITY- "2778POS.WSW"-LINE "B" |

| ************************************** | ************************************** | **************************************  | ************************************** | · * · · · · · · · · · · · · · · · · · · |           | ×                        | Energy Grd.El. | Super Elev Elev CR Dath | ******** Critical Depth | Flow Top width | *******<br>Height/<br>DiaFT | ************************************** | * * * * | ******* No Wth Prs/Pip |
|----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------|--------------------------|----------------|-------------------------|-------------------------|----------------|-----------------------------|----------------------------------------|---------|------------------------|
| * * * * * *                            | *                                      | * * * * * * * * * * * * * * * * * * * * | * * * * * * *                          | * * * * * * *                           | * * * * * | ) *<br>* *<br>* *<br>* * | *****          | * * * * * * * *         |                         | * * * *        | * * * * * * * *             | * * * * * * * *                        | * * * * |                        |
| 933.880                                | 912.930                                | 7.876                                   | 920.806                                | 87.10                                   | 10.50     | 1.71                     | 922.52         | 00.                     | 2.90                    | 00.            | 3.250                       | 000.                                   | 00.     | 0. 1                   |
| 88.620                                 | .0176                                  |                                         |                                        | _                                       |           | .0111                    | 66.            | - 00.                   | 00.                     | 2.19           | .013                        | 00.                                    | 00.     | PIPE                   |
| 1022.500                               | 914.490                                | 7.574                                   | 922.064                                | 87.10                                   | 10.50     | 1.71                     | 923.78         | 00.                     | 2.90                    | 00.            | 3.250                       | 000.                                   | 00.     | .0                     |
| 13.490                                 | .0178                                  | -                                       | <del>-</del>                           | i .                                     | -         | .0111                    | .15            | 7.57                    | - 00.                   | 2.18           | .013                        | 100.                                   | 00.     | PIPE                   |
| 1035.990                               | 914.730                                | 7.484                                   | 922.214                                | 87.10                                   | 10.50     | 1.71                     | 923.93         | . 00                    | 2.90                    | 00.            | 3.250                       | 000.                                   | 00.     | 1 .0                   |
| JUNCT STR                              | 0000.                                  | _                                       | _                                      |                                         | _         | .0072                    | 00.            | 7.48                    | 00.                     |                | .013                        | 00.                                    | 00.     | PIPE                   |
| 1035.990                               | 914.740                                | 9.091                                   | 923.831                                | 46.70                                   | 5.63      | . 49                     | 924.32         | - 00.                   | 2.18                    | 00.            | 3.250                       | 000.                                   | 00.     | ٥.                     |
| 15.000<br>JUNCT STR                    | .0000                                  |                                         | _                                      | <br>                                    | -         | .0032                    | .00.           | 9.09                    | 00.                     | 1.49           | .013                        | 000                                    | 00.     | PIPE<br>PIPE           |
| 1050.990                               | 915.010                                | 8.869                                   | 923.879                                | 46.70                                   | 5.63      | 49                       | 924.37         | 00.                     | 2.18                    | 00.            | 3.250                       | 000.                                   | 00.     | ٠. ا                   |
| 86.880                                 | 9800.                                  | <u></u>                                 |                                        |                                         |           | .0032                    | .28            | 8.87                    | 00.                     | 1.83           | .013                        | 00.                                    | 00.     | PIPE                   |
| 1137.870                               | 915.760                                | 8.422                                   | 924.182                                | 46.70                                   | 5.63      | 64.                      | 924.67         | 00.                     | 2.18                    | 00.            | 3.250                       | 000.                                   | 00.     | 1 .0                   |
| 47.120                                 | 6800.                                  |                                         | _                                      |                                         |           | .0032                    | .15            |                         | - 00                    | 1.81           | .013                        | 00.                                    | 00.     | PIPE                   |
| 1184.990                               | 916.180                                | 8.209                                   | 924.389                                | 46.70                                   | 5.63      | . 49                     | 924.88         | <br>00.                 | 2.18                    | 00.            | 3.250                       | 000.                                   | 00.     | ٥.                     |
| 16.740                                 | 0600.                                  |                                         |                                        |                                         | _<br>!    | .0032                    | . 05.          | 8.21                    | 00.                     | 1.81           | .013                        | 00.                                    | 00.     | - <br>PIPE<br>         |
| 1201.730                               | 916.330                                | 8.113                                   | 924.443                                | 46.70                                   | 5.63      | . 49                     | 924.94         | - 00.                   | 2.18                    | 00.            | 3.250                       | 000.                                   | 00.     | .0                     |
| 47.120                                 | .0087                                  | _                                       |                                        | -                                       |           | .0032                    | .15            | 00.                     | 00.                     | 1.83           | .013                        | 00.                                    | 00.     | PIPE                   |

Date:10-18-2000 Time: 9:19:17

FILE: 2778pos.WSW

W S P G W - CIVILDESIGN Version 12.4 For: Pace Engineering, Inc., Chatsworth, California - S/N 747 WATER SURFACE PROFILE LISTING EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND

|                     | =<br>m                         |
|---------------------|--------------------------------|
| PER SURVEY          | "2778POS.WSW"-LINE             |
| ď,                  |                                |
| M DRAIN             | APACITY                        |
|                     | I MUM C                        |
| 1 FRWY              | NE MAX                         |
| DRIVE S/O 101 FRWY. | TO DETERMINE MAXIMUM CAPACITY- |
| DRIVE               | OL                             |

| ******<br>No Wth<br>Prs/Pip            | Type Ch                                                            | 0.       | PE         | 0.       | E E                                          | 0.       | E G       | 0.       | PE       | 0.       | 7<br>5                                | °.             |   |
|----------------------------------------|--------------------------------------------------------------------|----------|------------|----------|----------------------------------------------|----------|-----------|----------|----------|----------|---------------------------------------|----------------|---|
| * * * NO                               | Type<br>****                                                       |          | PIPE       |          | PIPE                                         |          | PIPE      |          | PIPE     |          | PIPE                                  | _              |   |
| * * * * * ZI                           | * ZR *                                                             | 00.      | 00.        | 00.      | 00.                                          | 00.      | 00.       | 00.      | 00.      | 00.      | 00.                                   | °.<br><u>-</u> |   |
| *******<br>Base Wt<br>or I.D.          | X.Fall<br>*****                                                    | 000.     | - 00.      | 000.     | - 00.                                        | 000.     | - 00.     | 000.     | 00.      | 000.     | 00.                                   | 000.           |   |
| *******<br>  Height/<br>  DiaFT        | * * * * * * * * * * * * * * * * * * *                              | 3.250    | .013       | 3.250    | .013                                         | 3.250    | .013      | 3.250    | .013     | 3.250    | .013                                  | 3.250          |   |
| ************************************** | Norm Dp<br>*******                                                 | 00.      | 2.61       | 00.      | 1.60                                         | 00.      | 1         | 00.      | 86.      | 00.      | . (s)                                 | 00.            |   |
| critical Depth                         | Froude N                                                           | 2.18     | - 00.      | 2.18     | - 00.                                        | 2.18     | . 00.     | 1.35     | 00.      | 1.35     | - -<br>.00<br>Lateral Flow(s          | .01            |   |
| ****<br>per<br>lev                     | SE Dpth                                                            | - 00.    | 7.91       | 00.      | 7.93                                         | 00.      | 7.51      | - 00.    | 7.92     | - 00.    | -<br>  7.56<br>Large Lat              | 00.            |   |
| ************************************** | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | 925.14   | 90.        | 925.22   | 13                                           | 925.35   | 00.       | 925.35   | .01      | 925.37   | 00                                    | 925.33         |   |
| *******<br>Vel<br>Head                 | SF Ave ***                                                         | .49      | .0032      | 4.       | .0032                                        | .49      | - 0019    | 80.      | .0005    | 80.      | - -<br>.0003<br>Junction Analysis     | - 00.          |   |
| ************************************** | * * * * * * * * * * * * * * * * * * * *                            | 5.63     | 1          | 5.63     | 1                                            | 5.63     | i<br>i    | 2.25     | 1        | 2.25     | -<br>IING - Jur                       | 00.            |   |
|                                        | *<br>*<br>*<br>*<br>*<br>*                                         | 46.70    | ·          | 46.70    |                                              | 46.70    |           | 18.70    | 1        | 18.70    | -<br>WARN]                            | 00.            | 1 |
| Water<br>Elev                          | · * * * * * * * * * * * * * * * * * * *                            | 924.651  |            | 924.733  |                                              | 924.862  | 1         | 925.276  |          | 925.290  | 1 1                                   | 925.333        | 1 |
| Depth (FT)                             | * * * * * * * * * * * * * * * * * * *                              | 7.911    | <u>.</u> - | 7.933    | <u>.                                    </u> | 7.512    |           | 7.916    | <u> </u> | 7.560    | · · · · · · · · · · · · · · · · · · · | 7.593          | 1 |
| ************************************** | L/Elem Ch Slope                                                    | 916.740  | .0033      | 916.800  | .0136                                        | 917.350  | 0000.     | 917.360  | .0132    | 917.730  | 0000.                                 | 917.740        |   |
| ********<br>Station                    | L/Elem<br>******                                                   | 1248.850 | 18.060     | 1266.910 | 40.500                                       | 1307.410 | JUNCT STR | 1307.410 | 28.000   | 1335.410 | JUNCT STR                             | 1335.410       | i |

13

Date:10-18-2000 Time: 9:19:17

FILE: 2778pos.WSW

W S P G W - CIVILDESIGN Version 12.4 For: Pace Engineering, Inc., Chatsworth, California - S/N 747 WATER SURFACE PROFILE LISTING EXISTING CALTRANS DRAIN IN AVE SAN LUIS & MULHOLLAND

|                     | =<br>m                         |
|---------------------|--------------------------------|
| PER SURVEY          | "2778POS.WSW"-LINE             |
| ď,                  |                                |
| M DRAIN             | APACITY                        |
|                     | I MUM C                        |
| 1 FRWY              | NE MAX                         |
| DRIVE S/O 101 FRWY. | TO DETERMINE MAXIMUM CAPACITY- |
| DRIVE               | OL                             |

| ******<br>No Wth<br>Prs/Pip            | Type Ch                                                            | 0.       | PE         | 0.       | E E                                          | 0.       | E G       | 0.       | PE       | 0.       | 7<br>5                                | °.             |   |
|----------------------------------------|--------------------------------------------------------------------|----------|------------|----------|----------------------------------------------|----------|-----------|----------|----------|----------|---------------------------------------|----------------|---|
| * * * NO                               | Type<br>****                                                       |          | PIPE       |          | PIPE                                         |          | PIPE      |          | PIPE     |          | PIPE                                  | _              |   |
| * * * * * ZI                           | * ZR *                                                             | 00.      | 00.        | 00.      | 00.                                          | 00.      | 00.       | 00.      | 00.      | 00.      | 00.                                   | °.<br><u>-</u> |   |
| *******<br>Base Wt<br>or I.D.          | X.Fall<br>*****                                                    | 000.     | - 00.      | 000.     | - 00.                                        | 000.     | - 00.     | 000.     | 00.      | 000.     | 00.                                   | 000.           |   |
| *******<br>  Height/<br>  DiaFT        | * * * * * * * * * * * * * * * * * * *                              | 3.250    | .013       | 3.250    | .013                                         | 3.250    | .013      | 3.250    | .013     | 3.250    | .013                                  | 3.250          |   |
| ************************************** | Norm Dp<br>*******                                                 | 00.      | 2.61       | 00.      | 1.60                                         | 00.      | 1         | 00.      | 86.      | 00.      | . (s)                                 | 00.            |   |
| critical Depth                         | Froude N                                                           | 2.18     | - 00.      | 2.18     | - 00.                                        | 2.18     | . 00.     | 1.35     | 00.      | 1.35     | - -<br>.00<br>Lateral Flow(s          | .01            |   |
| ****<br>per<br>lev                     | SE Dpth                                                            | - 00.    | 7.91       | 00.      | 7.93                                         | 00.      | 7.51      | - 00.    | 7.92     | - 00.    | -<br>  7.56<br>Large Lat              | - 00.          |   |
| ************************************** | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | 925.14   | 90.        | 925.22   | 13                                           | 925.35   | 00.       | 925.35   | .01      | 925.37   | 00                                    | 925.33         |   |
| *******<br>Vel<br>Head                 | SF Ave ***                                                         | .49      | .0032      | 4.       | .0032                                        | .49      | - 0019    | 80.      | .0005    | 80.      | - -<br>.0003<br>Junction Analysis     | - 00.          |   |
| ************************************** | * * * * * * * * * * * * * * * * * * * *                            | 5.63     | 1          | 5.63     | 1                                            | 5.63     | i<br>i    | 2.25     | 1        | 2.25     | -<br>IING - Jur                       | 00.            |   |
|                                        | *<br>*<br>*<br>*<br>*<br>*                                         | 46.70    | ·          | 46.70    |                                              | 46.70    |           | 18.70    | 1        | 18.70    | -<br>WARN]                            | 00.            | 1 |
| Water<br>Elev                          | · * * * * * * * * * * * * * * * * * * *                            | 924.651  |            | 924.733  |                                              | 924.862  | 1         | 925.276  |          | 925.290  | 1 1                                   | 925.333        | 1 |
| Depth (FT)                             | * * * * * * * * * * * * * * * * * * *                              | 7.911    | <u>.</u> - | 7.933    | <u>.                                    </u> | 7.512    |           | 7.916    | <u> </u> | 7.560    | · · · · · · · · · · · · · · · · · · · | 7.593          | 1 |
| ************************************** | L/Elem Ch Slope                                                    | 916.740  | .0033      | 916.800  | .0136                                        | 917.350  | 0000.     | 917.360  | .0132    | 917.730  | 0000.                                 | 917.740        |   |
| ********<br>Station                    | L/Elem<br>******                                                   | 1248.850 | 18.060     | 1266.910 | 40.500                                       | 1307.410 | JUNCT STR | 1307.410 | 28.000   | 1335.410 | JUNCT STR                             | 1335.410       | i |

13

## **APPENDIX Q**

GM Engineering
"Hydraulic Analysis
Dry Canyon Creek at
Mulholland Dr. Crossing"

## MOTION PICTURE AND TELEVISION FUND

12100 Wilshire Boulevard, Suite 1950 Los Angeles, CA 90025

# HYDRAULIC ANALYSIS DRY CANYON CREEK AT MULHOLLAND DR. CROSSING



PREPARED UNDER THE DIRECTION OF:

RUVIN GRUTMAN,

RCE 41480



### GM Engineering

GM Engineering Business Center 14401 Gilmore Street, Suite 100 Van Nuys, CA 91401

> March 6, 2000 Job \*8340102



# GM Engineers, land surveyors & general contractors

#### HYDRAULIC ANALYSIS

#### 1. Purpose

The purpose of this analysis was to establish a magnitude of an overflow from Dry Canyon Creek at Mulholland Drive in the case Dry Canyon Creek experiencing the 5,610 cfs. 50-year frequency peak flow. The analysis was performed per the request of MPTF.

#### 2. Project Site

The project site covers the area in the vicinity of the existing 18 ft. x 10 ft. culvert under Mulholland Drive just northerly of Valmar Road. The culvert was constructed by the City of Los Angeles in 1969.

#### 3. Area of Concern

A portion of Dry Canyon Creek upstream of the site limits is an unimproved natural channel. This channel is within the jurisdiction of US Army Corps of Engineers (blue line stream) and it is also a designated Flood Control Channel. Per the County data this portion of the channel conveys runoff from the upstream 2350-acre (3.7 sq. miles) watershed. The 50-year frequency runoff from this watershed was estimated by the County engineers in their 1992 study to be 5,610 cfs.

The maximum capacity of the 18'x10' culvert is estimated to be approximately 3,000 cfs (much less than the clear water flow of 5,610 cfs). Therefore, an overflow above the road surface is expected to occur. The concern about consequences of the overflow generated the need for this hydraulic analysis of the flow in the culvert and along the street.

#### 4. Hydrology

In 1934 the channel improvements for Dry Canyon Wash were designed by Los Angeles County Flood Control District (the District). The peak discharge at that time was estimated to be 1,350 cfs.

The 1970-1971 budget estimate by the District included channel improvements of Dry Canyon Creek downstream of Mulholland Drive. The improvements were sized for 4,370 cfs. flow.

In 1984 drainage improvements upstream of the project site were performed as a part of Tract No.37893. The design peak

discharge at this time was estimated to be 5,170 cfs.

In 1992 the clear water peak runoff was estimated by the County engineers to be 5,610 cfs. The channel improvements designed to handle this peak discharge were initiated by the County in 1995.

#### 5. Topographic Survey

The field survey was conducted to obtain accurate crosssections of the creek and other geometrical features of the stream, the street and the culvert. The survey also verified the location and profile of the ridge line along the left bank. The aerial mapping of the stream was performed to obtain a base map for delineating the flood plain.

#### 6. Hydraulic Model

Hydraulic modeling of the stream was performed by utilizing U.S. Army Corps of Engineers computer program HEC-2.

Hydraulic analysis consisted of two HEC-2 computer runs.

1. The purpose of the 1-st computer run was to determine the portion of the total overflow to the street.

The attached computer printout shows the input data: Surveyed stream cross-sections, Culvert geometry, Roughness coefficients, Peak discharges, etc.

The output shows that the 5,610 cfs. clear flow peak discharge splits at the culvert entrance. The water surface at this point, Section M-330 (Stream Section No.490) raises to elevation 953.41. It is 3.8 feet above the lowest elevation of the street. During this flood stage, the 3,090 cfs. is conveyed by the culvert and 2,520 cfs. spread over the street pavement.

2. The purpose of the 2-nd computer run was to establish consequences of the 2,520 cfs. flow across and along the street.

The street cross-slope in this area is estimated to be 1%. The longitudinal slope along the street is also 1%. The flow therefore tends to proceed across the pavement at 45° angle to the street as shown in Exhibit 1.

The line projected from the corner of the building at the culvert outlet effectively splits the street flow into westerly and easterly routes.

The easterly route crosses the street and joins the Dry Canyon Creek channel flow. The westerly route proceeds northwesterly along Mulholland Drive.

The 2-nd computer run shows flow distribution at the section M-250. It is estimated that at this section, the 750 cfs portion of the flow (30% of the 2,520 cfs) will proceed along westerly route. The easterly route therefore, will consist of the remaining 1,770 cfs (70%). The westerly route also splits. 280 cfs will enter the adjacent agricultural area and the remaining 470 cfs will flow along the pavement and the existing buildings toward the commercial center.

#### 7. Conclusions

- a) During 5,610 cfs. flow (50 year frequency) in Dry Canyon Creek, a 2,520 cfs. overflow occurs at the culvert crossing Mulholland Drive. This flow splits and 1770 cfs. crosses the street, outfalls back into the stream channel and joins 3090 cfs. conveyed by the culvert.
- b) A 750 cfs portion of the overflow proceeds northwesterly along Mulholland Drive. This street flow splits along the ridge line at the left bank (Section M-150, see Exhibit 1). A 280 cfs. portion is expected to enter the adjacent agricultural area. The remaining 470 cfs. will flow northwesterly along the pavement and existing buildings toward the commercial center.

| **************************************           |                                        | PAGE 1          | RUN EXECUTED 05MAR00 22:15:42          |                                                               |                                                                            | Ŏ<br>Ŀ | ITRACE |   |                  |     | 38 936.4 59                          |
|--------------------------------------------------|----------------------------------------|-----------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|--------|--------|---|------------------|-----|--------------------------------------|
|                                                  | × × × × × × × × × × × × × × × × × × ×  |                 | THIS                                   |                                                               |                                                                            | WSEL   | CHNIM  |   |                  |     |                                      |
|                                                  | XXXXX                                  |                 |                                        |                                                               |                                                                            | O)     | IBW    |   |                  |     | 929.8                                |
|                                                  | × × × × × × × × × × × × × × × × × × ×  |                 |                                        |                                                               |                                                                            | HVINS  | ALLDC  |   |                  |     | 31                                   |
|                                                  | XX |                 |                                        |                                                               |                                                                            | METRIC | FN     |   |                  |     | 0.3                                  |
| * * * * * * *                                    | ××××××<br>×××××××                      |                 |                                        |                                                               |                                                                            | STRT   | XSECH  |   |                  |     | 0.1<br>59<br>29<br>142               |
| 1*************************************           |                                        |                 | *<br>*<br>*                            | *<br>*<br>*                                                   |                                                                            | IDIR   | XSECV  |   | INTOUT           |     |                                      |
| ********  TIME  TIME  ********                   |                                        | N               | ************************************** | Version 4.6.2; May 1991<br>********************************** | 340102<br>TION                                                             | NINV   | PRFVS  | Ţ | SUMMARY PRINTOUT |     | .05<br>29<br>936.1<br>950            |
| **************************************           |                                        | 22:15:42        | ************************************** | 5.2; May ******                                               | LING JOB#8:<br>DETERMINA'<br>CREEK                                         | INQ    | IPLOT  |   | CODES FOR        | 105 | 4860<br>.000<br>.070<br>.000<br>.000 |
| ******* HEC-2 WATER Version 4. RUN DATE ******** |                                        | <b>05MAR</b> 00 | ************************************** | sion 4.6                                                      | GM ENGINEERING JOB#8340102<br>SPLIT FLOW DETERMINATION<br>DRY CANYON CREEK | ICHECK | NPROF  | Ħ | VARIABLE C       | 101 | .05<br>938.3<br>941.2                |
| * * * * * * * * * * * * * * * * * * *            | ,                                      | 1               | * * *<br>HEC-                          | Ver:                                                          | FR<br>T1 GP<br>T2 S1                                                       | 15     | J2 1   |   | J3 1             |     | OT<br>NC<br>X1<br>GR<br>GR           |

|                      |                                         |                                          | 7        |                      |                           |                     | ო        |                                             |                                  |                                     |
|----------------------|-----------------------------------------|------------------------------------------|----------|----------------------|---------------------------|---------------------|----------|---------------------------------------------|----------------------------------|-------------------------------------|
| 92                   | 49                                      | 15<br>95                                 | PAGE     | 932.4                | 71<br>125                 | 64                  | PAGE     |                                             |                                  |                                     |
| 929.6                | 937.7                                   | 949<br>32.4                              |          | 4                    | 950<br>9 9 50<br>9 4 8    | 937.2               |          | L-BANK ELEV<br>R-BANK ELEV<br>SSTA<br>ENDST |                                  | 936.10<br>936.40<br>20.00<br>102.77 |
| 47                   | 2                                       | 948                                      |          | 88                   | 949.7<br>22<br>952<br>123 | 45<br>151           |          | OLOSS TWA ELMIN TOPWID                      |                                  | .00.<br>929.80<br>82.77             |
| 70<br>7.829.7        | 140                                     | 100                                      |          | 180<br>180           | 180<br>950<br>946.8       | 40<br>945.5<br>952  |          | HL<br>VOL<br>WTN<br>CORAR                   |                                  | 0000                                |
| 100<br>38<br>120     | 190<br>10                               | 80<br>75<br>287                          |          | 18<br>180            | 952<br>32<br>122<br>370   | 45<br>25<br>120     |          | HV<br>AROB<br>XNR<br>ICONT                  |                                  | 2.05<br>144.4<br>.070<br>5          |
| 22<br>932.8<br>950   | 65<br>930.8                             | 0.8<br>85<br>44.69<br>951                |          | 10<br>180<br>949.6   | 12<br>951<br>952<br>934.4 | 35<br>948<br>950    |          | EG<br>ACH<br>XNCH<br>IDC                    | ₽                                | 944.71<br>299.7<br>.050             |
| 87<br>35<br>100      | 49<br>8<br>174                          | 0.6<br>97<br>45<br>209                   |          | 123<br>14.5          | 126<br>20<br>104<br>210   | 0 H 0<br>8 5 8      |          | WSELK<br>ALOB<br>XNL<br>ITRIAL              | 4.36 FEET                        | 950.00<br>49.1<br>.050              |
| 38<br>37.1<br>42.1   | 8<br>938.5<br>949.4                     | 75<br>948.2<br>950                       |          | 2.63<br>103<br>2 94  | 954<br>934.4<br>951.6     | 45<br>950<br>946.1  |          | CRIWS<br>QROB<br>VROB<br>XLOBR              | .300<br>.00 EXTENDED             | .00<br>726.0<br>5.03<br>0.          |
| 937                  | 938                                     | 948                                      | 12       |                      | 993                       | 946                 | 42       | CWSEL<br>QCH<br>VCH<br>XLCH                 | .300                             | 942.66<br>3792.7<br>12.65           |
| 8<br>20<br>87        | 7 80                                    | 8 76                                     | 22:15:42 | .04                  | 0<br>949.6<br>103<br>146  | 9                   | 22:15:42 | DEPTH<br>QLOB<br>VLOB<br>XLOBL              | .100 CEHV=<br>.000<br>SS SECTION | 12.86<br>341.3<br>6.95<br>0.        |
| 70<br>938.3<br>939.8 | 210<br>944<br>940.12                    | 310<br>10<br>948.8<br>946.85             | 05MAR00  | 1.015<br>490<br>5610 | 10<br>53<br>946.8<br>950  | 530<br>956<br>938.9 | 05MARO0  | SECNO<br>Q<br>TIME<br>SLOPE                 | 1<br>O<br>CRO                    | .000<br>4860.0<br>.009<br>.009899   |
| X1<br>GR<br>GR       | X T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | NC X X X X X X X X X X X X X X X X X X X | 0        | NC<br>SC<br>X1<br>X2 | KX<br>BTI<br>GR<br>GR     | X1<br>GR            | H<br>0   |                                             | *PROF<br>CCHV=<br>*SECN(         | •                                   |

\*SECNO 70.000

6.18 FEET

70.00 EXTENDED

3280 CROSS SECTION

|                |               |                                     |                                      |                                   |            |                |                                                | PAGE         |                                             |                |                                    |                   |                                                           |
|----------------|---------------|-------------------------------------|--------------------------------------|-----------------------------------|------------|----------------|------------------------------------------------|--------------|---------------------------------------------|----------------|------------------------------------|-------------------|-----------------------------------------------------------|
|                |               | 932.80<br>939.80<br>20.00<br>106.02 |                                      | 938.50<br>937.70<br>.00<br>126.06 |            |                |                                                |              | L-BANK ELEV<br>R-BANK ELEV<br>SSTA<br>ENDST |                | 944.69<br>946.85<br>75.00<br>96.74 |                   |                                                           |
|                |               | .14<br>929.60<br>86.02              |                                      | .06<br>.5<br>930.80<br>126.06     |            |                |                                                |              | OLOSS<br>TWA<br>ELMIN<br>TOPWID             |                | 4.03<br>.7<br>932.40<br>21.74      |                   |                                                           |
|                | 2.40          | .23                                 |                                      | .32<br>3.7<br>.000<br>.000        |            |                |                                                |              | HL<br>VOL<br>WTN<br>CORAR                   | 949.00         | . 76<br>. 000<br>. 000             |                   |                                                           |
|                | KRATIO =      | .61<br>53.0<br>.070                 |                                      | .80<br>283.2<br>.070              |            |                |                                                |              | HV<br>AROB<br>XNR<br>ICONT                  | ELREA=         | 5.84                               | 5.00              |                                                           |
|                | LE RANGE,     | 945.09<br>656.6<br>.050             |                                      | 945.47<br>489.9<br>.050           |            |                |                                                |              | EG<br>ACH<br>XNCH<br>IDC                    | 948.00         | 950.84<br>250.7<br>.050            | 94                |                                                           |
|                | OF ACCEPTABLE | 130.3                               | .67 FEET                             | .00<br>27.3<br>.050               |            |                |                                                |              | WSELK<br>ALOB<br>XNL<br>ITRIAL              | ELLEA=         | . 000                              | CWSEL=            |                                                           |
|                | OUTSIDE       | .00<br>99.2<br>1.87<br>100.         | O EXTENDED                           | .00<br>903.3<br>3.19<br>190.      |            |                |                                                |              | CRIWS<br>QROB<br>VROB<br>XLOBR              | NON-EFFECTIVE, | 945.00                             | 310.00            |                                                           |
| THAN HVINS     | NCE CHANGE    | 944.48<br>4296.6<br>6.54<br>70.     | 210.00 EXT                           | 944.66<br>3869.1<br>7.90<br>140.  | . 800      | THAN HVINS     | ENERGY                                         | 42           | CWSEL<br>QCH<br>VCH<br>XLCH                 | ASSUMED NON-E  | 945.00<br>4860.0<br>19.39<br>100.  | SECNO=            |                                                           |
| CHANGED MORE I | : CONVEYANCE  | 14.88<br>464.3<br>3.56<br>22.       | 00<br>ECTION                         | 13.86<br>87.6<br>3.21<br>65.      | .600 CEHV= | CHANGED MORE 1 | MINIMUM SPECIFIC ENERGY CRITICAL DEPTH ASSUMED | 22:15:42     | DEPTH<br>QLOB<br>VLOB<br>XLOBL              | AREA           | 12.60<br>.0<br>.00<br>.85.         | FOR               | 97.00.0<br>50.7<br>19.4<br>11.5                           |
| 3301 HV CHAN   | 3302 WARNING: | 70.000<br>4860.0<br>.00             | *SECNO 210.000<br>3280 CROSS SECTION | 210.000<br>4860.0<br>.01          | CCHV= .6   | 3301 HV CHAN   | 7185<br>3720                                   | 1<br>05MAR00 | SECNO<br>Q<br>TIME<br>SLOPE                 | 3495 OVERBANK  | 310.000<br>4860.0<br>.01           | FLOW DISTRIBUTION | STA= 75.<br>PER Q= 10<br>AREA= 20<br>VEL= 20<br>DEPTH= 20 |

4

Μ

SPECIAL CULVERT

| <b>A</b> O       |                                                  |                                                             |                                           |                 |                      |                 |                 |                                     | ស            |                                   |                                      |                                    | φ            | : 42                                  |
|------------------|--------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-----------------|----------------------|-----------------|-----------------|-------------------------------------|--------------|-----------------------------------|--------------------------------------|------------------------------------|--------------|---------------------------------------|
| ELCHD<br>932.40  |                                                  |                                                             |                                           |                 |                      |                 |                 |                                     | PAGE         |                                   |                                      |                                    | PAGE         | 22:15:42                              |
| ELCHU<br>934.40  |                                                  |                                                             |                                           |                 |                      |                 |                 | 0080                                |              | K ELEV<br>K ELEV                  |                                      | 0000                               |              | EXECUTED 05MAR00                      |
| SCL<br>1         |                                                  |                                                             |                                           |                 |                      |                 |                 | 946.80<br>946.80<br>23.48<br>370.00 |              | L-BANK<br>R-BANK<br>SSTA<br>ENDST |                                      | 945.50<br>946.10<br>6.33<br>151.00 |              | FXECUT!                               |
| CHRT<br>8        |                                                  |                                                             |                                           |                 |                      |                 | WEIRLN<br>179.  | .00<br>1.4<br>934.40<br>346.52      |              | OLOSS<br>TWA<br>ELMIN<br>TOPWID   |                                      | .09<br>1.7<br>937.20<br>144.67     |              | THIS RUN                              |
| CULVLN<br>180.00 |                                                  |                                                             |                                           |                 | 4.70                 |                 | ELTRD<br>949.60 | 2.8<br>8.0<br>000.                  |              | HL<br>VOL<br>WTN<br>CORAR         |                                      | .000                               |              |                                       |
| SPAN<br>18.00    | E BEVEL                                          |                                                             |                                           |                 | KRATIO =             |                 | ACULV<br>180.0  | .38<br>547.7<br>.040                |              | HV<br>AROB<br>XNR<br>ICONT        |                                      | .49<br>195.7<br>.040               |              |                                       |
| RISE<br>10.00    | ET TOP EDGE                                      | OLS.<br>TROLS.                                              | 953.79<br>T                               |                 | LE RANGE,            |                 | VCH<br>6.185    | 953.79<br>368.0<br>.050             |              | EG<br>ACH<br>XNCH<br>IDC          |                                      | 953.96<br>678.8<br>0.050           |              |                                       |
| RDLEN<br>.00     | LS; NO INLET<br>ES                               | IF INLET CONTROLS.                                          | EG = 9.<br>1.62 FEET                      |                 | OF ACCEPTABLE RANGE, |                 | ocurv<br>3090.  | .00<br>347.1<br>.050                |              | WSELK<br>ALOB<br>XNL<br>ITRIAL    | 1.47 FEET                            | .00<br>194.1<br>.050               |              |                                       |
| COFQ<br>2.63     | ED WINGWALLS;<br>O 75 DEGREES                    | ARGE I<br>LARGE                                             | WEIR FLOW,<br>ENDED                       |                 | OUTSIDE O            |                 | QWEIR<br>2537.  | .00<br>1837.1<br>3.35<br>180.       |              | CRIWS<br>QROB<br>VROB<br>XLOBR    | EXTENDED                             | .00<br>727.7<br>3.72<br>45.        |              | *<br>*<br>*<br>*                      |
| ENTLC<br>.50     | WITH FLARE<br>LARED 30 TO                        |                                                             | CONTROL + W                               | THAN HVINS      | NCE CHANGE           |                 | H4<br>2.95      | 953.41<br>2275.9<br>6.18<br>180.    | :42          | CWSEL<br>QCH<br>VCH<br>XLCH       | 530.00 EXT                           | 953.47<br>4163.6<br>6.13<br>40.    | 42           | * * * * * * * * * * * * * * * * * * * |
| CUNV<br>.015     | BOX CULVERT WITH FLARE<br>WINGWALLS FLARED 30 TO |                                                             | E→                                        | CHANGED MORE TI | : CONVEYANCE         | ERT             | EGOC<br>964.80  | 19.01<br>1497.0<br>4.31<br>180.     | 22:15:       | DEPTH<br>QLOB<br>VLOB<br>XLOBL    |                                      | 16.27<br>718.6<br>3.70<br>35.      | 22:15:42     | * * * * * * * * * * * * * * * * * * * |
| SC CUNO          | CHART 8 - BC<br>SCALE 1 - WI                     | 5130, EGIC= 970.51.<br>5135, EGOC= 964.80<br>*SECNO 490.000 | SPECIAL CULVERT INJ<br>3280 CROSS SECTION | 3301 HV CHANG   | 3302 WARNING:        | SPECIAL CULVERT | EGIC<br>970.51  | 490.000<br>5610.0<br>.02            | 1<br>05MAR00 | SECNO<br>Q<br>TIME<br>SLOPE       | *SECNO 530.000<br>3280 CROSS SECTION | 530.000<br>5610.0<br>.02           | 1<br>05MAROO | ******************************        |

4

\*\*\*\*\*\*\*\*\*\*\*\*

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (\*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

ANYON CREEK

SUMMARY PRINTOUT TABLE 101

|             | SECNO                      | EGOC     | ELLC   | EGIC   | ELTRD  | OCULV   | QWEIR   | CLASS   | H4          | DEPTH | CWSEL  | VCH    | EG     |  |
|-------------|----------------------------|----------|--------|--------|--------|---------|---------|---------|-------------|-------|--------|--------|--------|--|
| *           | 490.000                    | 964.80   | 944.50 | 970.51 | 949.60 | 3089.66 | 2537.37 | 16.00   | 2.95        | 19.01 | 953.41 | 6.18   | 953.79 |  |
| Н           | OSMAROO                    | 22:15:42 |        |        |        |         |         |         |             |       | щ      | PAGE 7 |        |  |
| ANY         | ANYON CREEK                |          |        |        |        |         |         |         |             |       |        |        |        |  |
| SUM         | SUMMARY PRINTOUT TABLE 105 | UT TABLE | 105    |        |        |         |         |         |             |       |        |        |        |  |
|             | SECNO                      | CWSEL    | HL     | OLOSS  | TOPWID | QLOB    | ОСН     | QROB    |             |       |        |        |        |  |
| !<br>!<br>! | 210.000                    | 944.66   | .32    | 90.    | 126.06 | 87.62   | 3869.10 | 903.27  | !<br>!<br>! |       |        |        |        |  |
| *           | 310.000                    | 945.00   | .76    | 4.03   | 21.74  | 00.     | 4860.00 | 00.     |             |       |        |        |        |  |
| *           | 490.000                    | 953.41   | 2.95   | 00.    | 346.52 | 1496.98 | 2275.91 | 1837.11 |             |       |        |        |        |  |
|             | 530.000                    | 953.47   | 80.    | 60.    | 144.67 | 718.62  | 4163.63 | 727.75  |             |       |        |        |        |  |
|             |                            |          |        |        |        |         |         |         |             |       |        |        |        |  |

SUMMARY OF ERRORS AND SPECIAL NOTES

22:15:42

05MAR00

ω

PAGE

| 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE |                                                | 490.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE |
|----------------------------------------------|------------------------------------------------|---------------------------------------------------------------|
| OUTSID                                       | UMED<br>NERGY                                  | DISINC                                                        |
| CHANGE                                       | PTH ASSI                                       | CHANGE                                                        |
| CONVEYANCE                                   | CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY | CONVEYANCE                                                    |
| Н                                            |                                                | <b>,</b> 1                                                    |
| 70.000 PROFILE=                              | PROFILE=<br>PROFILE=                           | PROFILE=                                                      |
| 70.000                                       | 310.000                                        | 490.000                                                       |
| WARNING SECNO=                               | CAUTION SECNO=<br>CAUTION SECNO=               | WARNING SECNO=                                                |
|                                              |                                                |                                                               |

 $^{\prime\prime}$ 22:00:44 PAGE PAGE THIS RUN EXECUTED 05MAR00 FQ. ×× × × WSEL 950 XXXXXXX XXXXX XXXXX O × × × × HVINS XXXXX 950 XXXXXXX METRIC 220 STRT 0.01 2.6 180 949.62 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* IDIR Version 4.6.2; May 1991 -1 948.9 HEC-2 WATER SURFACE PROFILES T1 GM ENGINEERING JOB#8340102 T2 SPLIT FLOW DETERMINATION T3 MULHOLLAND DRIVE NINV 4.6.2; May 1991 SPLIT FLOW BEING PERFORMED TW SPLIT AT MULHOLLAND
WS 4 250
WC 948.3 80 22:00:44 22:00:44 SF SPLIT FLOW ANALYSIS ÖNI 05MAR00 Version J1 ICHECK 05MAR00

FR

Н

|        |      |                                       |                                 |     |                                |     |                 |            |                   | m        |                                             |         |                               |              |                                   |
|--------|------|---------------------------------------|---------------------------------|-----|--------------------------------|-----|-----------------|------------|-------------------|----------|---------------------------------------------|---------|-------------------------------|--------------|-----------------------------------|
|        |      | 88                                    | 60<br>122                       |     | 15<br>56<br>126                | ,   | 15<br>160       |            | 126               | PAGE     |                                             |         |                               |              |                                   |
| ITRACE |      | 947                                   | 947.65<br>944.4                 |     | 949.62<br>948.35               |     | 950             |            | 951               |          | L-BANK ELEV<br>R-BANK ELEV<br>SSTA<br>ENDST |         |                               |              | 948.30<br>947.00<br>.98<br>140.00 |
| CHNIM  |      | 09                                    | 43<br>99                        |     | 50                             |     | 112             |            | 53                |          | OLOSS<br>TWA<br>ELMIN<br>TOPWID             |         |                               |              | .00<br>.0<br>.0<br>139.02         |
| IBW    |      | 947.4                                 | 70<br>948.09<br>948.13          | 80  | 949.57<br>948.8                | 100 | 949.9           | 80         | 949.6             |          | HL<br>VOL<br>WTN<br>CORAR                   |         |                               |              | 0000                              |
| ALLDC  |      | 40                                    | 60<br>14<br>87                  | 80  | 32<br>75<br>200                | 150 | 80<br>325       | 06         | 22                |          | HV<br>AROB<br>XNR<br>ICONT                  |         |                               |              | .39<br>60.2<br>.035<br>0          |
| FN     |      | 0.3                                   | 80<br>948.43<br>947             | 80  | 949.56<br>948.68<br>949.89     | 35  | 950.31<br>950.8 | 0.3        | 950               |          | EG<br>ACH<br>XNCH<br>IDC                    |         |                               | Ę            | 948.35<br>34.4<br>.015            |
| XSECH  |      | 0.1<br>83<br>2<br>140                 | 8 · 8<br>5 · 8                  | 152 | 16<br>68<br>180                | 240 | 35<br>240       | 0.1<br>126 | 12                |          | WSELK<br>ALOB<br>XNL<br>ITRIAL              |         |                               | 2.86 FEET    | 950.00                            |
| XSECV  |      | 015<br>7.6<br>5.1                     | 0<br>16<br>16                   | 99  | 50<br>43<br>55                 | 80  | 9.30<br>49.6    | .05        | 952               |          | CRIWS<br>QROB<br>VROB<br>XLOBR              |         |                               | .00 EXTENDED | 947.92<br>279.2<br>4.64<br>0.     |
| PRFVS  | FT - | . 46                                  | 1 948.16<br>2 947.16            | က   | 949.50<br>6 948.95<br>2 949.43 | æ   | 9.<br>9. 0.     | 9          |                   | .44      | CWSEL<br>QCH<br>VCH<br>XLCH                 |         | .300                          | .00 EX       | 947.96<br>190.5<br>5.54<br>0.     |
| IPLOT  |      | 750<br>.035<br>7<br>110               | 11<br>72<br>132                 | H   | 66<br>152                      |     | 200             | 0.         | 180               | 22:00:44 | DEPTH<br>QLOB<br>VLOB<br>XLOBL              |         | .100 CEHV=                    | ECTION       | 2.86                              |
| NPROF  |      | 1<br>.035<br>948.3<br>947.8           | 70<br>948.9<br>947.55<br>948.54 | 150 | 950<br>949.62<br>947.83        | 250 | 949.5<br>949.6  | 330        | 055<br>954<br>952 | 05MAR00  | SECNO<br>Q<br>TIME<br>SLOPE                 | *PROF 1 | CCHV= .100 CEH<br>*SECNO .000 | O CROSS S    | .000<br>469.8<br>.00              |
| 52     |      | X X X X X X X X X X X X X X X X X X X | X 2<br>GR 9<br>GR 9             | X X | 3 R R R                        | X X | GR GR           | XXX        | S R G             | н        |                                             | * P.F   | CCE<br>RS                     | 328          |                                   |

\*SECNO 70.000

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.80

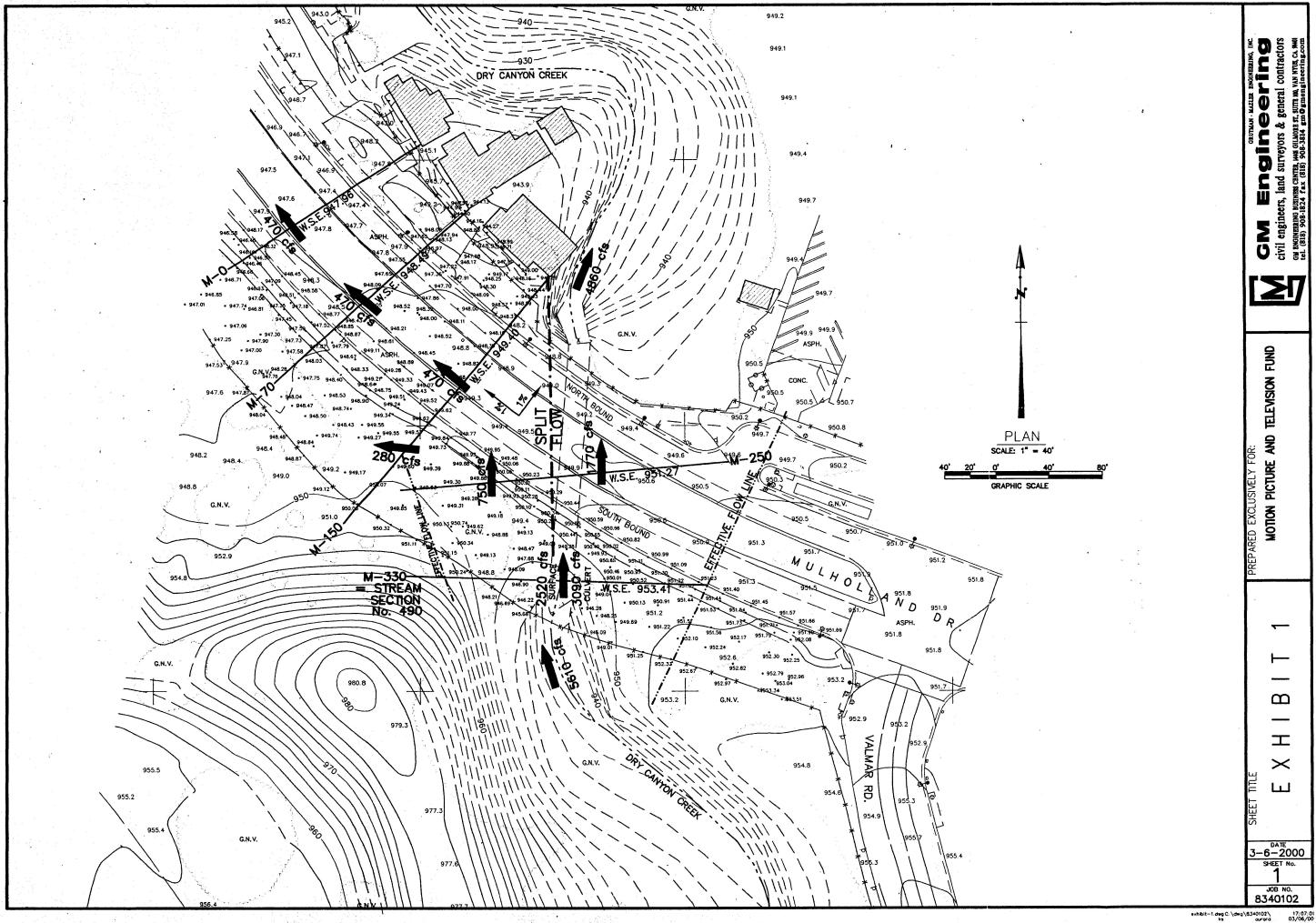
|                                   |                                                                                                                               |                   |                                  |                | ٥<br>(ر      | 500                                         |                 |                                                                                                                            |                   |                                                       |             |                    |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|----------------|--------------|---------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------|-------------|--------------------|
| 948.90<br>947.16<br>.28<br>131.87 | 949.62<br>947.83<br>66.65                                                                                                     |                   |                                  |                |              | L-BANK ELEV<br>R-BANK ELEV<br>SSTA<br>ENDST |                 | 950.31<br>949.60<br>.00<br>325.00                                                                                          |                   |                                                       |             |                    |
| .02<br>.2<br>944.40<br>131.59     | .07<br>.4<br>947.83<br>112.88                                                                                                 |                   |                                  |                |              | OLOSS<br>TWA<br>ELMIN<br>TOPWID             |                 | .08<br>.9<br>949.30<br>325.00                                                                                              |                   |                                                       |             |                    |
|                                   |                                                                                                                               |                   |                                  |                |              | HL<br>VOL<br>WTN<br>CORAR                   |                 | .38<br>1.0<br>000.                                                                                                         |                   |                                                       |             |                    |
| .20<br>85.1<br>.035               | 21.7<br>21.7<br>035                                                                                                           | .40               |                                  |                |              | HV<br>AROB<br>XNR<br>ICONT                  |                 | . 72<br>91.4<br>. 035                                                                                                      | 7                 |                                                       |             |                    |
| 948.69<br>45.0<br>.015            | 949.85<br>75.0<br>.015                                                                                                        | 949               |                                  |                |              | EG<br>ACH<br>XNCH<br>IDC                    |                 | 951.99<br>227.0<br>.015                                                                                                    | = 951.2           |                                                       |             |                    |
| 0000                              | 0000                                                                                                                          | CWSEL=            |                                  |                |              | WSELK<br>ALOB<br>XNL<br>ITRIAL              | 1.77 FEET       | .00<br>131.8<br>.035                                                                                                       | CWSEL             | 325.<br>44<br>1                                       |             | .61 FEET           |
| 948.02<br>308.1<br>3.62<br>60.    | SEL, CWSEL IFIC ENERGY D 940 949.40 9.40 949.40 48.4 5.62 2.23                                                                | 150.00            |                                  |                |              | CRIWS<br>QROB<br>VROB<br>XLOBR              | ENDED           | SEL<br>NERGY<br>951.27<br>252.3<br>2.76<br>150.                                                                            | 250.00            | 240.<br>70.7 10.1<br>227.0 91.4<br>7.8 2.8<br>1.4 1.1 |             | EXTENDED           |
| 948.49<br>161.7<br>3.59<br>70.    | ⊼ S E 4 4                                                                                                                     | SECNO=            | . 180.<br>21.7<br>2.2<br>2.8     |                | 44           | CWSEL<br>QCH<br>VCH<br>XLCH                 | 250.00 EXTENDED | ED WSEL, CWSEL<br>SPECIFIC ENERGY<br>SUMED<br>951.27 951<br>176.8 25<br>7.78 25                                            | SECNO=            | 9.0<br>66.1<br>3.4<br>1.5                             | .300        | 330.00 EXTE        |
| 4.09<br>.0<br>.00<br>.00          | 10 150.000 20 TRIALS ATTEMPTED WSJ PROBABLE MINIMUM SPECII CRITICAL DEPTH ASSUMED 1.57 949 469.8 .0 42: 0.0 1.57 103824 80. 5 | SUTION FOR        | . 89.7<br>75.0<br>5.6            | 00             | 22:00:4      | DEPTH<br>QLOB<br>VLOB<br>XLOBL              | SECTION         | 20 TRIALS ATTEMPTED WS PROBABLE MINIMUM SPECI CRITICAL DEPTH ASSUMED 0.000 1.97 951 500.0 480.9 176 .01 3.65 7 03872 35. 1 | FOR               | . 35.<br>10.2<br>65.6<br>3.9<br>1.9                   | O CEHV=     | rion               |
| 70.000<br>469.8<br>.00            | *SECNO 150.000 3685 20 TRIALS ATTEMPTED 3693 PROBABLE MINIMUM SPI 3720 CRITICAL DEPTH ASSUN 150.000 1.57 6469.8 01 003824 80. | FLOW DISTRIBUTION | STA= 67 PER Q= AREA= VEL= DEPTH= | *SECNO 250.000 | 1<br>05MAR00 | SECNO<br>Q<br>TIME<br>SLOPE                 | 3280 CROSS SI   | 3685 20 TRIALS<br>3693 PROBABLE 1<br>3720 CRITICAL 1<br>250.000<br>2500.0<br>.01                                           | FLOW DISTRIBUTION | STA= 0. PER Q= AREA= VEL= DEPTH=                      | *CCHV= .100 | 3280 CROSS SECTION |

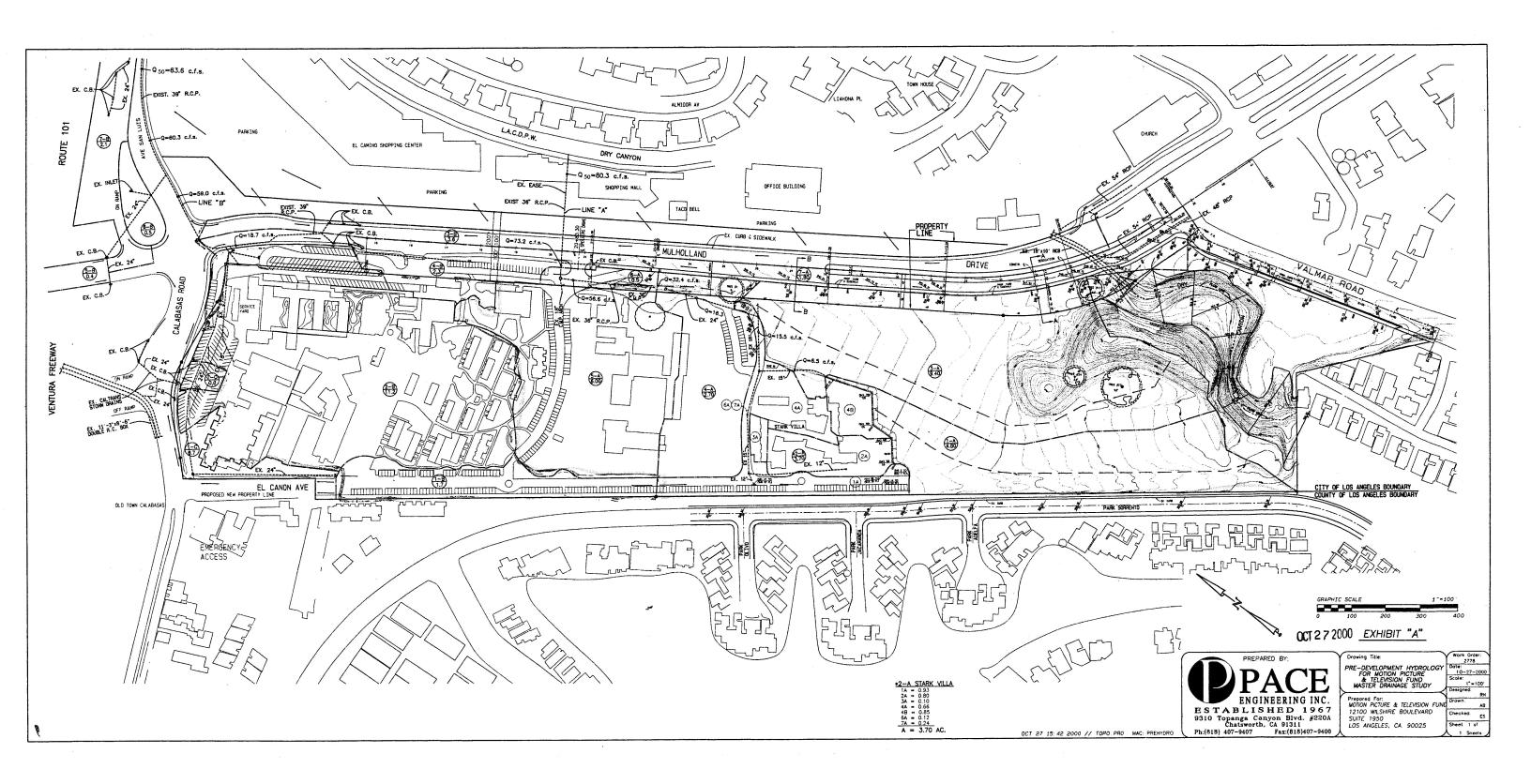
|                                                                                                  |          |                                |          |                                        |                                                               |                               |             |                | .01K  | 47.04  | 84.78  | 6.      | 401.77  | 163.70  |        |
|--------------------------------------------------------------------------------------------------|----------|--------------------------------|----------|----------------------------------------|---------------------------------------------------------------|-------------------------------|-------------|----------------|-------|--------|--------|---------|---------|---------|--------|
|                                                                                                  | PAGE 5   |                                | PAGE 6   | 22:00:44                               |                                                               |                               |             |                | AREA  | 94.58  | 130.10 | 96.67   | 450.12  | 332.43  | PAGE 7 |
|                                                                                                  | ц        | USSNO<br>250.000               | ш        | 05MAR00 22                             |                                                               |                               |             |                | VCH   | 5.54   | 3.59   | 5.62    | 7.78    | 8.26    |        |
| 950.00<br>951.00<br>8.36<br>180.00                                                               |          | 000                            |          | ЕХЕСИТЕD 05М                           |                                                               |                               |             |                | 10*KS | 99.72  | 30.70  | 38.24   | 38.72   | 233.22  |        |
| .07 96<br>1.4 99<br>49.60                                                                        |          | usws DssNo<br>951.275          |          | THIS RUN EX                            |                                                               | ERRORS LIST                   |             |                | ខ     | 948.35 | 948.69 | 949.85  | 951.99  | 953.57  |        |
| . 62<br>. 000<br>. 000                                                                           |          | DSWS US                        |          | Н                                      |                                                               | SUMMARY OF EI                 |             |                | CRIWS | 947.92 | 948.02 | 949.40  | 951.27  | 952.61  |        |
| . 96<br>. 9. 8<br>050                                                                            |          | NITER DE                       |          |                                        |                                                               | NI                            |             |                | CWSEL | 947.96 | 948.49 | 949.40  | 951.27  | 952.61  |        |
| 953.57<br>255.5<br>.050                                                                          |          | TABER N                        |          |                                        |                                                               | TION NUMBER INDICATES MESSAGE |             |                | O     | 469.77 | 469.77 | 469.77  | 2500.00 | 2500.00 |        |
| .00<br>.050<br>.050                                                                              |          | TCQ T<br>280.24                |          |                                        |                                                               | NUMBER INI                    |             |                | ELMIN | 945.10 | 944.40 | 947.83  | 949.30  | 949.60  |        |
| IL<br>IRGY<br>952.61<br>288.3<br>4.82<br>90.                                                     |          | TASQ<br>280.23                 |          | *<br>*<br>*                            | *<br>*<br>*                                                   | CROSS-SECTION                 |             |                | ELLC  | 00.    | 00.    | 00.     | 00.     | 00.     |        |
| ) WSEL, CWSE<br>PECIFIC ENE<br>JMED<br>952.61<br>2110.7<br>8.26                                  |          | ERRAC 1                        |          | ************************************** | 991<br>*******                                                | OF                            |             | 150            | ELTRD | 00.    | 00.    | 00.     | 00.     | 00.     |        |
| ATTEMPTED WSEL, CWSEL MINIMUM SPECIFIC ENER DEPTH ASSUMED 3.01 2110.7 101.0 2110.7 5.88 8.26 65. | 22:00:44 | MULHOLLAND<br>QCOMP EI         | 22:00:44 | ************************************** | .2; May 1<br>*******                                          | ( (*) AT LEFT                 |             | PRINTOUT TABLE | XLCH  | 00.    | 70.00  | 80.00   | 100.00  | 80.00   |        |
| 20 TRIALS<br>PROBABLE M<br>CRITICAL D<br>80.000<br>:500.0<br>.02                                 | 05MAR00  | SPLIT AT M<br>ASQ Q0<br>280.23 | 05MAR00  | ******<br>WATER                        | Version 4.6.2; May 1991<br>********************************** | - ASTERISK                    | LLAND DRIVE | SUMMARY PRINTC | SECNO | 000.   | 70.000 | 150.000 | 250.000 | 330.000 |        |
| 3685<br>3693<br>3720<br>2<br>3                                                                   | 1 05     | MI                             | 1 09     | *****<br>HEC-2                         | Ver<br>**                                                     | NOTE-                         | LLAN        | SUM            |       |        | *      | *       | *       | *       | Н      |

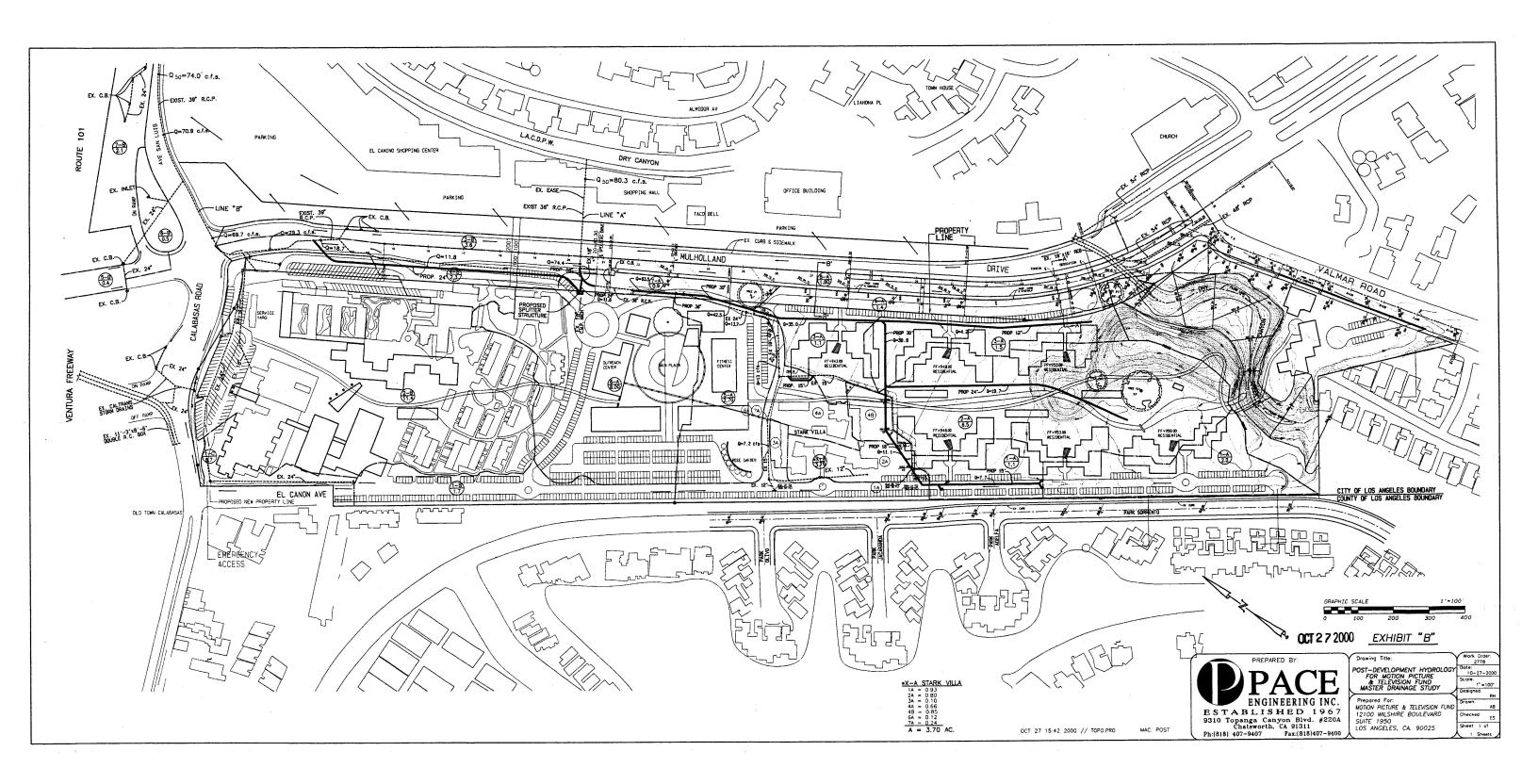
LLAND DRIVE

SUMMARY PRINTOUT TABLE 150

| XLCH   | 00.    | 70.00  | 80.00   | 100.00  | 80.00   |          |
|--------|--------|--------|---------|---------|---------|----------|
| TOPWID | 139.02 | 131.59 | 112.88  | 325.00  | 171.64  |          |
| DIFKWS | -2.04  | 00.    | 00.     | 00.     | 00.     |          |
| DIFWSX | 00.    | .53    | . 92    | 1.87    | 1.33    |          |
| DIFWSP | 00.    | 00.    | 00.     | 00.     | 00.     |          |
| CWSEL  | 947.96 | 948.49 | 949.40  | 951.27  | 952.61  |          |
| a      | 469.77 | 469.77 | 469.77  | 2500.00 | 2500.00 | 22:00:44 |
| SECNO  | 000.   | 70.000 | 150.000 | 250.000 | 330.000 | 05MAR00  |
|        |        | *      | *       | *       | *       | Н        |


SUMMARY OF ERRORS AND SPECIAL NOTES


| 70.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE | 1 CRITICAL DEPTH ASSUMED<br>1 PROBABLE MINIMUM SPECIFIC ENERGY<br>1 20 TRIALS ATTEMPTED TO BALANCE WSEL | CRITICAL DEPTH ASSUMED<br>PROBABLE MINIMUM SPECIFIC ENERGY<br>20 TRIALS ATTEMPTED TO BALANCE WSEL | 1 CRITICAL DEPTH ASSUMED 1 PROBABLE MINIMUM SPECIFIC ENERGY 1 20 TRIALS ATTEMPTED TO BALANCE WSEL |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Н                                                            |                                                                                                         | ннн                                                                                               |                                                                                                   |
| PROFILE=                                                     | PROFILE=                                                                                                | PROFILE=                                                                                          | PROFILE=                                                                                          |
|                                                              | PROFILE=                                                                                                | PROFILE=                                                                                          | PROFILE=                                                                                          |
|                                                              | PROFILE=                                                                                                | PROFILE=                                                                                          | PROFILE=                                                                                          |
| 70.000                                                       | 150.000                                                                                                 | 250.000                                                                                           | 330.000                                                                                           |
|                                                              | 150.000                                                                                                 | 250.000                                                                                           | 330.000                                                                                           |
|                                                              | 150.000                                                                                                 | 250.000                                                                                           | 330.000                                                                                           |
| WARNING SECNO=                                               | CAUTION SECNO-                                                                                          | CAUTION SECNO=                                                                                    | CAUTION SECNO=                                                                                    |
|                                                              | CAUTION SECNO-                                                                                          | CAUTION SECNO=                                                                                    | CAUTION SECNO=                                                                                    |
|                                                              | CAUTION SECNO-                                                                                          | CAUTION SECNO=                                                                                    | CAUTION SECNO=                                                                                    |


PAGE

ω

2





